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Unscented Transformation-Based Filters:
Performance Comparison Analysis for the State
Estimation in Polymerization Processes with
Delayed Measurements
Rubén Galdeano, Mariano Asteasuain,* Mabel Sánchez
State estimation with delayed measurements is essential to the operation of polymer
processes due to the limited availability of reliable online sensors and the unavoidable
hold-up time in the acquisition of critical variables data. In this work, a two-timescale
approach is applied to three filters based on the
Unscented Transformation, the Unscented Kalman Filter,
the Unscented Recursive Nonlinear Dynamic Data Recon-
ciliation and the Reformulated Constrained Unscented
Kalman Filter, in order to incorporate delayed measure-
ments into their estimation scheme. A comprehensive
comparative analysis is performed, which shows that the
three of them have very good accuracy and convergence
properties. However, the Unscented Kalman Filter per-
forms better in terms of computational time.
Introduction

One of the most important industries worldwide is the

manufacturing of polymers, which is affected by an

increasing demand for efficiency and competitiveness.

This requires producing at the lowest cost possible while

accomplishing stringent product specifications. In order to

meet changing market demands, it must also be able to

operate in a wide range of operating conditions without

diminishing the quality of the products.

Dynamic operation is very significant in polymer

manufacturing. On the one hand, a large number of

polymers of industrial interest are produced by batch

processes. On the other hand, continuous plants usually

produce dozens of different materials using the same

equipment. During the transition period between the
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steady-state production of one grade and another, off-spec

material with little or no commercial value is generated.

Therefore, the profitable operation of a polymerization

plant demands to carry out such transitions as efficiently as

possible.

However, dynamic operation of polymerization reactors

is an extremely complex task. Polymerization processes

usually exhibit highly exothermic reactions and changes in

viscosity, causing complex heat-transfer dynamics and

flow patterns. Moreover, these processes are strongly

nonlinear. This has been reflected in the abundant

production of design, optimization, and control of poly-

merization reactors studies found in the literature.[1,2]

One of the main difficulties in controlling the quality of

polymers is the absence of reliable online sensors for some

of their properties. Moreover, many important variables

cannot bemeasured online or can only bemeasured at low

sampling frequencies. Therefore, it is common that

dynamic operation is performed following a set of

trajectories obtained offline. However, uncertainty in
library.com DOI: 10.1002/mren.201000060
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process parameters and changing operating conditions,

such as increased fouling of the reactor walls, changes in

external and coolant temperatures, deactivation of cata-

lysts, disturbances, etc., require these paths to be updated.

This is especially important because the molecular proper-

ties of polymers, such as themolecular weight distribution

(MWD), copolymer composition, etc., are very sensitive to

operational conditions, and this affects the processing and

end-use properties of the product.

The state estimation in a dynamic system is a technique

that allows assessing inaccessible states through measur-

able variables. These variables can either be other states or

any direct or indirect measured magnitude that make the

systemobservable. Different techniques for nonlinear state

estimation have been used for years in polymerization

processes, such as the state estimation via nonlinear

observers, data reconciliation, moving horizon estimation

(MHE), neural networks, and fuzzy logic.[2–4] Comprehen-

sive reviews of these can be found in Fonseca et al.[5] or in

Richards and Congalidis.[1]

As the last mentioned review work indicates, an

approach investigated by several researchers is the use of

Kalman filtering. For continuous polymerization processes,

for example, Schuler and Suzhen[6] estimated states using

Extended Kalman Filtering (EKF) in a styrene polymeriza-

tion process through easily measured process variables.

Choi and Khan[7] also used this filtering technique in a

continuous polymerization process for poly(ethylene ter-

ephthalate) (PET) manufacturing, comparing the estimates

using only two online measurements with those obtained

with the addition of five delayed offline measurements.

Theyshowedthat the lastoptionsignificantly improvedthe

estimation. Sirohi and Choi[8] applied two different

strategies online, the EKF and the estimation using

nonlinear programming (NLP) techniques, to evaluate not

only the states but also key system parameters in a

continuous polymerization process. Also Mutha et al.[9]

applied a multirate state estimator on a methyl metha-

crylate (MMA) solution polymerization. They used an EKF

with fixed-lag smoothing that presents better convergence

in comparison with the standard EKF due to its ability to

reuse ameasurementmultiple times. The procedure iswell

suited for systemswithdelayedmeasurements. Recently, Li

et al.[10] proposed a hierarchical Kalman filter to estimate

state variables and kinetic parameters in a continuous

ethylene/propylene/diene monomer (EPDM) rubber poly-

merization reactor.

Despitebeingaveryused technique, theEKFmaypresent

numerical implementation problems when applied to

complex systems.[11] The EKF approximates the actual

probability distributions of the states by a Gaussian

distribution. The first moment of the distribution is

propagated through the nonlinearmodel, while the second

one is spread through a linearized version of it. When this
www.MaterialsViews.com
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model is highly nonlinear, this approach may generate

expectations and covariances of states wide departed from

their actual values, which in the worst case can cause the

divergence of the filter. Another disadvantage of the EKF is

the need for computing the linearized Jacobian matrix of

the states, which results in high computational costs.

Several variants of the standard EKF are reported in the

literature that aim at reducing its drawbacks. They are

based, for instance, on theuse of solution refinement, series

Taylor expansion to the second order, geometrically

adapted correction terms based on an invariant output

error, reduction of the system model order, etc.[11]

In addition, in recent years two major branches emerged

thataimedatsolvingEKFfilteringproblems.Thefirstofthem,

supportedbyatheorydatedbacktoseveralyearsbut thathas

resurfaced, is the family of particle filters. Rawlings and

Bakshi[12] made a review and applied these techniques to

different processes. Chen et al.[13] also used this method in a

batch reactor of MMA. The biggest drawback of the

particle filters is the high computational time, which

increases exponentially with the number of states to be

estimated.

