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Abstract

We consider configuration mixing for the nonstrange positive parity excited baryons in the

[56′, 0+], [56, 2+], [70, 0+] and [70, 2+] quark model SU(6)×O(3) multiplets contained in the N = 2

band. Starting from the effective mass operator for these states we show by an explicit calculation

that in the large Nc limit they fall into six towers of degenerate states labeled by K = 0, 1, 1′, 2, 2′, 3.

We find that the mixing of the quark model states is much simpler than what is naively expected.

To leading order in Nc only states carrying the same K label can mix, which implies that for the

spin-flavor states we started with configuration mixing can be parameterized by just two constants,

µK=1 and µK=2.
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I. INTRODUCTION

The quark model in its different versions has been a useful tool in exploring the spectrum

and properties of excited baryons, as well as for testing different model assumptions on

the effective interactions between quarks [1–3]. Although the model interactions between

constituent quarks are QCD inspired, a clear connection to the fundamental theory of the

strong interactions remains elusive to this date. Recent successes of lattice QCD calculations

[4, 5] seem to validate the classification scheme of baryon states in SU(6)×O(3) multiplets,

as put forward by early quark model studies. These numerical lattice calculations have the

advantage of being based on the fundamental theory of the strong interactions, but lack

the simplicity of an analytic approach, that provides a physical picture in terms of effective

degrees of freedom, effective interactions and symmetries. Such an analytic scheme to study

the phenomenology of baryons and their excited states, that also makes contact with QCD,

can be obtained starting from the large number of colors (Nc) limit of QCD [6] [7]. For a

review on the relevance of the large Nc limit for SU(Nc) gauge theories, see also Ref. [8].

In the large Nc limit it has been shown that the spin-flavor symmetry for ground state

baryons can be justified from the contracted symmetry SU(4)c derived from consistency

relations for pion-nucleon scattering [9] [10] [11] [12] [13]. The predictions of this symmetry

for the masses and the couplings explain some of the successes of the non-relativistic quark

model [14] [15] [16] [17]. Even more important than that, the breaking of the spin-flavor

symmetry can be studied systematically in a 1/Nc expansion using quark operators, estab-

lishing a close connection between QCD and the quark model [15] [16] [17], see Refs. [18–20]

for a pedagogical introduction.

The operator construction of the 1/Nc expansion was later extended to study the masses

of the negative parity L = 1 excited baryons [21] [22] [23] [24] [25] [26] with great success.

The strong and electromagnetic decays of these states belonging to the [70, 1−] multiplet,

as well as the masses and decays of baryon resonances in other spin-flavor multiplets were

also studied in the 1/Nc expansion (see [27] for a recent review, and references therein),

establishing a comprehensive framework to study the phenomenology of excited baryons at

the physical value Nc = 3. Lattice studies of excited baryons offer further tests of the 1/Nc

expansion by providing predictions for all states in a spin-flavor multiplet and probing the

dependence of observables on the quark masses [28] [29]. They are even starting to explore
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the mass spectrum for Nc values larger than three [30] [31].

It is important to note that the classification scheme for baryon resonances based on

irreducible representations (irreps) of SU(6) × O(3), grouped into excitation bands N =

0, 1, 2, 3, ..., is based on the quark model and cannot be justified from QCD. Physical states

appear as admixtures of different SU(6) × O(3) irreps, something known as configuration

mixing, which so far has been neglected in phenomenological studies that use the 1/Nc

expansion.

In the large Nc limit a different symmetry structure is present at leading order and states

are classified according to irreducible representations of the contracted symmetry SU(2F )c,

dubbed as towers and labeled by K, leading to degeneracies in the mass spectrum of excited

baryons [22, 23]. These predicted degeneracies in the large Nc limit have been verified by

explicit calculations, first in [32, 33] for the nonstrange [70, 1−] states that constitute the

N = 1 band and later also for the nonstrange [70, 3−] states of the N = 3 band [34], but

up to now the effect of configuration mixing, which is not Nc suppressed [35, 36], has been

neglected in an explicit calculation of the spectrum using the effective quark operators.

Here we consider the entire space of states spanned by the N = 2 states [70, L+] and

[56, L+], with L = 0, 2. We restrict ourselves to the nonstrange states and show by an explicit

calculation that configuration mixing preserves the tower structure of the mass spectrum in

the large Nc limit. We also study the mixing pattern, which in the basis of K states turns

out to be much simpler than what would have been expected starting from the spin-flavor

basis of the quark model.

In order to perform the calculation including the leading order effects of configuration

mixing we need to extend the construction of the leading order mass operator. To allow for

L → L′ transitions, we will introduce a generic spatial operator ξ in place of the angular

momentum operator ℓ used in previous studies [24]. This is similar to the construction of

the transition operators for the decay processes [37], as we need the most general operators

that mix the SU(6)× O(3) multiplets to leading order.

