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Dynamics of dislocations in a two-dimensional
block copolymer system with hexagonal

symmetry
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Block copolymer thin films have attracted considerable attention for their ability to
self-assemble into nanometre-scale architectures. Recent advances in the use of block
copolymer thin films as nano-lithographic masks have driven research efforts in order to
have better control of long-range ordering in the plane of the film. Irrespective of the
method of sample preparation, different quasi-two-dimensional systems with hexagonal
symmetry unavoidably contain translational defects, called dislocations. Dislocations
control the process of coarsening in the nano/meso-scales and provide one of the most
important mechanisms of length-scale selection in hexagonal patterns. Although in
the last decade the nonlinear dynamics of topological defects in quasi-two-dimensional
systems has witnessed significant progress, still little is known about the role of external
fields on the creation and annihilation mechanisms involved in the relaxation process
towards equilibrium states. In this paper, the dynamics of dislocations in non-optimal
hexagonal patterns is studied in the framework of the Ohta–Kawasaki model for a diblock
copolymer. Measurements of the climb and glide velocities as a function of the wave
vector deformation reveal the main mechanisms of relaxation associated with the motion
of dislocations.

Keywords: dynamics of defects; dislocations; diblock copolymer; hexagonal symmetry;
penta–hepta defects

1. Introduction

Diblock copolymers consist of two homogeneous but chemically distinct
macromolecular blocks connected by a covalent bond. During the last decades,
it has been clearly established that even slightly dissimilar blocks can lead
to phase separation at the nano-scale. In this case, it has been found that
the volume fraction of each block largely sets the microdomain morphology
[1–4]. For example, body-centred cubic arrays of spheres (of Im3̄m symmetry),
hexagonally packed cylinders, lamellar and gyroid phases (cubic symmetry Ia3̄d)
*Author for correspondence (dvega@uns.edu.ar).
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have been observed [5]. Theoretical modelling with a self-consistent field theory
has successfully described the existence of these equilibrium structures [4]. It has
been found that the phase diagram for a diblock copolymer with equal segment
lengths is a function only of the volume fraction of one of the components and cN ,
where N is the total number of statistical segments and c is the dimensionless
Flory interaction parameter describing the enthalpic interactions.

During the last decade, block copolymer thin films have attracted considerable
attention for their ability to self-assemble into highly regular structures [6–11].
For example, block copolymer thin films are of interest as large-area nano-
lithographic masks, which are inaccessible via standard lithographic techniques
[11,12]. However, one of the main drawbacks of the method is related to lack
of long-range order [13,14]. Since block copolymer domains nucleate at random
positions with a random orientational phase, the appearance of topological
defects at the interfaces of different domains is completely unavoidable, and
several strategies, such as graphoepitaxy or external ordering fields, have been
employed to obtain ordered hexagonal and lamellar masks with a low density
of topological defects [11,12]. For example, by employing a shearing technique,
Angelescu et al. [13] showed that thin films of sphere-forming block copolymers
can be well aligned over square-centimetre regions. Compared with thermal
treatments, where the density of topological defects can hardly be reduced below
200 dislocations per square micrometre, in shear-aligned hexagonal patterns the
orientational order was perfect over a 2.5 × 2.5 mm2 area while the translational
order was limited only by the presence of a reduced number of dislocations (on
average six dislocations per square micrometre).

Block copolymer thin films have also proved to be very important from a
fundamental point of view to unveil the mechanisms leading to phase equilibrium
[15] and ordered structure [8,16,17] in quasi-two-dimensional systems. The
macromolecular nature of polymers reduces effects related to the atomic details,
and, compared with other self-assembling systems, such as lyotropic liquid
crystals, block copolymer melts are blessed with a number of advantages and
their behaviour is more universal.