The second technique that has shown promising results

is the family of filters based on a statistical concept known

as the Unscented Transformation (UT) whose most known

variant is the Unscented Kalman Filter (UKF). The UT is

founded on the intuition that it is easier to approximate a

probability distribution than it is to approximate an

arbitrary nonlinear function or transformation. The

approach takes a set of deterministically points and

estimates their mean and covariance.[14] While EKF

propagates the mean and covariance only with a first

order accuracy, the UKF is accurate up to the second order.

There are known applications of this method in several

areas but very few in processes involving the production of

polymers.[15,16] However, the conventional UKF presents

potential disadvantages such as the disregard of bounds

and other constraints on parameters and state variables. It

has been shown that these may lead to poor filter

performance under some circumstances. Consequently

modifications that improve its performance were devel-

oped, such as the Unscented Recursive Nonlinear Dynamic

Data Reconciliation (URNDDR)[17] and the Reformulated

Constrained Unscented Kalman Filter (RCUKF).[18] These

variants incorporate the possibility of adding constraints

on the estimated states.

The process measurements that are available for

estimation purposes are usually of the following types:

continuous measurements which can be obtained at high

sampling frequency, delayedmeasurements fromdifferent

devices that are available at a fixed sampling rate, and

manual laboratory measurements which are available at

unequal intervals and with varying delays.[19] Very few

works related to state estimation in control systems refer to
2011, 5, 278–293
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Figure 1. General state estimation.
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the use of delayed measurements and how they affect the

quality of the estimate.

In polymer processes, in particular, several critical

quality variables belong to the last two types of aforemen-

tionedobservations. For instance, thepolymerMWDand its

averages,which can bemeasured by either online or offline

size exclusion chromatography (SEC). In the case of offline

equipments, themeasurement delay is usually of 60min or

more. When using online devices, there is still a hold-up

time for sample preparation and separation of �15min

when using a single SEC column, or longer if more columns

are used for a more efficient separation.[5,20]

Therefore, delayed values of these molecular properties

have to be incorporated to the estimation scheme to enhance

process knowledge. In state estimationproblemsusingMHE,

this typeofmeasurement is easily treated, but in general and

depending on how large the data window is, these methods

have a high computational cost. Regarding filtering estima-

tiontechniques,differentproceduresareavailable fordealing

with delayed measurements. One of them consists in

modifying the structure of the filtering algorithm, but a

general method is not available due to its intrinsic complex-

ity. Only applications to linear cases and some specific cases

of non-linear filters have been reported up to the present

time.[21,22] Another way is to develop an estimation

procedure which identifies when delayed observations are

available and performs a re-estimation of the states.[20] The

literature provides some case studies of polymerization

processes that take into account delayed measurements

using EKF with this re-estimation loop.[7,19,23]. Also the

proceduredevelopedbyMutha et al.,[24]which isbased onan

EKF with fixed-lag smoothing, can be applied.

This work aims at using filtering strategies based on the

UT into an estimation scheme that deals with delayed

measurements, focusing on applications to polymer

processes. The conventional UKF and two of its potential

improvements, theURNDDRand the RCUKF, are selected as

filtering techniques. The performances of the estimation

procedures are evaluated in terms of appropriate para-

meters, which indicate their likely behavior in control

systems and real-time optimization procedures.

The rest of the paper is organized as follows. In the next

section, the nonlinear state estimation problem is for-

mulated, and the estimation scheme to deal with delayed

measurements is explained.Next, twocase studies fromthe

literature are briefly reviewedand theapplication results of

the estimation strategies to these processes are presented

and discussed.

Nonlinear State Estimation Using Delayed
Measurements

A state-space representation is commonly used for

describing physical systems. The approaches that follow
Macromol. React. Eng.
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will be concerned with batch and continuous polymeriza-

tion processes described by a set of ordinary differential

equations. The operation of these continuous time non-

linear systems can be written as
2011, 5
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dx

dt
¼ f x; u; tð Þ þw tð Þ; w tð Þ � N 0;Q tð Þ½ � (1)
where x is the n-dimensional state vector, f(x,u,t) the n-

dimensional vector-valued function, u represents the

vector of known manipulated inputs, and w(t) stands

for the n-dimensional process noise vector with covariance

Q(t).

At discrete instants of time the followingm-dimensional

observation vector yk is obtained
yk ¼ h xkð Þ þ vk; vk � N 0; Rk½ � (2)
where h is the measurement equation and vk represents

the m-dimensional observation noise vector with covar-

iance Rk. The vectors v and w are zero mean white

Gaussian noise assumed to be independent of each other.

When the value of a delayed measurement is available,

the following measurement equation replaces Equation 2,
yd
k�� ¼ hd xdk��

� �
þ vd

k�� ; vd
k-� � N 0; Rd

k��
� �

(3)

d
The dimensions of matrices Rk�� and Rk depend on the

number of variables measured at the corresponding time,

and t represents the time intervals elapsed since the

delayed measurement was obtained.

In Figure 1 a typical flow diagram of a state estimation

process is shown.

In any state estimation technique, observability is a

primary issue. A system is completely observable if every

initial state can be determined through knowledge of the

manipulatedvariables andsystemoutputsover somefinite

time interval.[25]

As mentioned before, different approaches have been

proposed in the literature to adapt existing estimation

methods in order to incorporate information from delayed

measurements. One of these is the so-called two-timescale

estimation technique. This approach does not require

modifying the basic algorithm of the filter. Instead, it

incorporates information of delayed measurements by
, 278–293
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Figure 2. Styrene solution polymerization reactor.
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recalculating past trajectories. This method has been

applied successfully to the EKF.[7,19,23] In this work, we

analyze theperformanceof this technique for threefiltersof

theUT family: the conventionalUKFand twoof its variants,

the URNDDR and the RCUKF. The standard algorithms for

online measurements corresponding to these filters are

shown in the Appendix. The application of the two-

timescale technique is explained below.

