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Unscented Transformation-Based Filters:
Performance Comparison Analysis for the State
Estimation in Polymerization Processes with
Delayed Measurements

Rubén Galdeano, Mariano Asteasuain,* Mabel Sanchez

State estimation with delayed measurements is essential to the operation of polymer
processes due to the limited availability of reliable online sensors and the unavoidable
hold-up time in the acquisition of critical variables data. In this work, a two-timescale

approach is applied to three filters based on the
Unscented Transformation, the Unscented Kalman Filter,
the Unscented Recursive Nonlinear Dynamic Data Recon-
ciliation and the Reformulated Constrained Unscented
Kalman Filter, in order to incorporate delayed measure-
ments into their estimation scheme. A comprehensive
comparative analysis is performed, which shows that the
three of them have very good accuracy and convergence
properties. However, the Unscented Kalman Filter per-

forms better in terms of computational time.

Introduction

One of the most important industries worldwide is the
manufacturing of polymers, which is affected by an
increasing demand for efficiency and competitiveness.
This requires producing at the lowest cost possible while
accomplishing stringent product specifications. In order to
meet changing market demands, it must also be able to
operate in a wide range of operating conditions without
diminishing the quality of the products.

Dynamic operation is very significant in polymer
manufacturing. On the one hand, a large number of
polymers of industrial interest are produced by batch
processes. On the other hand, continuous plants usually
produce dozens of different materials using the same
equipment. During the transition period between the
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steady-state production of one grade and another, off-spec
material with little or no commercial value is generated.
Therefore, the profitable operation of a polymerization
plant demands to carry out such transitions as efficiently as
possible.

However, dynamic operation of polymerization reactors
is an extremely complex task. Polymerization processes
usually exhibit highly exothermic reactions and changes in
viscosity, causing complex heat-transfer dynamics and
flow patterns. Moreover, these processes are strongly
nonlinear. This has been reflected in the abundant
production of design, optimization, and control of poly-
merization reactors studies found in the literature.!*!

One of the main difficulties in controlling the quality of
polymers is the absence of reliable online sensors for some
of their properties. Moreover, many important variables
cannot be measured online or can only be measured at low
sampling frequencies. Therefore, it is common that
dynamic operation is performed following a set of
trajectories obtained offline. However, uncertainty in
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process parameters and changing operating conditions,
such as increased fouling of the reactor walls, changes in
external and coolant temperatures, deactivation of cata-
lysts, disturbances, etc., require these paths to be updated.
This is especially important because the molecular proper-
ties of polymers, such as the molecular weight distribution
(MWD), copolymer composition, etc., are very sensitive to
operational conditions, and this affects the processing and
end-use properties of the product.

The state estimation in a dynamic system is a technique
that allows assessing inaccessible states through measur-
able variables. These variables can either be other states or
any direct or indirect measured magnitude that make the
system observable. Different techniques for nonlinear state
estimation have been used for years in polymerization
processes, such as the state estimation via nonlinear
observers, data reconciliation, moving horizon estimation
(MHE), neural networks, and fuzzy logic.*™*! Comprehen-
sive reviews of these can be found in Fonseca et al.™) or in
Richards and Congalidis.!*!

As the last mentioned review work indicates, an
approach investigated by several researchers is the use of
Kalman filtering. For continuous polymerization processes,
for example, Schuler and Suzhen(®! estimated states using
Extended Kalman Filtering (EKF) in a styrene polymeriza-
tion process through easily measured process variables.
Choi and Khan!” also used this filtering technique in a
continuous polymerization process for poly(ethylene ter-
ephthalate) (PET) manufacturing, comparing the estimates
using only two online measurements with those obtained
with the addition of five delayed offline measurements.
They showed that thelast option significantly improved the
estimation. Sirohi and Choi'® applied two different
strategies online, the EKF and the estimation using
nonlinear programming (NLP) techniques, to evaluate not
only the states but also key system parameters in a
continuous polymerization process. Also Mutha et all”!
applied a multirate state estimator on a methyl metha-
crylate (MMA) solution polymerization. They used an EKF
with fixed-lag smoothing that presents better convergence
in comparison with the standard EKF due to its ability to
reuse ameasurement multiple times. The procedure is well
suited for systems with delayed measurements. Recently, Li
et al.l*) proposed a hierarchical Kalman filter to estimate
state variables and kinetic parameters in a continuous
ethylene/propylene/diene monomer (EPDM) rubber poly-
merization reactor.

Despite being a very used technique, the EKF may present
numerical implementation problems when applied to
complex systems.*Y] The EKF approximates the actual
probability distributions of the states by a Gaussian
distribution. The first moment of the distribution is
propagated through the nonlinear model, while the second
one is spread through a linearized version of it. When this
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model is highly nonlinear, this approach may generate
expectations and covariances of states wide departed from
their actual values, which in the worst case can cause the
divergence of the filter. Another disadvantage of the EKF is
the need for computing the linearized Jacobian matrix of
the states, which results in high computational costs.
Several variants of the standard EKF are reported in the
literature that aim at reducing its drawbacks. They are
based, for instance, on the use of solution refinement, series
Taylor expansion to the second order, geometrically
adapted correction terms based on an invariant output
error, reduction of the system model order, etc.1

In addition, in recent years two major branches emerged
that aimed at solving EKF filtering problems. The first of them,
supported by atheory dated back to several years but that has
resurfaced, is the family of particle filters. Rawlings and
Bakshi*? made a review and applied these techniques to
different processes. Chen et al.l**! also used this method in a
batch reactor of MMA. The biggest drawback of the
particle filters is the high computational time, which
increases exponentially with the number of states to be
estimated.