Although there has been recent progress in understanding equilibrium
phenomena and the mechanisms by which order evolves in a two-dimensional
smectic system after being quenched from the disordered state, still little is
known about the kinetic pathways leading to equilibrium in hexagonal phases
[17,18]. Previously, it was found that in planar systems with smectic symmetry
the orientational correlation length of the domains grows with the average spacing
between disclinations according to a power law [6,7]. In this case, the orientational
correlation length is controlled by the density of disclinations and the dominant
mechanism of ordering involves the annihilation of tripoles and quadrupoles of
disclinations [7]. Since the process of disclination annihilation is mediated by the
diffusion of dislocations, the densities of disclinations and dislocations and the
orientational order parameter show a power-law dependence on time.

On the other hand, in hexagonal patterns the dynamics is more subtle because
most of the defects are condensed along grain boundaries and the strain field of
the defects becomes short-ranged [7,16].

In 1962, Lifshitz predicted the possibility of formation of a stable lattice
of domains as a consequence of dynamical frustration in reaching equilibrium
[19]. According to this model, as a consequence of the relaxation driven by
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Figure 1. (a) Schematic of an A–B diblock copolymer and a single-layer block copolymer thin film
with spherical morphology. Each molecule consists of a block of polymer A (green) joined covalently
to a smaller block of polymer B (red). The copolymer self-assembles into a hexagonal structure
of spherical domains of polymer B surrounded by a continuous domain of polymer A. (b) Typical
AFM phase contrast image of an approximately 30 nm thick poly(styrene)-b-poly(isoprene) block
copolymer thin film. The poly(styrene) spheres organize themselves into a single layer, hexagonally
packed with an average spacing between spheres of approximately 30 nm [23]. (c) Through a
Delaunay triangulation of the domain structure in (b), it is possible to determine the number of
dislocations in the system. For the hexagonal phase, dislocations are defined as pairs of spheres with
five and seven nearest neighbours separated by a lattice constant. Spheres with seven neighbours
are indicated with a green dot, those with five neighbours in red and dislocations by a connecting
pale yellow line segment. (Online version in colour.)

the curvature of grain boundaries, triple points (bounded regions where three
grains with different orientations meet) can become pinned to their positions,
slowing down the dynamics. The analysis of the dynamics of a system with p
degenerate states depicting Lifshitz’s configurations was theoretically studied by
Safran [20]. According to this model, the domains grow with a power law in time
for p < d + 1 (d being the spatial dimension), but logarithmically in time in the
case p ≥ d + 1 [17,21,22].

In two-dimensional systems with hexagonal symmetry, the Lifshitz–Safran
model predicts that the dynamics is controlled by the triple points [17]. The role
of the triple points on the coarsening process at long times have been studied
numerically and experimentally. Numerical simulations with a Cahn–Hilliard
model showed the same features as those proposed by Lifshitz, with orientational
and translational correlation lengths growing logarithmically in time [17,21].
Similar features were found by Harrison et al. [8] in block copolymer thin films of
a sphere-forming block copolymer (figure 1). In this study, the annealing process
after a quench from the disordered state was analysed by electron microscopy
and time-lapse atomic force microscopy (AFM) on a system that is schematically
shown in figure 1a [8]. By taking advantage of the modulus difference between
the two blocks, it is possible to use AFM in the tapping mode to image
the microdomain pattern (figure 1b) and to track the coarsening mechanism.
Both experiments and simulations with a Cahn–Hilliard model showed that
disclinations condense into dislocations and most dislocations condense into grain
boundaries [8,16]. The dynamics involves the interplay of disclinations and lines
of dislocations, and the most frequently observed process of coarsening is the
collapse of a smaller grain that resides on the boundary of two larger grains. Then,
irrespective of the mechanism behind the process of coarsening, the dynamics
always involves the diffusion of dislocations.
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In this work, the motion of dislocations in slightly deformed hexagonal patterns
is analysed. The study is carried out by means of a Cahn–Hilliard model [24] for
a diblock copolymer (Ohta–Kawasaki free-energy functional [25]).

2. Dynamical model

Let us consider a block copolymer consisting of two homopolymer blocks A and
B (degree of polymerization NA and NB, respectively) quenched from the high-
temperature disordered melt into the unstable region of the phase diagram. The
total degree of polymerization is N = NA + NB.