The standard procedures of the aforementioned filters

consist of two stages: a stage of propagation of states

through the model and a stage of update of the states

against measurement values. The first one takes place

between online sampling times. In this stage, the filter

yields predicted values of the states x̂�
k , tk�1 � t � tkð Þ, by

solving the process model using the information available

up to the time tk�1. Theupdate stage takesplaceat sampling

intervals k, when state updates x̂þ
k are obtained by

correcting the predicted values x̂�
k against the online

measurements y0
k . The updated values x̂þ

k are then the

starting points for the next propagation stage.

In the two-timescalefilter, theestimationoperates like in

its standard counterpart meanwhile delayed measure-

ments are not available. However, predicted states and

online measurements trajectories x̂�
k and y0 are stored.

Whenadelayedmeasurement yd
k�� , corresponding to apast

time interval (k – t), arrives at the current time tk, firstly the

past predicted states x̂�
k�� are re-updated against the stored

online measurements y0
k�� but also against the delayed

measurements yd
k�� , obtaining a new x̂þ

k�� . Using this value

as starting point, the trajectory between tk–t and tk is then

recalculated. This involves repetition of the propagation

and online updates in the period [tk–t, tk]. In this way the

updated states x̂þ
k are obtained that are the initial points for

the next propagation stage of the filter.

In thenext section, theperformanceof the two-timescale

UT filters is analyzed with two case studies of polymer

processes of different complexity.
Case Studies

Two case studies of different mathematical complexity,

taken from the literature, were used to evaluate the

performances of the two-timescale UKF, URNDDR, and

RCUKF filters. The first case study is a styrene solution

polymerization in a continuous stirred-tank reactor

(CSTR).[26] In this case the mathematical model is simple,

involving six state variables which include reactant

concentrations and average molecular weights of the

polymer. Two online measurements and two delayed

measurements are considered. The second case study

involves a solution copolymerization reactor with

recycle.[27] Themathematicalmodelof thisprocesspresents

an increased complexity, involving 24 states and several
www.MaterialsViews.com
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algebraic nonlinear equations. The model predicts conver-

sion and copolymer average molecular weights and

composition. In this case three online measurements and

two delayed measurements are considered. Details of the

two case studies are presented below.

Case 1: Styrene Polymerization

This process is a solution styrene polymerization in a CSTR,

in which toluene is used as solvent and azoisobutyronitrile

(AIBN) as initiator. A diagramof the polymerization reactor

is shown in Figure 2. The reactor feed consists of two

streams;oneof themisasolutionof initiator in toluene, and

the other one a solution of styrene in the same solvent.

Polystyrene, unreacted monomer, solvent and initiator,

compose the exit stream. The reactor temperature is tightly

controlled independently of other process conditions.[26]

The mathematical model is based on the following

kinetic steps: initiation, propagation, transfer tomonomer,

and solvent and termination by combination. Under the

operating conditions studied in this case, the gel and glass

effectsarenegligible.[28] Thebalanceequationsof themodel

are the following.

Initiator:
2011, 5
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dCI

dt
¼ � FT

V
þ ki

� �
CI þ

F1CI;1

V
(4)
Solvent:
dCS

dt
¼ � FTCS

V
þ FTCS;1 þ F2CS;2

V
(5)
, 278–293
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Monomer:
dCM

dt
¼ �kpCMP þ F2CM;2�FTCM

V
(6)
First-Order Moment of the Polymer MWD:
d�1
dt

¼ � FT�1
V

þ ½ kfmCM þ ktdP þ kfsCSð Þ 2a�a2
� �

þ ktcP� P

1�að Þ (7)
Number-Average Molecular Weight:
dMn

dt
¼

kfmCM þ ktdP þ kfsCSð Þ 2a�a2ð Þ þ ktcP½ �

� kfmCM þ ktdP þ kfsCSð Þaþ 0:5ktcP½ � Mn

MM
1�að Þ

8><>:
9>=>; PMn

�1 1�að Þ (8)
Weight-Average Molecular Weight:
dMw

dt
¼

kfmCM þ ktdP þ kfsCSð Þ a3�3a2 þ 4að Þ þ ktcP aþ 2ð Þ½ �

� kfmCM þ ktdP þ kfsCSð Þ 2a�a2ð Þ þ ktcP½ �Mw

MM
1�að Þ

8><>:
9>=>; PMM

�1 1�að Þ2
(9)
where
a ¼ kpCM

kp þ kfm

� �
CM þ kfsCS þ ktP

(10)
Besides, the total radical concentration is
P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2fCIki

kt

s
(11)
and the volumetric flow rate of the outlet stream is
FT ¼ F1 þ F2 (12)
As the reactor temperature is kept tightly around its

desired value by its control system, the energy balance is

not included. The kinetic constants used above are
ki ¼ 0:693
.

60� 10 Ai=Tð ÞþBið Þ
� 	

(13)

kp ¼ Ape
�

Ep

RT (14)

kfm ¼ Afme
�Efm

RT (15)
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kfs ¼ Afse RT (16)

kt ¼ Ate
�Et

RT (17)

ktd ¼ 0:15� kt (18)

ktc ¼ 0:85� kt (19)
In thepreviousequations,Cj is themolar concentrationof

species j; F1 and F2 are the volumetric flow rates of the

initiator solutionstreamandthemonomersolutionstream,

respectively, f the initiator efficiency,MMstyrenemolecular
weight, and V is the reactor volume. This model has been

validated experimentally. The values of the model para-

meters are found in the literature.[26]

For the analysis of the proposed filters, it is

considered that the initiator concentration CI and the

monomer concentration CM are measured online with a

sampling interval of 5min,[5] while the number-average

molecular weight Mn and the weight-average molecular

weight Mw are delayedmeasurementswith a certain delay

time.
Case 2: MMA – Vinyl Acetate Copolymerization

The process selected as second case study is a solution

polymerization in a CSTR with a recycle loop. This is a

system that has been chosen in several works dealing with

state estimation and process control applications.[27,29]

Figure 3 shows a diagram of the reactor. The comonomers,

MMA and vinyl acetate (VA) are continuously added,

together with AIBN as initiator, benzene (B) as solvent and

acetaldehyde as chain transfer agent (CTA). The monomer

stream may also contain inhibitors such as m-dinitroben-

zene. Theseare the componentsof the fresh feedstream(F1).