The second technique that has shown promising results
is the family of filters based on a statistical concept known
as the Unscented Transformation (UT) whose most known
variant is the Unscented Kalman Filter (UKF). The UT is
founded on the intuition that it is easier to approximate a
probability distribution than it is to approximate an
arbitrary nonlinear function or transformation. The
approach takes a set of deterministically points and
estimates their mean and covariance.**! While EKF
propagates the mean and covariance only with a first
order accuracy, the UKF is accurate up to the second order.
There are known applications of this method in several
areas but very few in processes involving the production of
polymers.[*>*¢! However, the conventional UKF presents
potential disadvantages such as the disregard of bounds
and other constraints on parameters and state variables. It
has been shown that these may lead to poor filter
performance under some circumstances. Consequently
modifications that improve its performance were devel-
oped, such as the Unscented Recursive Nonlinear Dynamic
Data Reconciliation (URNDDR)™*” and the Reformulated
Constrained Unscented Kalman Filter (RCUKF).'®! These
variants incorporate the possibility of adding constraints
on the estimated states.

The process measurements that are available for
estimation purposes are usually of the following types:
continuous measurements which can be obtained at high
sampling frequency, delayed measurements from different
devices that are available at a fixed sampling rate, and
manual laboratory measurements which are available at
unequal intervals and with varying delays.*®! Very few
works related to state estimation in control systems refer to
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the use of delayed measurements and how they affect the
quality of the estimate.

In polymer processes, in particular, several critical
quality variables belong to the last two types of aforemen-
tioned observations. Forinstance, the polymer MWD and its
averages, which can be measured by either online or offline
size exclusion chromatography (SEC). In the case of offline
equipments, the measurement delay is usually of 60 min or
more. When using online devices, there is still a hold-up
time for sample preparation and separation of ~15min
when using a single SEC column, or longer if more columns
are used for a more efficient separation.!*2"

Therefore, delayed values of these molecular properties
have to be incorporated to the estimation scheme to enhance
process knowledge. In state estimation problems using MHE,
this type of measurement is easily treated, but in general and
depending on how large the data window is, these methods
have a high computational cost. Regarding filtering estima-
tiontechniques, different procedures are available for dealing
with delayed measurements. One of them consists in
modifying the structure of the filtering algorithm, but a
general method is not available due to its intrinsic complex-
ity. Only applications to linear cases and some specific cases
of non-linear filters have been reported up to the present
time.?»??l Another way is to develop an estimation
procedure which identifies when delayed observations are
available and performs a re-estimation of the states.!*! The
literature provides some case studies of polymerization
processes that take into account delayed measurements
using EKF with this re-estimation loop.”*°?%l Also the
procedure developed by Mutha et al,,**/ which is based on an
EKF with fixed-lag smoothing, can be applied.

This work aims at using filtering strategies based on the
UT into an estimation scheme that deals with delayed
measurements, focusing on applications to polymer
processes. The conventional UKF and two of its potential
improvements, the URNDDR and the RCUKF, are selected as
filtering techniques. The performances of the estimation
procedures are evaluated in terms of appropriate para-
meters, which indicate their likely behavior in control
systems and real-time optimization procedures.

The rest of the paper is organized as follows. In the next
section, the nonlinear state estimation problem is for-
mulated, and the estimation scheme to deal with delayed
measurements is explained. Next, two case studies from the
literature are briefly reviewed and the application results of
the estimation strategies to these processes are presented
and discussed.

Nonlinear State Estimation Using Delayed
Measurements

A state-space representation is commonly used for
describing physical systems. The approaches that follow
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will be concerned with batch and continuous polymeriza-
tion processes described by a set of ordinary differential
equations. The operation of these continuous time non-
linear systems can be written as

dx

a S u ) +w(t),  wi(t) ~ N[0, Q(t)] (1)

where x is the n-dimensional state vector, f(x,u,t) the n-
dimensional vector-valued function, u represents the
vector of known manipulated inputs, and w(t) stands
for the n-dimensional process noise vector with covariance
Q(t).
At discrete instants of time the following m-dimensional
observation vector y; is obtained
V., = h(xk) + Vi, Vpr~ ]\][07 Rk] (2)
where h is the measurement equation and v, represents
the m-dimensional observation noise vector with covar-
iance Rj. The vectors v and w are zero mean white
Gaussian noise assumed to be independent of each other.
When the value of a delayed measurement is available,
the following measurement equation replaces Equation 2,

yg_T = hd (Xg,f) + ngﬁ vg'r ~ N[O’ Rng:I (3)

The dimensions of matrices R¢ _ and R;, depend on the
number of variables measured at the corresponding time,
and t represents the time intervals elapsed since the
delayed measurement was obtained.