One of the simplest models proposed to describe the dynamics of micro-phase
separation for this system is to consider the Ohta–Kawasaki free-energy functional
together with a Langevin dynamics for a conserved order parameter [25–28]:

vj

vt
= MV2

(
dF
dj

)
+ z(r, t). (2.1)

Here, the order parameter j is defined in terms of the local densities of each block
in the block copolymer,

j(r, t) = rA(r, t) − rB(r, t)
2r0

, (2.2)

where rA(r, t) and rB(r, t) are the local segment densities of the blocks A and B,
respectively, M is a phenomenological mobility coefficient, and z is a random noise
term, with zero average and second moment related to the mobility coefficient
and the noise strength h0 through the fluctuation–dissipation relationship [29]:

〈z(r, t)z(r′, t ′)〉 = 2Mh0d(r − r′)d(t − t ′). (2.3)

The free-energy functional F(j) splits as

F(j) = Fs(j) + F�(j), (2.4)

where terms model short- and long-range interactions. The long-range free-energy
contribution arises from the chain connectivity of two blocks and can be expressed
as [25]

F�(j) = b

2

∫
dr′ drG(r − r′)j(r)j(r′), (2.5)

where G(r) is a solution of V2G(r) = −d(r). The short-range term has the typical
Landau form,

Fs(j) =
∫

dr
[
H (j) + D

2
|Vj|2

]
, (2.6)

where H (j) stands for the mixing free energy of the homogeneous blend of
disconnected A–B homopolymers, and (D/2)|Vj|2 represents the free-energy cost
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for spatial composition inhomogeneity. The positive constant D scales with the
Kuhn statistical segment length b as D ∝ b2 [25,28]. Here H (j) takes the form:

H (j) = 1
2 [−t + A(1 − 2f )2]j2 + 1

3l(1 − 2f )j3 + 1
4sj4. (2.7)

The parameters A, l, b and s are related to the vertex functions derived by
Leibler [30]. The constant f is the block copolymer asymmetry [25] and the
parameter t depends linearly on the Flory–Huggins parameter c and provides
a measurement of the depth of quench. In this free-energy model, which belongs
to the Brazovskii class [31], the disordered phase becomes unstable to periodic
modulations just as the block copolymer melt traverses the spinodal line. By
mapping the Leibler free-energy functional [30] onto the Brazovskii free-energy
expression, Fredrickson & Helfand [32] and Podneks & Hamley [33] were able
to extract fluctuation corrections for block copolymers. It was found that the
Brazovskii fluctuations modify the phase behaviour in the neighbourhood of
the critical point and that the order–disorder transition temperature moves the
critical line towards higher temperatures.

In this work, equation (2.1) was numerically solved by the cell dynamics
method on a two-dimensional square lattice [34–37]. According to this approach,
the evolution of the order parameter j can be expressed as

j(n, t + 1) = G(j(n, t)) − 〈〈G(j(n, t)) − j(n, t)〉〉 − bj(n, t), (2.8)

where
G(j(n, t)) = f (j(n, t)) + D[〈〈j(n, t)〉〉 − j(n, t)] (2.9)

and f (j(n, t)) is given by

f (j) = [1 + t − A(1 − f )2]j − l(1 − 2f )j3 − sj4. (2.10)

Here, n = (nx , ny) designates the lattice points and 〈〈X〉〉 represents an average
over all neighbours of an arbitrary function X, and is related to the isotropic
Laplacian through

V2X = 3[〈〈X〉〉 − X]. (2.11)

For a two-dimensional system,

〈〈X〉〉 = 1
6

∑
s∈NN

X(s) + 1
12

∑
s∈NNN

X(s), (2.12)

where NN and NNN represent the nearest-neighbour and next-nearest-neighbour
lattice sites, respectively.