This is combined with the recycle stream (F2) to form the

reactor feed stream (F3). Polymer, solvent, unreacted

monomers, initiator, and CTA flow out of reactor to a

separator (F4), from which unreacted monomers and

solvent continue to the purge point (F7). After the purge

(F9) they are stored in a recycle hold tank.
, 278–293
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This system is represented by a first principles model

consisting of a set of differential algebraic equations (DAE),

whose most important equations are:

Reactor Mass and Moment Balances:
C

www.M
dCk

dt
¼ Ck;f�Ck

�r
þ Rk

k 0ð Þ ¼ Ck; 0 k ¼ MMA; VA; AIBN; B; CTA; inh

(20)

d�k

dt
¼ �k;f��k

�r
þ Sk �k 0ð Þ ¼ �k;0

k ¼ MMA; VA

(21)

d k

dt
¼  k;f� k

�r
þ Tk  k 0ð Þ ¼  k; 0 k ¼ 0; 1; 2 (22)
where subscript f stands for feed stream, Ck the molar

concentration of species k and lk the molar concentration

of monomer k in the copolymer, ck the kth-order moment

of the copolymer MWD, ur is the residence time of reactor,

and Rk, Sk, and Tk are reaction rates.

Reactor Energy Balance:
dTr

dt
¼ Tr;f�Tr

�r
þ

��Hpaa

� �
kpaaCMMAC�

MMA þ ��Hpba

� �
kpbaCMMAC�

VA

�rcp;r

��Hpab

� �
kpabCVAC�

MMA þ ��Hpbb

� �
kpbbCVAC�

VA

�rcp;r
�

UrSr Tr�Tj

� �
V�rcp;r

;
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where C�
MMAand C�

VA denote the global

concentration of radicals with a MMA

and a VA terminal unit, respectively,

rr and cp,r represent the density and

heat-capacity of the reaction mixture,

respectively, �Hpaa, �Hpba, �Hpab and

�Hpbb are reaction enthalpies, and kpaa,

kpba, kpab and kpbb are kinetic constants,

of the propagation reactions; Ur and Sr
are the overall heat-transfer coefficient

and transfer area, respectively, and Tj is

the temperature of the reactor jacket.

Separator Balances:
Tr 0ð Þ ¼

im
Ck;s

dt
¼

Ck;s;f� Fn
F4

Ck;s

�s
;

s 0ð Þ ¼ Ck;s;0;

k ¼ MMA;VA;AIBN;B;CTA; inh

(24)
where us is the residence time in the

separator and n¼ 7 for k¼AIBN, CTA,

inh, and n¼ 6 for k¼MMA, VA, B.
Hold Tank Balances:
dCk;h

dt
¼ Ck;h;f�Ck;h

�h
;

Ck;h 0ð Þ ¼ Ck;h;0; k ¼ MMA;VA;B

(25)
where uh is the residence time in the hold tank.

Average Molecular Weights, Composition and Conversion:
Mn ¼  1

 0
(26)

Mw ¼  2

 1
(27)

YMMA ¼ �MMA

�MMA þ �VA
(28)

Conv ¼  1

 1 þ MMMACMMA þ MVACVAð Þ (29)
where YMMA is the number-average composition of MMA

in the copolymer and MMMA and MVA are the molecular

weights of MMA and VA, respectively. This mathematical
Tr;0

(23)
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Table 1. Base case operating point for Case I.

Variable Value Unit

T 393 K

F1 1.54� 10�4 kmol s�1

F2 1.54� 10�4 kmol s�1

CM,2 6.38� 106 kmol m�3

CI,1 0.1138 kmol m�3

CS,i 9.2 kmol m�3

CS,2 1.75 kmol m�3

3
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model is supported by experimental validation. More

details on the model equations, such as algebraic

equations for stream connections, reaction rates, global

concentration of radicals, and parameters can be found in

ref.[27]

For this case study, it is considered that the reactor

temperature Tr, the total conversion Conv and the

copolymer composition YMMA are measured online with

a sampling interval of 5min,[5] while the number-average

molecular weight Mn and the weight-average molecular

weight Mw are delayedmeasurementswith a certain delay

time.

V 0.48 m
Results and Discussion

Different tests were carried out in order to analyze the

performanceof two-timescalefiltering techniques. Further-

more the behavior of a multirate EKF[9] (MEKF) technique

was studied. In these tests, measurement white noise (vk)

wasmodeledby corrupting the actualmeasurement values

given by the solution of the DAE system (h xkð Þ), with a

pseudo random number generator. The perturbation was

set tobewithin three standarddeviationsof the truevalues.

The elements of the observation noise covariance matrix R

were set in agreement with typical instrumentation of

polymer reactors. The elements of the process noise

covariance matrix Q were tuned by trial and error in order

to improve convergence of the filter. Finally, the initial

values of the error covariancematrixP0were set as the ones

resulting of preliminary filter runs. The filter algorithms

were implemented in Matlab with an embedded process

model developed in gPROMS. Besides, Matlabwas linked to

GAMS for carrying out the solution of the optimization

problems in the update steps of the URNDDR and RCUKF

filters. A PC equipped with a Pentium 4 (3GHz) processor

and 2 GB RAM was employed.