In Figure 1 a typical flow diagram of a state estimation
process is shown.

In any state estimation technique, observability is a
primary issue. A system is completely observable if every
initial state can be determined through knowledge of the
manipulated variables and system outputs over some finite
time interval.**!

As mentioned before, different approaches have been
proposed in the literature to adapt existing estimation
methods in order to incorporate information from delayed
measurements. One of these is the so-called two-timescale
estimation technique. This approach does not require
modifying the basic algorithm of the filter. Instead, it
incorporates information of delayed measurements by

Process Measurement
noise noise

Estimated
Process states
Inputs . Estimation
— Nonlinear Process
Algorithm

Y
Process

Measurements

Figure 1. General state estimation.
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recalculating past trajectories. This method has been
applied successfully to the EKF.”*%23! In this work, we
analyze the performance of this technique for three filters of
the UT family: the conventional UKF and two of its variants,
the URNDDR and the RCUKF. The standard algorithms for
online measurements corresponding to these filters are
shown in the Appendix. The application of the two-
timescale technique is explained below:.

The standard procedures of the aforementioned filters
consist of two stages: a stage of propagation of states
through the model and a stage of update of the states
against measurement values. The first one takes place
between online sampling times. In this stage, the filter
yields predicted values of the states X, , (f,—1 <t < t;), by
solving the process model using the information available
uptothetimet,_;. The update stage takes place at sampling
intervals k, when state updates x; are obtained by
correcting the predicted values X, against the online
measurements yJ. The updated values x; are then the
starting points for the next propagation stage.

Inthetwo-timescale filter, the estimation operateslike in
its standard counterpart meanwhile delayed measure-
ments are not available. However, predicted states and
online measurements trajectories x, and y° are stored.
When a delayed measurement yd _, corresponding to a past
time interval (k — ), arrives at the current time t;, firstly the
past predicted states x,__ are re-updated against the stored
online measurements y? _ but also against the delayed
measurements ¢ _, obtaining a new x,__. Using this value
as starting point, the trajectory between t;_, and t; is then
recalculated. This involves repetition of the propagation
and online updates in the period [t—,, t]. In this way the
updated states x; are obtained that are the initial points for
the next propagation stage of the filter.

Inthe next section, the performance of the two-timescale
UT filters is analyzed with two case studies of polymer
processes of different complexity.

Case Studies

Two case studies of different mathematical complexity,
taken from the literature, were used to evaluate the
performances of the two-timescale UKF, URNDDR, and
RCUKEF filters. The first case study is a styrene solution
polymerization in a continuous stirred-tank reactor
(CSTR).?®! In this case the mathematical model is simple,
involving six state variables which include reactant
concentrations and average molecular weights of the
polymer. Two online measurements and two delayed
measurements are considered. The second case study
involves a solution copolymerization reactor with
recycle.m] The mathematical model of this process presents
an increased complexity, involving 24 states and several
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Figure 2. Styrene solution polymerization reactor.

algebraic nonlinear equations. The model predicts conver-
sion and copolymer average molecular weights and
composition. In this case three online measurements and
two delayed measurements are considered. Details of the
two case studies are presented below.

Case 1: Styrene Polymerization

This process is a solution styrene polymerization in a CSTR,
in which toluene is used as solvent and azoisobutyronitrile
(AIBN) as initiator. A diagram of the polymerization reactor
is shown in Figure 2. The reactor feed consists of two
streams; one of themis a solution of initiator in toluene, and
the other one a solution of styrene in the same solvent.
Polystyrene, unreacted monomer, solvent and initiator,
compose the exit stream. The reactor temperature is tightly
controlled independently of other process conditions.2®!

The mathematical model is based on the following
kinetic steps: initiation, propagation, transfer to monomer,
and solvent and termination by combination. Under the
operating conditions studied in this case, the gel and glass
effects are negligible.[**) The balance equations of the model
are the following.

Initiator:
G (Fr Lk \C +F1CL1 (a)
a ~ \v " ")y

Solvent:
dcs _ _ FrCs | FrCs1 + FCs (5)
dt \%4 \4
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Monomer:
dCum FyCpo—FrCy
- = _F py=— ~ -7
I pCmP + v (6)

First-Order Moment of the Polymer MWD:

FrA
AN N (ki Cug + ko + kisCs) (20—
dt 4
P
+ kP (1= (7)

Number-Average Molecular Weight:

_ [(kfmCM + kygP + kaCs)(ZOl*C\lz) + ktcP]
dMy _

M SWE I
dt ~[(ktm Con + ReaP -+ kesCs)r + 0.5kicP] 2™ (1) A (1-a)
M

Weight-Average Molecular Weight:

R. Galdeano, M. Asteasuain, M. Sanchez

Egs

ke, = Age RT (16)
ki = Ao &F (17)
Ryg = 0.15 X ky (18)
kic = 0.85 x ki (19)

Inthe previous equations, C;is the molar concentration of
species j; F; and F, are the volumetric flow rates of the
initiator solution stream and the monomer solution stream,
respectively, fthe initiator efficiency, My, styrene molecular

PM, (8)