In this work, the block copolymer composition was fixed at f = 0.45, and the
phenomenological parameters were fixed at A = 1.5, s = 0.38, l = 0.23, D = 0.3
and b = 0.03. The noise term was ignored. We have also conducted studies that
include thermal fluctuations and have confirmed that fluctuations renormalize the
depth of quench [38]. The two-dimensional mean-field equilibrium structure for
these parameters is a hexagonal array of domains characterized by a dominant
wavenumber k0 (k4

0 = b/D). We used a 512 × 512 lattice system with periodic
boundary conditions.
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3. Linear instability analysis

To analyse the stability of the hexagonal patterns and to gain insight into the
different transition mechanisms, in this section we perform a simplified single-
wavenumber, amplitude equation analysis, which considers only the essential
symmetries of the problem.

Periodic hexagonal patterns are expected to have a finite region of stability.
As shown below, if the temperature of quench and wavenumber disturbances are
small, the hexagonal pattern is stable. On the other hand, if the temperature of
quench or wavenumber disturbances are moderately increased, different types
of instabilities may appear in the system to relax the free-energy excess.
One such instability is the so-called Eckhaus instability, where the optimal
wavenumber of the system may be recovered through the nucleation and diffusion
of topological defects.

In block copolymer melts, the stability and dynamics towards equilibrium
of different phases have been numerically studied by Qi & Wang [39]. In that
study, it was found that geometric characteristics of the free-energy surface are
responsible for the non-trivial intermediate states on the kinetic pathways. For
example, it was found that transitions from the lamellar phase to the hexagonal
phase may go through an intermediate metastable phase (perforated lamella).

For a generic system governed by a Ginzburg–Landau free energy, the different
instabilities of two-dimensional hexagonal patterns have been extensively studied
by Sushchik & Tsimring [40].

A perfect hexagonal system can be represented as the superposition of three
plane waves oriented at 120◦ with respect to each other. Thus, the order parameter
j for a slightly disturbed hexagonal pattern can be written in the form

j(r, t) =
3∑

j=1

Aj(r, t) exp[i(kj + Kj)r] + c.c., (3.1)

where Aj(r, t) are slowly varying envelopes and |kj | = k0, with k1 = k0x̂ and the
other vectors k2 and k3 are obtained from this by rotations of ±2p/3 (resonant
condition). Here, we choose Kj = Kj .ej to be the wavenumber disturbance from
the optimum wavenumber values kj (ej is the unit vector oriented along the
wavevector of mode j : ej = kj/kj). Particularly, here we only analyse the case
where K1 + K2 + K3 = 0.

Substituting equation (3.1) into equation (2.4) and expanding the long-range
free-energy contribution, the free energy of the system can be expressed in the
Sushchik & Tsimring form in terms of the amplitudes Aj(r, t) as

F =
∫

dr [−m(|A1|2 + |A2|2 + |A3|2) − (A∗
1A

∗
2A

∗
3 + c.c.)

+ 1
2(|A1|4 + |A2|4 + |A3|4) + g(|A1|2|A2|2 + |A1|2|A3|2

+ |A2|2|A3|2) + (|D1A1|2 + |D2A2|2 + |D3A3|2)], (3.2)

where Dj = iK + vX j (see [40] for more details about the approximations involved
in equation (3.2)).
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The temporal evolution of the amplitude equations can be variationally
expressed as

vAi

vt
= − dF

dAi
. (3.3)

Following the Sushchik & Tsimring approach [40], it can be shown that the
ordered structures become unstable above the line given by

K 2 = 2[t − A(1 − 2f )2 − 2
√

sD]6s

[4l(1 − 2f )]2 + 1
4(1 + 2g)

. (3.4)

On the other hand, the region where the hexagonal phase is stable is delimited
by the line

K 2 = 1
4(1 + 2g)

[
1 + 4m + 8mg − [−g − 2 + (1 + 2g)

√
24m(1 + g) + 1]2

9(1 + g)2

]
, (3.5)

where m = 3[t − A(1 − 2f )2 − 2
√

bD]m/[4l2(1 − 2f )2].
In addition, it has been found that the Eckhaus instability can also trigger a

transition from the hexagonal phase to the stripped phase (smectic symmetry)
as the depth of quench t overcomes the hexagonal/smectic line:

t∗ = 3
8

3g + 1 + √
2(g + 1)3/2

(1 + 2g)(g − 1)2
[l(1 − 2f )]2s + A(1 − 2f )2 + 2

√
bD. (3.6)

Figure 2 shows the stability diagram for the hexagonal phase as a function of
the depth of quench t. In this diagram, we can distinguish four different regions
corresponding to different instabilities. Although other instabilities can also be
identified [40], this study is mainly focused on the region where the hexagonal
phase is stable.