The three UT filters analyzed in this work proved to be

successful in the estimation of all process variables.

However, since this work focuses on the handling of

delayed measurements with the UT filters, results will be

presented for the estimation of the number and weight-

average molecular weights. In the first case study,

measured variables were the initiator and monomer

concentrations and the number and weight-average

molecular weights. The first two were considered to be

measured online with a sampling interval of 5min, while

averagemolecularweightdatawere receivedwithacertain

delay. Several dynamic scenarios were simulated by

perturbation of a base-case operating point. This corre-

sponds to a steady-state point defined by the operating

conditionsshowninTable1.Resultsarepresented foroneof

these scenarios selected as example. In this scenario, a step

change in the initiator flow rate F1 ismade at time 1h, from
Macromol. React. Eng.
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an initial value of 1.54� 10�4 kmol s�1 to a final value of

7.9� 10�5 kmol s�1. The process was sampled 100 times in

all tests.

Figure 4 shows the results of the estimation of Mw for

different measurement delays, for the three UT filters.

Besides, estimation with a classical two-timescale EKF20

andtheMEKFtechniquewere includedfor comparison.This

plot corresponds to one of the 100 process samples. Initial

estimates of the states were set in order to start with an

initial error of 10% in Mw, while the remaining variables

were initialized at their actual values. It can be seen that

convergence is achieved in similar times for all filters in

each situation. However, the UT filters outperform the EKF

and MEKF in terms of smoothness of the estimated

trajectories and error with respect to the actual values.

The difference in performance becomesmore noticeable as

the delay time increases and the filter is more seriously

challenged.On theotherhand, thebehaviors of the threeUT

filters are very similar to each other.

It can also be seen that convergence time increases with

delay time. In the case of a 15min delay, convergence is

achieved in�1h; however, it takes nearly 4 h for a delay of

45min. This is an expected result because the system is not

observablewhenmolecularweightsmeasurements arenot

available. Hence, at longer measurement delays state

prediction is carriedoutundernon-observability conditions

for a longer period of time, and thus the estimates become

more deficient. The filters’ performances for the random

measurement delay are in an intermediate position

between the ones with fixed delays. This behavior for

different delay times are in agreement with previous

studies on two-timescale EKFfilters.[20] Similar resultswere

obtained for Mn as shown in Figure 5.

Figure 6 shows the comparative values of the average

root square error (ARSE) over the 100 process samples

corresponding to the different filters for the delay periods

analyzed. In this figure it is possible to see that the ARSE is

smaller for the UT filters than for the EKF and the MEKF,

withaslight superiorityof theRCUKFandtheURNDDRover
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Figure 4. Estimation of Mw for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case I.
— True value; � measurements: EKF; MEKF; UKF; URNDDR; RCUKF.

Figure 5. Estimation of Mn for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case I.
— True value; � measurements: EKF; MEKF; UKF; URNDDR; RCUKF.
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Figure 6. Average root square error for Mw and Mn in Case I.

Table 2. Operating conditions for Case II.

Parameter Value Unit

F3 9.35 kmol s�1

CMMA,f 5.15 kmol m�3

CVA,f 2.97 kmol m�3

CAIBN,f 4.6� 10�3 kmol m�3

CB,f 1.31 kmol m�3

CCTA,f 1.17 kmol m�3

Cinh,f 0 kmol m�3

Tj 336 K

Tr,f 353 K

purge fraction 0.05

Vr 1 m3

Sr 4.6 m2
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the classical UKF, especially for the variablewith an error in

the initial condition. It can also be observed that when the

measurements are randomly delayed between 15 and

45min, the error is between the ones for the fixed 15min

and the fixed 45min delays, which confirms the previous

observation in Figure 4 about this point.

In the second case study, the reactor temperature, the

total conversion, and the copolymer composition were

regarded as online measurements with a sampling time of
Table 3. Initial conditions for Case II.

State Value Unit

CMMA,0 1.83 kmol m�3

CVA,0 3.38 kmol m�3

CAIBN,0 1.22� 10�4 kmol m�3

CB,0 1.65 kmol m�3

CCTA,0 0.22 kmol m�3

Cinh,0 0 kmol m�3

Tr,0 3822 K

lMMA,0 2.54 kmol m�3

lVA,0 0.36 kmol m�3

c0,0 5.63� 10�3 kmol m�3

c1,0 256.09 kg m�3

c2,0 2.1� 106 kg2 kmol�1 m�3

Macromol. React. Eng.

� 2011 WILEY-VCH Verlag Gmb
5min. Number and weight-average molecular weights

measurementswere receivedwith a certain delay. As in the

previous case, several dynamic scenarios were simulated

and one of them was selected as example to show the

results of the analysis of the filters’ performances. In the

chosen example, time 0 corresponds to an intermediate

point during a transition toward a new steady state.

Relevant process variables for this scenario are presented in

Table 2 and 3. The process was sampled 100 times in all

tests.

Similarly to Case I, Figure 7 and 8 show the estimation of

Mw and Mn for one of the 100 process samples of the

selected scenario. It should be noted that in Case II the

estimation is initialized at a transition point of the system,

which increases the possibility of inaccuracy. The initial

valueswere takenwith an error of 10%. A similar pattern in
State Value Unit

CMMA,s,0 1.83 kmol m�3

CVA,s,0 3.38 kmol m�3

CAIBN,s,0 1.22� 10�4 kmol m�3

CB,s,0 1.65 kmol m�3

CCTA,s,0 0.25 kmol m�3

Cinh,s,0 0 kmol m�3

CMMA,h,0 2.035 kmol m�3

CVA,h,0 3.76 kmol m�3

CAIBN,h,0 0 kmol m�3

CB,h,0 1.83 kmol m�3

CCTA,h,0 0 kmol m�3

Cinh,h,0 0 kmol m�3
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Figure 7. Estimation of Mw for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case II.
— True value; � measurements: EKF; MEKF; UKF; URNDDR; RCUKF.