_ [(kfmCM + kgP + kaCs)((){3730t2 + 40[) + ktcP(O{ + 2)}

dM,, _ PMm

at - . My FWEE ©)
—[(RemCm + kraP + kgsCs) (200—ar®) + ktCP]M— (1-a) | M(1-a)
M
where weight, and V is the reactor volume. This model has been
validated experimentally. The values of the model para-
ko Cua meters are found in the literature.[2®!

o= (10) For the analysis of the proposed filters, it is

(kp + kfm)CM + kgsCs + kP

Besides, the total radical concentration is

_[2fCik
pP= % (11)

and the volumetric flow rate of the outlet stream is

Fr=F+F (12)

As the reactor temperature is kept tightly around its
desired value by its control system, the energy balance is
not included. The kinetic constants used above are

ki — O.693/<60 x 1o<<A'/T>+B'>) (13)
Ep
kp = Ape RT (14)
Efm
kfm = AfmeiRT (15)
‘:': Macromolecular
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considered that the initiator concentration C; and the
monomer concentration Cy; are measured online with a
sampling interval of 5min,’* while the number-average
molecular weight M, and the weight-average molecular
weight M,y are delayed measurements with a certain delay
time.

Case 2: MMA - Vinyl Acetate Copolymerization

The process selected as second case study is a solution
polymerization in a CSTR with a recycle loop. This is a
system that has been chosen in several works dealing with
state estimation and process control applications.272%)
Figure 3 shows a diagram of the reactor. The comonomers,
MMA and vinyl acetate (VA) are continuously added,
together with AIBN as initiator, benzene (B) as solvent and
acetaldehyde as chain transfer agent (CTA). The monomer
stream may also contain inhibitors such as m-dinitroben-
zene. These are the components of the fresh feed stream (F;).
This is combined with the recycle stream (F,) to form the
reactor feed stream (Fs). Polymer, solvent, unreacted
monomers, initiator, and CTA flow out of reactor to a
separator (F,), from which unreacted monomers and
solvent continue to the purge point (F,). After the purge
(Fo) they are stored in a recycle hold tank.
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where Cippaand Cy, denote the global
concentration of radicals with a MMA
and a VA terminal unit, respectively,

f

Monomer A

f

Monomer B

f

Initiator

f

Coolant

Solvent coolant

f

Reactor
Transfer
Agent

Inhibitor

pr and ¢, represent the density and
heat-capacity of the reaction mixture,
respectively, AHpaa, AHppa, AHpap and
AHpy,y, are reaction enthalpies, and kpaa,
Rpba, Rpab and kpyy, are kinetic constants,
of the propagation reactions; U, and S,
are the overall heat-transfer coefficient
and transfer area, respectively, and T is
the temperature of the reactor jacket.

Q

Separator Balances:

Separator

F
Crst— 7 Crs

s

dCrs
dt 0 ’
Ck,s(o) = Ck,s,07
k = MMA, VA, AIBN, B, CTA, inh

(24)

Polymer, Initiator, Transfer Agent

B Figure 3. Copolymerization reactor.

This system is represented by a first principles model
consisting of a set of differential algebraic equations (DAE),
whose most important equations are:

Reactor Mass and Moment Balances:

dCr  Ces—Ce

- R
at b, Tk (20)

Ce(0) = Cro k= MMA, VA, AIBN, B, CTA, inh

d\e  Aps—Xe B

@ g TS MO =Aeo (21)
k — MMA, VA

d _

e _ VeV | r (0) = ko k=012 (22)

at =~ 6

where subscript f stands for feed stream, C, the molar
concentration of species k and 7, the molar concentration
of monomer k in the copolymer, v, the kth-order moment
of the copolymer MWD, 6, is the residence time of reactor,
and Ry, S, and T are reaction rates.

Reactor Energy Balance:

dT,  Ti—T

where 6, is the residence time in the
separator and n=7 for k=AIBN, CTA,
inh, and n =6 for k=MMA, VA, B.

Hold Tank Balances:

dCrn _ Cent—Crn
dt On ’ (25)
Ckvh(O) = Crho, k=MMA,VA B
where 6y, is the residence time in the hold tank.

Average Molecular Weights, Composition and Conversion:

b

" o (26)
.2
My = - (27)
_ dvma
TMA = Sta + R 28
Conv = V1 (29)

(1)1 + MamaCuma + MyaCua)

where Yyma is the number-average composition of MMA
in the copolymer and Myma and My, are the molecular
weights of MMA and VA, respectively. This mathematical

(—AHpaa) Rpaa Cvnia Cranaa + (—AHypba) Rpba Cvamia Cya

H - 0, PrCpr

(_AHpab)kpabCVACXAMA + (_AHpbb)kpbbCVAcéjA _ UrSy (Tr_Tj)

(23)

Prlprx
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model is supported by experimental validation. More
details on the model equations, such as algebraic
equations for stream connections, reaction rates, global
concentration of radicals, and parameters can be found in
ref.?7]

For this case study, it is considered that the reactor
temperature T, the total conversion Conv and the
copolymer composition Yypa are measured online with
a sampling interval of 5 min,!™ while the number-average
molecular weight M, and the weight-average molecular
weight M,y are delayed measurements with a certain delay
time.