To study the kinetics of the morphological transitions numerically, we start the
simulations with a perfect hexagonal crystal with a non-optimal wavenumber.
Real-space images show that, when the difference between the wavenumber
K and k0 is small, the system remains in the stable zone, and the pattern
shows no indication of any distortion. However, when the difference between
the wavenumber and k0 is large, the crystal becomes unstable and, depending
on temperature, different relaxational mechanisms can be triggered.

We have analysed the stability of the hexagonal phase through the circularly
averaged scattering function S(k). Here S(k) was determined as S(k) =
〈j̃(k)j̃(k)∗〉, where j̃(k) represents the Fourier transform of the order parameter.
The main results are shown in figure 3.

At shallow quenches (t ∼ tc) and K ∼ 0 the hexagonal pattern is stable.
Figure 3 shows the scattering function S(k) for a hexagonal pattern located in
this region (region I of figure 2). As expected, the scattering function is sharply
peaked at k0. It is also possible to observe higher-order peaks at the positions
expected for the hexagonal crystalline structure (k0,

√
3k0,

√
7k0) [16].
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Figure 2. Stability region of hexagonal patterns as a function of the depth of quench t. The lower
line (zone I) is the existence line of hexagons. At shallow quenches and small wavevector distortions,
the pattern is reconstructed through the spontaneous creation of pairs of dislocations (zone II).
At deeper quenches, the hexagonal pattern is reconstructed into a lamellar (smectic) phase (zone
III). In zone IV, the hexagonal pattern is completely unstable. Here tc indicates the position of
the spinodal line. (Online version in colour.)

0 1 2
k/k0

S(k)

3 4

0

1

2

3

Figure 3. Circularly averaged scattering function S(k/k0) (arbitrary intensity scale). Here,
wavevector k0 is the optimal wavenumber value in the stable region I (t − tc = 10−4, K = 0).
Bottom: hexagonal system at equilibrium (t − tc = 10−4, K = 0). Centre: when t and K locate the
system in region II of figure 2 (t − tc = 10−2, K = 0.5), the pattern recovers its optimal wavevector
via the creation of pairs of dislocations with opposite Burgers vectors. The circle in the pattern
emphasizes the presence of one of the four dislocations created through this mechanism. Top: in
region III, the hexagonal pattern becomes unstable and the domains melt into a lamellar structure
(t − tc = 4 × 10−2, K = 0.5). (Online version in colour.)
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At a given temperature, if the wavenumber disturbance K is relatively small, we
observed that the pattern becomes unstable and there is a spontaneous creation
of pairs of dislocations (region II, K = 0.5 and t − tc = 10−2). In this case, we
can observe that the main peak of the scattering function moves towards the
low-k region while the hexagonal symmetry remains stable, as evidenced by the
presence of the high-order peaks in S(k). Then, the pattern is reorganized into a
new hexagonal pattern via the annihilation of crystalline planes mediated by the
creation and diffusion of dislocations. At deeper quenches (region III, K = 0.5 and
t − tc = 4 × 10−2), the hexagonal pattern suffers a hexagonal to stripes transition.
In figure 3, we can observe that the main peak of the scattering function splits
into two, one corresponding to the primitive hexagonal pattern and the other
corresponding to a lamellar phase. Then, in this region the hexagonal phase
goes into the lamellar equilibrium phase with a wavenumber smaller than k0.
Finally, if the wavenumber disturbance K increases beyond the limits of stability
of the ordered phase (region IV), we have observed that ordered structures
become unstable.

4. Dislocation dynamics under stress

The microstructure of a condensed phase and the distribution of topological
defects largely determine its mechanical, transport and thermodynamic response,
as well as the temporal evolution of its non-equilibrium configurations.