Figure 8. Estimation of Mn for (a) 15 min, (b) 30 min, (c) 45 min (d) and random measurement (between 15 and 45 min) delay for Case II.
— True value; � measurements: EKF; MEKF; UKF; URNDDR; RCUKF.
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Figure 9. Average root square error for Mw and Mn in Case II.

Table 4. Computational times of the different filters for Case I.

Step EKF

[s]

MEKF

[s]

UKF

[s]

URNDDR

[s]

RCUKF

[s]

propagation 0.48 0.51 1.13 1.63 1.18

update 0.71 0.84 0.213 5.53 6.56

delay – 15 min 5.24 4.26 6.49 30.29 32.13

delay – 30 min 12.43 8.32 9.83 49.45 47.77

delay – 45 min 19.48 13.5 17.97 68.50 70.90

Table 5. Computational times of the different filters for Case II.

Step EKF

[s]

MEKF

[s]

UKF

[s]

URNDDR

[s]

RCUKF

[s]

propagation 2.90 3.2 6.77 9.79 7.08

update 4.23 3.98 1.28 33.20 39.35

delay – 15 min 39.43 17.21 38.93 192.73 202.79

delay – 30 min 57.85 29.65 56.97 254.72 240.28

delay – 45 min 99.77 48.32 87.86 391.90 385.58
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convergence time and accuracy in the estimation than in

Case I can be observed. Even though the number of states is

significantly higher and the process dynamics is more

complex, theUTfilters showavery good performance,with

superior results than the EKF and the MEKF. This is

confirmed by the ARSE values presented in Figure 9.

Another critical aspect in a filter performance is the

computational time. The time required by the filter to

provide estimate values is extremely important in the

subsequent stages of control and online optimization. This

feature was analyzed for each of the filters studied in this

work. The average computational timeover the100process

samples was evaluated for Cases I and II, distinguishing

between the individual steps of propagation, update and

reestimation that compose the UKF filters’ algorithms. The

resulting values are presented in Table 4 and 5. It can be

observed that the lowest values among the two-timescale

filters correspond to the EKFand theUKF. Thesefilters show

comparable CPU time requirements. The sum of propaga-

tion and update times are similar, and therefore so is the

reestimation time, which involves repetition of propaga-

tion and update steps from time t(k–t) to time tk. Since its

processing time is only of a few seconds, the UKF turns out

to be an attractive option for online applications.

TheURNDDRandtheRCUKF, on theotherhand, presenta

considerably higher time requirement. It can be seen that

themost time consuming step is theupdate step.Unlike the

conventional UKF, in the URNDDR and the RCUKF this step
Macromol. React. Eng.

� 2011 WILEY-VCH Verlag Gmb
involves solving an optimization problem. Solution of

optimization problems require larger times than the pure

algebraic operations performed in the UKF, and hence the

CPUtime increases. Becauseof this, the reestimation time is

markedly higher than for the UKF. In Case I, where the

model involves only six states, the reestimation time

reaches up to about a 20% of the online sampling time of

5min. However, in Case II that involves 24 states, the

reestimation time can be up to 30% greater than the online

sampling time,meaning that the estimate of the stateswill

not be available before the arrival of new measurements.

The main potential advantages of the URNDDR and the

RCUKF over the conventional UKF are their capability of

handling constraints. However, no situations of failure of

the UKF due to the absence of constraints, such as

concentrations’ estimates yielding negative values, were

encountered in this work.

Regarding MEKF, the average computational time over

the 100 process samples was also evaluated for Cases I and

II, distinguishing between the individual steps of propaga-

tion, update, and estimation of the new state values by

smoothing. Results are included in Table 4 and 5. The

smoothing intervalwas established as suggested byMuhta

et al.[24] It can be noticed that the lowest computational

time for all the analyzed techniques corresponds to MEKF.

This is due to the fact that the two-timescale procedure

involves a re-estimation step that uses original filters

algorithms; incontrast,MEKFemploysamodificationof the

standard EKF algorithm and does not recalculate past

trajectories.
2011, 5, 278–293
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Conclusion

A two-timescale method was applied to the UKF, the

URNDDR and the RCUKF filters in order to incorporate

delayed measurements into their estimation scheme. A

thoroughanalysis on theperformanceof thesefilters in two

case studies involving polymer processes showed that

these filters have excellent convergence and accuracy

properties, outperforming the standard EKF and MEKF.

It was found that the delay time in the acquisition of the

measurement data influences the filters’ performances.

Longer delays caused longer convergence times and

deterioration of the filter accuracy, which is in agreement

with reported results on two-timescale EKFs.

The three UT filters presented similar convergence and

accuracy properties. However, the UKF required much less

computational time, which makes it the most attractive

alternative for online state estimation for processes like the

ones studied in this work. This difference in computational

requirement comes from the optimization problem that is

performed in the update step of the URNDDR and the

RCUKF, in contrast to the direct vector-matrix operations

involved in the UKF.

No failure due to absence of constraints in the UKF was

detected for the processes studied in this work, making

futile the main advantages of the URNDDR and the RCUKF

over the UKF.

Appendix

This appendix includes the standard algorithms of the EKF

and the UT filters UKF, URNDDR and RCUKF, for the state

estimation with online measurements.
Extended Kalman Filter

Oneof themost commonways to solve theproblemof state

estimation from disturbed measurement variables is the
Table A.1. Algorithm of the extended Kalman filter.