Results and Discussion

Different tests were carried out in order to analyze the
performance of two-timescale filtering techniques. Further-
more the behavior of a multirate EKF!®! (MEKF) technique
was studied. In these tests, measurement white noise (vy)
was modeled by corrupting the actual measurement values
given by the solution of the DAE system (h(x)), with a
pseudo random number generator. The perturbation was
settobe withinthree standard deviations of the true values.
The elements of the observation noise covariance matrix R
were set in agreement with typical instrumentation of
polymer reactors. The elements of the process noise
covariance matrix Q were tuned by trial and error in order
to improve convergence of the filter. Finally, the initial
values of the error covariance matrix P, were set as the ones
resulting of preliminary filter runs. The filter algorithms
were implemented in Matlab with an embedded process
model developed in gPROMS. Besides, Matlab was linked to
GAMS for carrying out the solution of the optimization
problems in the update steps of the URNDDR and RCUKF
filters. A PC equipped with a Pentium 4 (3 GHz) processor
and 2 GB RAM was employed.

The three UT filters analyzed in this work proved to be
successful in the estimation of all process variables.
However, since this work focuses on the handling of
delayed measurements with the UT filters, results will be
presented for the estimation of the number and weight-
average molecular weights. In the first case study,
measured variables were the initiator and monomer
concentrations and the number and weight-average
molecular weights. The first two were considered to be
measured online with a sampling interval of 5 min, while
average molecular weight data were received with a certain
delay. Several dynamic scenarios were simulated by
perturbation of a base-case operating point. This corre-
sponds to a steady-state point defined by the operating
conditions showninTable 1. Results are presented for one of
these scenarios selected as example. In this scenario, a step
change in the initiator flow rate F; is made at time 1 h, from
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Table 1. Base case operating point for Case .

Variable Value Unit

T 393 K

F 1.54 x 107* kmol s7*
F, 1.54 x 107* kmol s7*
Crz 6.38 x 10° kmol m~3
Cra 0.1138 kmol m~3
Cs; 9.2 kmol m 3
Csp 1.75 kmol m >
14 0.48 m?

an initial value of 1.54 x 10~ kmol s™* to a final value of
7.9 x 107> kmol s~ . The process was sampled 100 times in
all tests.

Figure 4 shows the results of the estimation of M, for
different measurement delays, for the three UT filters.
Besides, estimation with a classical two-timescale EKF?°
and the MEKF technique were included for comparison. This
plot corresponds to one of the 100 process samples. Initial
estimates of the states were set in order to start with an
initial error of 10% in M, while the remaining variables
were initialized at their actual values. It can be seen that
convergence is achieved in similar times for all filters in
each situation. However, the UT filters outperform the EKF
and MEKF in terms of smoothness of the estimated
trajectories and error with respect to the actual values.
The difference in performance becomes more noticeable as
the delay time increases and the filter is more seriously
challenged. Onthe other hand, the behaviors of the three UT
filters are very similar to each other.

It can also be seen that convergence time increases with
delay time. In the case of a 15min delay, convergence is
achieved in ~1 h; however, it takes nearly 4 h for a delay of
45 min. This is an expected result because the system is not
observable when molecular weights measurements are not
available. Hence, at longer measurement delays state
predictionis carried out under non-observability conditions
for a longer period of time, and thus the estimates become
more deficient. The filters’ performances for the random
measurement delay are in an intermediate position
between the ones with fixed delays. This behavior for
different delay times are in agreement with previous
studies on two-timescale EKF filters.*% Similar results were
obtained for My, as shown in Figure 5.

Figure 6 shows the comparative values of the average
root square error (ARSE) over the 100 process samples
corresponding to the different filters for the delay periods
analyzed. In this figure it is possible to see that the ARSE is
smaller for the UT filters than for the EKF and the MEKEF,
with a slight superiority of the RCUKF and the URNDDR over
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Figure 4. Estimation of M,, for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case .
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Figure 5. Estimation of M, for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case .
— True value; x measurements: —O—EKF; —@— MEKF; —1— UKF; —&- URNDDR; ¢ RCUKF.
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Figure 6. Average root square error for M,, and M, in Case .

the classical UKF, especially for the variable with an errorin
the initial condition. It can also be observed that when the
measurements are randomly delayed between 15 and
45 min, the error is between the ones for the fixed 15 min
and the fixed 45 min delays, which confirms the previous
observation in Figure 4 about this point.

In the second case study, the reactor temperature, the
total conversion, and the copolymer composition were
regarded as online measurements with a sampling time of

Table 3. Initial conditions for Case Il

R. Galdeano, M. Asteasuain, M. Sanchez

Table 2. Operating conditions for Case Il.

Parameter Value Unit
Fs 9.35 kmol s7*
Crmaf 5.15 kmol m 3
Cvag 2.97 kmol m 3
Camng 46x10°° kmol m—3
Cat 131 kmol m 3
Ceraf 1.17 kmol m 3
Cinnf 0 kmol m 3
T 336 K

Tis 353 K
purge fraction 0.05

v, 1 m?

S 46 m?