In the case of lamellar patterns, the dislocations play an important role in the
pattern selection process. For an isolated dislocation in a system with lamellar
structure, the pattern can be divided into two regions A and B, with different
wavenumbers ka and kb, respectively. Let us suppose that region B contains an
extra lamella. If the defect does not move, the pattern has an optimal wavenumber
located between qa and qb. On the other hand, if qa or qb are the preferred
wavenumbers of the system, the dislocation climbs in order to add or remove
the extra lamella. In the presence of external fields, the dislocation can also glide
normally to the lamellae. In this case, the overall wavenumber of the pattern does
not necessarily change during the diffusional motion of the dislocation.

The elementary defects of a two-dimensional hexagonal system are disclinations
(orientational defects). These are point defects formed by a domain having
a number of nearest neighbours different from six, typically five (negative
disclination) or seven (positive disclination). In addition to disclinations,
dislocations (translational defects) are also present. Dislocations are composed
defects formed by a pair of disclinations of opposite sign separated by a
lattice constant.

Owing to the underlying crystalline lattice, the energy of the dislocation
oscillates as a function of its position so that it can move only if the forces
overcome the periodic Peierls potential [41]. The motion of dislocations can be
separated into two different mechanisms: climb and glide. In the climb process, the
velocity of the dislocation is parallel to the axis of the dislocation (perpendicular
to the Burgers vector) and requires the diffusion of point defects. Glide is the
motion perpendicular to the axis of the dislocation (parallel to the dislocation’s
Burgers vector). Since glide requires only a local rearrangement of the system, the
diffusion constants for glide are expected to be much larger than those for climb.
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Figure 4. Decomposition of a hexagonal pattern with a dislocation into three plane waves oriented
at 120◦ with respect to one another. The hexagonal pattern with a dislocation embedded near its
centre shown in (a) can be obtained as the superposition of the three patterns shown in (b). The k2
and k3 lamellae have dislocations, while the k1 lamellae are dislocation-free. The two dislocations
have opposite winding numbers. (Online version in colour.)

When the wavenumber of the hexagonal system is optimal, the dislocations
remain immobile. When the wavenumber is not optimal, the defects move in
order to adjust the wavenumber of the pattern back into the stability region. The
defect motion can be driven by the superposition of two Peach–Köhler forces,
corresponding to the two singular modes.

Here, we studied the dynamics of dislocations under different conditions of
deformation. We apply external stress on a hexagonal structure containing a
dislocation by deforming it in a particular direction.

Since the hexagonal pattern can be written in the form j = ∑3
j=1 Aj exp(ikjr) +

c.c., the dislocation in the hexagonal system can be thought of as the bound
state of two ‘lamellar dislocations’ of opposite winding numbers. Here, the ki are
the wavevectors corresponding to the three lamellar patterns. These vectors are
oriented at 120◦ with respect to each other and satisfy the resonance condition
k1 + k2 + k3 = 0 (see scheme of figure 4).

To analyse the dynamics, we considered the dislocation as formed by a negative
dislocation in mode 2 and a positive dislocation in mode 3. Mode 1 contains
no dislocations. Then, the motion of the dislocation is studied by considering
a shallow quench into the spinodal region (the depth of quench is fixed at
t − tc = 10−4). Given the proximity to the spinodal, the system shows a very
strong wavenumber selectivity at k = k0. We found that dislocations remain
immobile when the amplitudes of the three wavenumbers ki equal the dominant
wavenumber of the symmetry-breaking instability k0 (i.e. ki = |k0|).

Here, the motions of the defects were tracked by filtering individual pairs of
Bragg peaks in the Fourier transform and then performing an inverse Fourier
transform to identify the dislocations present in each set of lamellae (characterized
by wavevectors k1, k2 and k3).