Step

state estimation propagation

error covariance propagation

state estimation update at tk with on-line measurements

error covariance update at tk with on-line measurements

gain matrix at tk with online measurements

www.MaterialsViews.com
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EKF. Table A.1 shows the algorithm employed in several

texts.[25,30]
EKF with Fixed-Lag Smoothing for Multirate Systems

TheMEKF is based on a ‘‘boop-strap’’ application of filtering

and smoothing. Two EKF algorithms are used in this

scheme: one for filtering the states when only online

measurements are available, and the second for smoothing

the states when delayed measurements arrive. This

procedure was developed byMutha et al.[24] The algorithm

is shown in Table A.2.
Unscented Filters Family Equation Section (Next)

Estimation algorithms like the EKF, based on Gaussian

noise, may not be applicable to nonlinear systems since

Gaussian noise propagated through a nonlinear model is

distorted. Besides, severe nonlinearities may prevent the

use of theory based on linearization due to poor estimation

accuracy. Furthermore, the nonlinear system may have a

skew or multimodal probability density function.

The UT is a method for calculating the statistics of a

random variable that undergoes a nonlinear transforma-

tion.[31] Letxbe ann-dimensional randomvariablewhich is

propagated throughanonlinear function. It is assumedthat

x has mean x and covariance Px. In order to calculate the

statistics of a dependent variable in a nonlinear function, a

matrixxof2nþ 1sigmavectorsxi is constructedas follows:
2011, 5
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�0 ¼ x (A.1)

xi ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ �ð ÞPx

p� 	
i
; i ¼ 1; . . . ;n (A.2)

xi ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ �ð ÞPx

p� 	
i�n
; i ¼ n þ 1; . . . ; 2n (A.3)

� ¼ a2 n þ �ð Þ�n (A.4)
Equation

bx tð Þ ¼ f bx tð Þ;u tð Þ½ �

P
�

tð Þ ¼ F tð ÞP tð ÞFT tð Þ þ Q tð Þ
x̂þk ¼ x̂�k þ Kk yk�h x̂�k

� �� �
Pþk ¼ I�KkH0;k

� �
P�k

Kk ¼ PkH
T
0;k H0;kP

�
k H

T
0;k þ R0;k

h i�1

where

F tð Þ ¼ @f x tð Þ;u tð Þ½ �
@x tð Þ






x tð Þ¼x̂�

and H tð Þ ¼ @h xkð Þ
@xk






x tð Þ¼x̂�
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Table A.2. Algorithm of the MEKF.

Step Equation

State estimation propagation and

update with standard extended Kalman filter

for online measurements

x̂ðtÞ ¼ f x̂ðtÞ;uðtÞ½ �

P
�
ðtÞ ¼ FðtÞPðtÞ þ PðtÞFTðtÞ þ QðtÞ

x̂þk ¼ x̂�k þKk yk�h x̂�k
� �� �

Pþk ¼ I�KkH0;k

� �
P�k

Fixed-lag smoother for delayed measurement x̂þk ¼ x̂�k

Kk;0 ¼ Kk

P0;0k ¼ P�k

8 i¼ 1, . . ., SI (smoothing interval)

Kk;i¼ P0;i�1
k HT HkP

0;0
k HT

kþRk

� ��1

Pi;i
k ¼ Pi�1;i�1

k �P0;i�1
k HT

kK
T
kF

T
k

P0;ik ¼ P0;i�1
k Fk�Kk;0Hk

� �T

x̂þkþ1�i¼ x̂�kþ1�iþKk;i ykþ1�i�h x̂�kþ1�i

� �� �
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where l is a scaling parameter and a a constant which

determines the spread of the sigma points around the

mean value x, and is usually set to a small positive value.

Besides, k is a secondary scaling parameter which is

usually set to 0, b is used to incorporate prior knowledge of

the distribution of x (for a Gaussian distribution, b¼ 2 is
Table A.3. Algorithm of the unscented Kalman filter.

Step

initialization

computation of sigma points

state estimation propagation

error covariance propagation

state estimation update at tk with on-line measurements

error covariance update at tk with on-line measurements

gain matrix at tk with on-line measurements

Macromol. React. Eng.
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optimal), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ �ð ÞPx

p� �
i
is the ith row of the matrix

square root, calculated by using a stable numeric

algorithm such as the Choleski decomposition.[10,30] The

UT determines the mean and covariance of the system

output by approximation, using a weighted sample mean

and covariance of the posterior sigma points.
Equation

x̂0 ¼ E x0½ �; P0 ¼ E x0�x̂00ð Þ x0�x̂00ð ÞT
h i

�k ¼ x̂kx̂kkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ �ð ÞPk

p� �
i
x̂kk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ �ð ÞPk

p� �
i

� �
��

k ¼ F �k;uk½ �; x̂kk ¼
P2n

i¼0

Wm
i �

�
k

P�k ¼
P2L

i¼0

Wc
i ��

i;k�x̂�k

h i
��

i;k�x̂�k

h iT
x̂þk ¼ x̂�k þ Kk yk�ŷk

� �
Pþk ¼ P�k �KPyk;ykK

T

Kk ¼ Pxk;yk
P�1
yk;yk

where

Ik ¼ H ��
k ;uk

� �
; byk ¼

P2L

i¼0

Wm
i Ii;k

Pyk;yk
¼

P2L

i¼0

Wc
i Ii;k�x̂�k
� �

Ii;k�ŷk

� �
T

Pxk;yk
¼

P2L

i¼0

Wc
i ��

i;k
�x̂�k

h i
Ii;k�ŷk

� �
T
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Table A.4. Algorithm of the RCUKF.