5min. Number and weight-average molecular weights
measurements were received with a certain delay. Asin the
previous case, several dynamic scenarios were simulated
and one of them was selected as example to show the
results of the analysis of the filters’ performances. In the
chosen example, time O corresponds to an intermediate
point during a transition toward a new steady state.
Relevant process variables for this scenario are presented in
Table 2 and 3. The process was sampled 100 times in all
tests.

Similarly to Case, Figure 7 and 8 show the estimation of
M,, and M, for one of the 100 process samples of the
selected scenario. It should be noted that in Case II the
estimation is initialized at a transition point of the system,
which increases the possibility of inaccuracy. The initial
values were taken with an error of 10%. A similar patternin

State Value Unit State Value Unit

CMMA,O 1.83 kmol m73 CMMAvSrO 1.83 kmol m73
CVA,O 3.38 kmol m_3 CVA:S:O 3.38 kmol lT'l_3
CAIBN,O 1.22 x 1074 kmol m73 CAIBN,S:O 1.22 x 1074 kmol m73
Cro 1.65 kmol m—3 Cso 1.65 kmol m~3
Cetao 0.22 kmol m—3 CeTaso 0.25 kmol m~3
Cinho 0 kmol m~—3 Cinh.s,0 0 kmol m 3
Tro 3822 K CyMa 1o 2.035 kmol m~3
AMMA.0 2.54 kmol m~3 Cvano 3.76 kmol m 3
7\‘VA,O 0.36 kmol m73 CAIBN,h:O 0 kmol m73
Po,0 5.63 %1073 kmol m—3 Ceho 1.83 kmol m~3
P10 256.09 kgm? Cetano 0 kmol m~3
P2 0 2.1 x 10° kg? kmol ' m~3 Cinhho 0 kmol m 3
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Figure 7. Estimation of M,, for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case II.

— True value; x measurements: —O— EKF; —@— MEKF; —— UKF; —o- URNDDR; - RCUKF.
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Figure 8. Estimation of M, for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case II.

— True value; x measurements: —O— EKF; —@— MEKF; —{1— UKF; -&- URNDDR; < RCUKF.
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Figure 9. Average root square error for M,, and M, in Case II.

convergence time and accuracy in the estimation than in
CaseIcan be observed. Even though the number of states is
significantly higher and the process dynamics is more
complex, the UT filters show a very good performance, with
superior results than the EKF and the MEKF. This is
confirmed by the ARSE values presented in Figure 9.

Another critical aspect in a filter performance is the
computational time. The time required by the filter to
provide estimate values is extremely important in the
subsequent stages of control and online optimization. This
feature was analyzed for each of the filters studied in this
work. The average computational time over the 100 process
samples was evaluated for Cases I and II, distinguishing
between the individual steps of propagation, update and
reestimation that compose the UKF filters’ algorithms. The
resulting values are presented in Table 4 and 5. It can be
observed that the lowest values among the two-timescale
filters correspond to the EKF and the UKF. These filters show
comparable CPU time requirements. The sum of propaga-
tion and update times are similar, and therefore so is the
reestimation time, which involves repetition of propaga-
tion and update steps from time t;_,) to time t;. Since its
processing time is only of a few seconds, the UKF turns out
to be an attractive option for online applications.

The URNDDR and the RCUKF, on the other hand, presenta
considerably higher time requirement. It can be seen that
the most time consuming step is the update step. Unlike the
conventional UKF, in the URNDDR and the RCUKF this step

.’ Macromolecular
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Table 4. Computational times of the different filters for Case I.

Step EKF MEKF UKF URNDDR RCUKF
[s1 [l sl [s] [s]
propagation 048 051 113 1.63 1.18
update 071 0.84 0213 5.53 6.56
delay — 15 min 524 426 6.49 3029 3213
delay — 30 min 12.43 8.32 9.83 4945  47.77
delay — 45 min 1948 135 17.97 68.50  70.90

Table 5. Computational times of the different filters for Case II.

Step EKF MEKF UKF URNDDR RCUKF
[s1 [ [ [s] [s]
propagation 290 32 6.77 9.79 7.08
update 423 398 128 3320 39.35
delay — 15 min 3943 17.21 3893 192.73 202.79
delay — 30 min 57.85 29.65 56.97 25472 240.28
delay — 45 min 99.77 48.32 87.86 39190 385.58

involves solving an optimization problem. Solution of
optimization problems require larger times than the pure
algebraic operations performed in the UKF, and hence the
CPU time increases. Because of this, the reestimation time is
markedly higher than for the UKF. In Case I, where the
model involves only six states, the reestimation time
reaches up to about a 20% of the online sampling time of
5min. However, in Case II that involves 24 states, the
reestimation time can be up to 30% greater than the online
sampling time, meaning that the estimate of the states will
not be available before the arrival of new measurements.
The main potential advantages of the URNDDR and the
RCUKF over the conventional UKF are their capability of
handling constraints. However, no situations of failure of
the UKF due to the absence of constraints, such as
concentrations’ estimates yielding negative values, were
encountered in this work.