Similarly to lamellar patterns, in hexagonal systems the motion of the
dislocations depends on the wavenumber distortions to k0. Here, we considered
three distinct initial conditions with a non-optimal wavenumber configuration.
As shown below, both the velocity and direction of motion of a single dislocation
are functions of the deformation applied to the three modes. Although here we
focused our attention on the climb and glide mechanisms, more general situations
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Figure 5. Mechanisms of defect motion in hexagonal patterns as seen through j(r) (left) and their
associated Voronoi diagrams (right) for three different perturbations (t − tc = 10−4). In the Voronoi
diagrams, the orange cells are five-sided and the green cells are seven-sided. The defect moves
through a series of T1 and T2 elementary processes, cell mitosis and near-neighbour switching.
(a) K2 = K3 > 0. (b) K2 = K3 < 0. (c) K2 = −K3. The arrows indicate the direction of motion of
the dislocation. In (a) and (b), the dislocation moves via the climb mechanism, while in (c) the
dislocation glides horizontally. (Online version in colour.)

can easily be analysed. The process of defect motion under different deformations
is illustrated through the order parameter j and the corresponding Voronoi
diagrams in figure 5.

Theoretical and numerical results of Tsimring’s theory [42] showed that, when
the wavenumber corrections of the two striped patterns with dislocations are
equal and non-zero (K2 and K3), the motion of the dislocation is parallel to the
wavevector of the dislocation-free stripes k1.

Figure 5 shows the mechanism involved in the motion of dislocations for K1 = 0,
and K2 = K3 > 0. In good agreement with Tsimring’s theory, we found that in this
case the motion of the dislocation is parallel to k1. In the case that both K2 and
K3 point in the same directions as k2 and k3, respectively, the dislocation moves in
the direction that adjusts the wavenumber of the pattern back into the stability
region by removing the extra stripes of k2 and k3, thereby moving the dislocation
core antiparallel to k1. Then, the dislocation moves in the direction that reduces
both K2 and K3 at the same rate.

For the case when K1 = K2 < 0, the dislocation moves in the direction that
adjusts the wavenumber of the pattern by adding an extra stripe to the modes k2
and k3. In this case, the dislocation velocity is parallel to k1 and its motion results
from the division of heptagonal cells by the so-called mitosis mechanism [43].

The motion of the dislocation involves the elimination of two rows of hexagonal
domains by alternately eliminating a cell from rows perpendicular to the k2 and k3
directions. The result of the process is a zig-zag motion, the average direction of
which is parallel to k1. In this case, the motion of the dislocation involves a series
of T1 and T2 intermediate processes (e.g. Weaire & Rivier [44]). In addition, we
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have observed that the direction of motion of the dislocation is not affected by
small changes in the wavenumber K1. Both results are in good agreement with
the theoretical results of Tsimring [42].

We also analyse the case where K2 points in the same direction as k2, but K3
points in the opposite direction to k3. In this case, in order to push back the
system into equilibrium, the motion of the dislocation is perpendicular to the
wavevector of the dislocation-free wavevector k1 (glide mechanism).

The dynamics of dislocations in crystalline structures of different symmetries
has been studied through different phase field models. For example, it was found
that for the Swift–Hohenberg dynamics [45] the climb velocity is proportional
to K 3/2, while in patterns with hexagonal, square or dodecagonal symmetry
with a dynamics governed by the Lifshitz–Petrich model the climb velocity is
proportional to the wavenumber disturbance (v ∼ K ) [46,47]. A similar result
was found by Berry et al. [48] by means of a different phase field model for a
conserved order parameter. In this study, the mechanisms of glide, climb and
defect annihilation were analysed for hexagonal crystals subjected to different
strain fields. By measuring the dislocation’s glide and climb velocities as a
function of the average shear strain g, these authors found that v ∼ g.

On the other hand, the dynamics of dislocations in quasi-two-dimensional
systems has been experimentally studied in Bénard–Marangoni convection
systems [43] and in a single layer of equal-sized soap bubbles [49]. Experimentally,
it has also been found in different metals that the glide velocity is generally
well described by v ∼ gm , where m is the glide exponent, typically m ∼ 1–5 for
pure metals, although different defects, such as vacancies or interstitials, can
profoundly modify these values [50].