Step Equation

initialization x̂0 ¼ E x0½ �; P0 ¼ E x0�x̂0
� �

x0�x̂0
� �Th i

computation of sigma points �k ¼ x̂kx̂k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L þ �ð Þ

p
Pk

� �
i
x̂k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L þ �ð Þ

p
Pk

� �
i

� �
state estimation propagation

��
k
¼ F �k;uk½ �; x̂�k

P2L

i¼0

Wm
i �

�
k

error covariance propagation
P�k ¼

P2L

i¼0

Wc
i ��

i;k
�x̂�k

h i
��

i;k
�x̂�k

h i
T

state estimation update at tk with

on-line measurements
�þ

k
¼

P2L

i¼0

Wm
i �

þ
k

error covariance update at tk with

online measurements
Pþk ¼

P2L

i¼0

Wi �
þ
i;k
�x̂þk

h i
�þ

i;k
�x̂þk

h i
T

where �þ
k is obtained by solving the

optimization problem
min
�̂þ

i;k

yk�h �̂þ
i;k

n o� 	T
R�1 yk�h �̂þ

i;k

n o� 	
þ �̂þ

i;k���
i;k

� 	T
P�k
� ��1

�̂þ
i;k���

i;k

� 	
xL � b�þ

i;k � xU

g �̂þ
i;k

n o
� 0

e b�þ
i;k

n o
¼ 0

Unscented Transformation-Based Filters . . .

www.mre-journal.de
Unscented Kalman Filter

The UKF, as well as the EKF, is a recursive estimation

technique. The applicationof theUThas the advantage that

the state estimates and their error covariancematrix canbe

calculated using the exact nonlinear process and measure-

mentmodels. The steps of the UKF algorithm are described

in Table A.3.[10,30,16]

The weights Wm
i and Wc

i are calculated as follows:
www.M
W
mð Þ
0 ¼ �

n þ �
(A.5)

W
cð Þ
0 ¼ �

n þ �
þ 1�a2 þ b (A.6)

W
mð Þ

i ¼ W
cð Þ

i ¼ �

2 n þ �ð Þ ; i ¼ 1; . . . ; 2n (A.7)

mulated Constrained Unscented Kalman Filter
Refor
Apotential disadvantageof theUKF is that it does not allow

imposing constraints on the state estimations. Constraints

in the states commonly appear in chemical processes, e.g.

concentrations greater or equal to zero. An estimator like

EKF or UKF may give rise to negative concentration

estimates even though this is physically impossible.

Different strategies to enforce estimates to lie between

bounds in a given state estimation method have been

proposed in the literature.[17,32,33] One of them is the

RCUKF,[16] whose algorithm is shown in Table A.4.
aterialsViews.com
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Unscented Recursive Nonlinear Dynamic Data
Reconciliation

In the RCUKF, state estimation updates with online

measurements are enforced to satisfy bounds. However,

the sigma points, and the propagated sigma points and

their mean, could still lie outside the desired constraints. A

method that overcomes this problem was developed by

Vachhani et al.[17] They reformulated the selection of the

sigmapoints andweights of theUKF so that the former and

their mean do not violate the state constraints. In this

technique, the URNDDR, the sigma points used in the

propagation step are located asymmetrically around

the current meanx. The direction along which these points

are selected is the sameas in theUKF, but the step size for all

the sigma points xi ¼ 1, .., 2n are chosen according to
2011, 5

H & Co
� ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffi
n þ �

p
; � ; �

� �
(A.8)
ik 1k 2k
�1k ¼ min
j:

ffiffiffiffi
Pk

p� �
i
>0

1; xuj�bxkjk;j
� �. ffiffiffiffiffi

Pk

p� 	
i

h i
(A.9)

�2k ¼ min
j:

ffiffiffiffi
Pk

p� �
i
<0

1; xlj�bxkjk;j
� �. ffiffiffiffiffi

Pk

p� 	
i

h i
(A.10)
Therefore, the sigma points are computed as
x0 ¼ x (A.11)
� 	

xi ¼ xþ �ik

ffiffiffiffiffi
Px

p
i
; i ¼ 1; . . . ;n (A.12)
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Table A.5. Algorithm of the URNDDR.

Step Equation

initialization x̂0 ¼ E x0½ �; P0 ¼ E x0�x̂0ð Þ x0�x̂0ð ÞT
h i

computation of sigma points �k ¼ x̂kx̂kk þ �i

ffiffiffiffiffi
Pk

p� �
i
x̂kk��i

ffiffiffiffiffi
Pk

p� �
i

� �
state estimation propagation

��
k
¼ F �k;uk½ �; x̂�k

P2L

i¼0

Wm
i �

�
k

error covariance propagation
P�k ¼

P2L

i¼0

Wc
i ��

i;k
�x̂�k

h i
��

i;k
�x̂�k

h i
T

state estimation update at tk with

on-line measurements
x̂�k ¼

P2L

i¼0

Wm
i �

þ
i;k

error covariance update at tk with

online measurements
Pþk ¼

P2L

i¼0

Wi �
þ
i;k
�x̂þk

h i
�þ

i;k
�x̂þk

h i
T

where �þ
k is obtained by solving

the optimization problem
min
�̂þ

i;k

yk�h �̂þ
i;k

n o� 	T
R�1 yk�h �̂þ

i;k

n o� 	
þ �̂þ

i;k���
i;k

� 	T
P�k
� ��1

�̂þ
i;k���

i;k

� 	
xL � b�þ

i;k � xU

g �̂þ
i;k

n o
� 0

e b�þ
i;k

n o
¼ 0
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ffiffiffiffiffip� 	

�i ¼ xþ �ik Px

i�n
; i ¼ n þ 1; . . . ; 2n (A.13)
This ensures that none of the sigma points violate the

bounds xuj and xlj.

Theweights for computing themean and covariance are

calculated as shown in Equation (A.14)
Wi ¼ a�i þ b (A.14)
The calculus of parameter a and b were derivate and

reported in Vachhani et al.[17]
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