Regarding MEKF, the average computational time over
the 100 process samples was also evaluated for Cases I and
11, distinguishing between the individual steps of propaga-
tion, update, and estimation of the new state values by
smoothing. Results are included in Table 4 and 5. The
smoothing interval was established as suggested by Muhta
et al.?¥ It can be noticed that the lowest computational
time for all the analyzed techniques corresponds to MEKF.
This is due to the fact that the two-timescale procedure
involves a re-estimation step that uses original filters
algorithms; in contrast, MEKF employs a modification of the
standard EKF algorithm and does not recalculate past
trajectories.
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Conclusion

A two-timescale method was applied to the UKF, the
URNDDR and the RCUKEF filters in order to incorporate
delayed measurements into their estimation scheme. A
thorough analysis on the performance of these filters in two
case studies involving polymer processes showed that
these filters have excellent convergence and accuracy
properties, outperforming the standard EKF and MEKF.

It was found that the delay time in the acquisition of the
measurement data influences the filters’ performances.
Longer delays caused longer convergence times and
deterioration of the filter accuracy, which is in agreement
with reported results on two-timescale EKFs.

The three UT filters presented similar convergence and
accuracy properties. However, the UKF required much less
computational time, which makes it the most attractive
alternative for online state estimation for processes like the
ones studied in this work. This difference in computational
requirement comes from the optimization problem that is
performed in the update step of the URNDDR and the
RCUKE, in contrast to the direct vector-matrix operations
involved in the UKF.

No failure due to absence of constraints in the UKF was
detected for the processes studied in this work, making
futile the main advantages of the URNDDR and the RCUKF
over the UKF.
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EKF. Table A.1 shows the algorithm employed in several
texts.[2>30]

EKF with Fixed-Lag Smoothing for Multirate Systems

The MEKF is based on a “boop-strap” application of filtering
and smoothing. Two EKF algorithms are used in this
scheme: one for filtering the states when only online
measurements are available, and the second for smoothing
the states when delayed measurements arrive. This
procedure was developed by Mutha et al.?*! The algorithm
is shown in Table A.2.

Unscented Filters Family Equation Section (Next)

Estimation algorithms like the EKF, based on Gaussian
noise, may not be applicable to nonlinear systems since
Gaussian noise propagated through a nonlinear model is
distorted. Besides, severe nonlinearities may prevent the
use of theory based on linearization due to poor estimation
accuracy. Furthermore, the nonlinear system may have a
skew or multimodal probability density function.

The UT is a method for calculating the statistics of a
random variable that undergoes a nonlinear transforma-
tion.®" Let x be an n-dimensional random variable which is
propagated through a nonlinear function. Itis assumed that
x has mean X and covariance P,. In order to calculate the
statistics of a dependent variable in a nonlinear function, a

Appendix matrix x of 2n 4 1 sigma vectors x; is constructed as follows:
This appendix includes the standard algorithms of the EKF Xo =X (A1)
and the UT filters UKF, URNDDR and RCUKEF, for the state
estimation with online measurements. Xi =X+ (\/ (n+ )\)Px) , i=1,...,n (A.2)
1
Extended Kalman Filter Xi =X+ (\/(n + A)Px>_ , i=n+1,...,2n (A3)
—-n
One of the most common ways to solve the problem of state ,
estimation from disturbed measurement variables is the A=o’(n+ K)=n (A.4)
Table A.1. Algorithm of the extended Kalman filter.
Step Equation

state estimation propagation

error covariance propagation

state estimation update at t, with on-line measurements

error covariance update at t, with on-line measurements

gain matrix at t, with online measurements
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X(t) = fIx(t),u(t)]
P (t) = F(OP(FT(t) + Q(t)
%, =% +Ke[ye—h(%)]
P} = [I-KzHox|P;
Ke = PeHY . [HoxPy HY , + Ro]

where

ri) - Z0-ut)
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Table A.2. Algorithm of the MEKF.

R. Galdeano, M. Asteasuain, M. Sanchez

Step

Equation

State estimation propagation and
update with standard extended Kalman filter
for online measurements

Fixed-lag smoother for delayed measurement

where 7 is a scaling parameter and « a constant which
determines the spread of the sigma points around the
mean value X, and is usually set to a small positive value.
Besides, « is a secondary scaling parameter which is
usually set to 0, 8is used to incorporate prior knowledge of
the distribution of x (for a Gaussian distribution, B=2 is

Table A.3. Algorithm of the unscented Kalman filter.

%(t) = f%(t), u(t)]
P(t) = F(H)P(t) + P(OFT (1) + Q(t)
%) = %, +Ke[y,—h{%, }
P/ = [I-KiHox|P;

X =%,
Ko = K

00 -
PO° — p,

Vi=1, .., Sl (smoothing interval)
i— -1
K= Py "HT (H,P,°HL +R;)
Pi,i: Pifl,iflipojlegKTFZ
P01 PO -1 (Fk Kk OHk)

Xpp1 = Xeya i TKei[Vera i~ 0 {%1 i}

optimal), and (/(n+ A)Py), is the ith row of the matrix
square root, calculated by using a stable numeric
algorithm such as the Choleski decomposition.”***?! The
UT determines the mean and covariance of the system
output by approximation, using a weighted sample mean
and covariance of the posterior sigma points.