Figure 6 shows the velocity of the dislocations as a function of the wavenumber
distortions for the three different deformations shown in figure 5. Irrespective of
the deformation of the system, the velocity increases according to a power law
with the wavenumber, with an exponent close to 2.5 (v ∼ K (2.5−2.8)).

In figure 6, we can also observe that the mechanism involving the glide of the
dislocation is almost one order of magnitude faster than the process involving
the climb of the dislocation. In addition, given that the mechanisms involved
in the climb process for parallel or antiparallel motion are different, for a given
deformation the resulting velocity is larger for a system where the motion is
parallel to k1.

Irrespective of the mechanism of diffusion, here it was found that the motion
of the dislocations at low velocities involves alternate stick–slip steps, while it
becomes nearly continuous at relatively high deformations, in good agreement
with the results reported by Berry et al. [48].

Finally, we have also analysed the dynamics of defect annihilation in the
absence of any external distortion. When two dislocations interact, they may
attract, repel or recombine in a new dislocation with a different Burgers vector.
In the appropriate conditions, the collision of pairs of dislocations with opposite
Burgers vectors may remove the dislocations, leaving the hexagonal pattern free
of topological disturbances. In figure 7, the distance between the cores of two
dislocations with opposite Burgers vectors is shown as a function of time. In
very good agreement with Tsimring’s theoretical and numerical results, here
we found that the data are consistent with R ∝ (t0 − t)1/2, where t0 in the
annihilation time of the pair of dislocations. Then, the velocity scales with the
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Figure 6. Dependence of the defect velocity on the wavenumber K for glide (triangles, K2 = −K3)
and climb (squares, K2 = K3 < 0, and circles, K2 = K3 > 0). Irrespective of the mechanism of
diffusion, the velocity of the dislocation grows according to a power law with K (solid lines).
Here t − tc = 10−4. (Online version in colour.)
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Figure 7. Temporal evolution of the average distance between dislocations during a process of
annihilation (t − tc = 10−4, K = 0). Note that, at zero angle, the dislocations annihilate more
quickly via the glide mechanism. (Online version in colour.)

distance between dislocations as V ∝ R−1. Assuming that the dynamics of defect
diffusion is overdamped, the force Fds between dislocations must decrease with
the distance between defects as Fds ∝ R−1, in good agreement with the theory
of crystal elasticity [50]. Since the glide velocity is approximately one order
of magnitude faster than the motion involving the climb mechanism, for the
configuration studied here, there is a strong dependence of the annihilation time
on the dominant direction of motion. A similar dependence on the direction
of motion was found by Tsimring [51] in the framework of coupled amplitude
equations for hexagonal patterns.
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5. Summary

In thin films of block copolymers with hexagonal symmetry, the length-scale
selectivity and degree of order are principally governed by the density and
distribution of dislocations. Here, we have studied the dynamics of dislocation
motion through a phase field model for a diblock copolymer. It was found that
the fundamental mechanisms involved in the motion of dislocations are similar to
those found in different phase field models and experimental systems. However,
we found that the motion of dislocations is more strongly dependent on the
external deformation, indicating that the dynamics is very sensitive to the details
of the free-energy functional. The Ohta–Kawasaki model employed here is one of
the simplest possible models to analyse the dynamics of phase separation and
coarsening in block copolymer thin films. Recent experiments on sphere-forming
and cylinder-forming block copolymer thin films have demonstrated that both
systems respond to a shearing field, orienting the patterns in a direction dictated
by the external shear [14,52]. It has been found that a minimum threshold stress
is required to induce orientational order in the thin film and that the alignment
quality is limited only by the residual isolated dislocations. It is hoped that this
work will stimulate experimental research to study the motion of dislocations in
block copolymer thin films under the conditions analysed. It is anticipated that
more realistic models, including, for example, a more accurate description of the
free-energy functional, asymmetry in the A and B statistical segment lengths,
effective monomeric friction coefficients, and thermal fluctuations, could make
the motion of dislocations yet more complex and dynamically rich.

This work was supported by Universidad Nacional del Sur (UNS), the National Research Council
(CONICET) and the National Agency for Scientific and Technological Promotion (ANPCyT) of
Argentina.
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