Step

Equation

initialization
computation of sigma points

state estimation propagation

error covariance propagation

state estimation update at t, with on-line measurements
error covariance update at t; with on-line measurements

gain matrix at tx with on-line measurements
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%o = E[Xo]; Po = E[(xo—fcoo)(xo—xooﬂ
Xp = [ﬁkﬁkk + (\/ (n + )\)Pk)iﬁkkf( (Vl + )\)Pk)i}

2n
Xe = Flxe,we], k=3 Wiy,
=0

oz o T
P, = XEJWIC [Xijk_xk} [ka_xk]
1=

X; =%, + K Ve
P} =P, —KP ;K"

_ —1
Ky = kav_yk yk,yk
where

2L
L =H[x;, W), ¥p=> WLk
i=0
Pyy, = _Z WE [Lie—% | [Lie—F)"

Pooye = z wi [ ik _*l;] [Ii,k_f’kr
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Table A.4. Algorithm of the RCUKF.
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Step

Equation

initialization
computation of sigma points

state estimation propagation
error covariance propagation

state estimation update at t, with
on-line measurements

error covariance update at t, with
online measurements

where x; is obtained by solving the

optimization problem ik

%o = ElXo], o = E[ (xo—%p) (Xo—%)"]
Xk = %X + (V/(L+ MPe) X —(/(L+ M)Py) |
X, =Flewl, X iWF‘xE
Pe = éw"c [X;k_f(’;] [X;k_f(’;]T

2L
X, =2 Witxy
i=0

2L
Py = S Wiy, 5] [T
i=0 ’ ’

min (en{xi}) R (i) + (i) B0 (e

x, < ?:—k <Xxy
g{)ﬁk} <0

e{fgifk} =0

Unscented Kalman Filter

The UKF, as well as the EKF, is a recursive estimation
technique. The application of the UT has the advantage that
the state estimates and their error covariance matrix can be
calculated using the exact nonlinear process and measure-
ment models. The steps of the UKF algorithm are described
in Table A.3.[10:30.16]

The weights W™ and W¥ are calculated as follows:

(m) _
We = 3 (A5)
(0) 2
= +1-a?+ A
0 n+ A ¢ A (A.6)
wm — w© A i=1,...,2n (A7)

i LT 2n N
Reformulated Constrained Unscented Kalman Filter

Apotential disadvantage of the UKF is that it does not allow
imposing constraints on the state estimations. Constraints
in the states commonly appear in chemical processes, e.g.
concentrations greater or equal to zero. An estimator like
EKF or UKF may give rise to negative concentration
estimates even though this is physically impossible.
Different strategies to enforce estimates to lie between
bounds in a given state estimation method have been
proposed in the literature.*”3233] One of them is the
RCUKF,*®! whose algorithm is shown in Table A 4.
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Unscented Recursive Nonlinear Dynamic Data
Reconciliation

In the RCUKF, state estimation updates with online
measurements are enforced to satisfy bounds. However,
the sigma points, and the propagated sigma points and
their mean, could still lie outside the desired constraints. A
method that overcomes this problem was developed by
Vachhani et al*”! They reformulated the selection of the
sigma points and weights of the UKF so that the former and
their mean do not violate the state constraints. In this
technique, the URNDDR, the sigma points used in the
propagation step are located asymmetrically around
the current meanx. The direction along which these points
are selected is the same as in the UKF, but the step size for all
the sigma points x;=1, .., 2n are chosen according to

O = min(v n+ k,01p, 9219) (A.S)

01, = min |oo, (Xu—Xkk;) / (VPr) (A.9)
1k j:(\/ﬁ)go[ (xuj k\’?})/( k)j

Oop = min |00, (Xjj—Xeks) / (VPr) (A.10)
2k j:(\/ﬁ)ﬁo[ (xy k‘k])/< k)z]

Therefore, the sigma points are computed as

Xo =X (A.11)

Xi :i+0ik(\/17x).7 =1, N (A12)
1
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Table A.5. Algorithm of the URNDDR.
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Step

Equation

initialization
computation of sigma points

state estimation propagation
error covariance propagation

state estimation update at t, with
on-line measurements

error covariance update at t, with
online measurements

where x; is obtained by solving

the optimization problem

% = E[xo, Po= E{(xofﬁo)(xofﬁo)T]
Xk = [xk*kk + ei(\/P_k)i*kk_ei(\/P_k)i]

2L

o .

X, ;}Wi Xk
=

b=l

X, _ZWm

=0

2L .
=S w [X:rk_
=0 ’

X]: = F[Xka ukL

2L .
P =W {X,-l —x
=

m1n <Yk h{f(fk}f (Yk h{*jk}) + <>A(1'J,rk_xijk>T(Pl;)71 <>A<fk_Xifk>

XL = X,k<XU

g{tisf <o
(R} =0

Xi :i—i-eik(\/P—x)_

1—-n

i=n+1,...,2n (A.13)

This ensures that none of the sigma points violate the
bounds x,; and xy;.

The weights for computing the mean and covariance are
calculated as shown in Equation (A.14)

W;=ab; +b (A.14)

The calculus of parameter a and b were derivate and
reported in Vachhani et al.l*”]
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