In this work we present the most general form of the leading order mass operator that

incorporates configuration mixing and the explicit expressions obtained for its matrix ele-

ments between states of the N = 2 band. Our results provide important consistency checks

on the contracted symmetry predictions for the masses and mixings in the large Nc limit,

and the correctness of the usual construction of the effective mass operators in terms of core
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and excited quark operators [24].

The paper is organized as follows: In Sec. II we present the states, in Sec. III we present

the effective mass operator, in Sec. IV we give the explicit form of the mass matrices for

I = 1/2 and I = 3/2 states. In Sec. V we discuss the spectrum and the mixing pattern

we obtain. We finally conclude in Sec. VI. In App. A we give the general expressions for

calculating the matrix elements of the leading mass operators and in App. B we give the

explicit expressions of the matrix elements for arbitrary Nc.

II. THE STATES

The positive parity, orbitally excited modes of an Nc = 3 three quark system differ from

each other in their orbital angular momentum L and their behaviour under permutations.

The spin-flavor symmetry SU(6) is a useful classification scheme for these states. Each type

of permutational symmetry of three objects, symmetric (S), mixed symmetric (MS) and

antisymmetric (A) corresponds to an SU(6) multiplet, 56, 70 and 20, respectively. For

the nonstrange members of these multiplets, the spin-flavor symmetry is only broken by the

spin-dependent interactions. Here and in what follows we will concentrate on the nonstrange

members of each SU(6)×O(3) multiplet. In the case of harmonic forces between quarks the

five SU(6) × O(3) multiplets 56′ (L = 0, 2), 70 (L = 0, 2) and 20 (L = 1) are degenerate

and constitute the harmonic oscillator N = 2 band. We do not consider the antisymmetric

states in this work, as their relevance for the observed physical states at Nc = 3 is not clear

yet. In the generalization of the lowest-energy multiplets to arbitrary Nc the additional

Nc − 3 quarks are taken in a completely symmetric spin-flavor combination.

In order to identify the nonstrange I = 1/2 and I = 3/2 physical states (N and ∆) with

the large Nc states, it is useful to keep in mind the usual SU(6)spin−flavor ⊃ SU(3)flavor ×
SU(2)spin decomposition that labels the Nc = 3 states

SNc=3 : 56 = 410+ 28 ⊃ 4∆+ 2N ,

MSNc=3 : 70 = 21+ 210+ 28+ 48 ⊃ 2∆+ 2N + 4N ,
(1)

where 2S+1N, 2S+1∆, with S the quark spin of the state. It should always be clear if S stands

for the spin, or if it denotes the symmetric irrep of the permutation group. To count the

nonstrange I = 1/2 and I = 3/2 states contained in the S, MS irreducible representations

of the permutation group for arbitrary Nc it is helpful to recall that for the symmetric
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representation the spin and isospin of the states are related by S = I, while for the mixed

symmetric irrep the spin is obtained from the vector sum S = I+ 1, so that

S ⊃ 4∆+ 2N ,

MS ⊃ 2∆+ 4∆+ 6∆
︸ ︷︷ ︸

Nc≥5

+2N + 4N . (2)

We see that in MS there appear ∆ states with higher spin that are absent in MSNc=3.

These are ghost states that decouple from the physical states in the Nc → 3 limit, as has

been noticed in [32] [38] and we will also see explicitly here when discussing the matrix

elements of App. B. After coupling with the orbital angular momentum L = 0, 2 we obtain

the SL,MSL states

S ′
0 ⊃ N1/2,∆

′
3/2 ,

MS0 ⊃ N1/2, N
′
3/2,∆1/2,∆

′
3/2,∆

′′
5/2

︸ ︷︷ ︸

Nc≥5

,

S2 ⊃ N3/2, N5/2,∆
′
1/2,∆

′
3/2,∆

′
5/2,∆

′
7/2 ,

MS2 ⊃ N3/2, N5/2, N
′
1/2, N

′
3/2, N

′
5/2, N

′
7/2,∆3/2,∆5/2,

∆′
1/2,∆

′
3/2,∆

′
5/2,∆

′
7/2,∆

′′
1/2,∆

′′
3/2,∆

′′
5/2,∆

′′
7/2,∆

′′
9/2

︸ ︷︷ ︸

Nc≥5

,

(3)

where we indicate J , the total spin of the nonstrange states NJ ,∆J , as given by the vector

sum J = S + L. The primes indicate the different values of quark spin S, e.g. NJ , N
′
J cor-

respond to 2S+1NJ with S = 1/2, 3/2, respectively, while ∆J ,∆
′
J ,∆

′′
J correspond to 2S+1∆J

with S = 1/2, 3/2, 5/2, respectively.

In Eq. (3) we show all the states that we will consider to compute the mass spectrum.

There are 30 I = 1/2, 3/2 states distributed as 11 N -states and 19 ∆-states, where 11 of

the ∆-states are ghost states. That reduces the number of physical states at Nc = 3 to 19

states.

The representations S ′
0,MS0, S2,MS2 reduce in the Nc = 3 limit to the [56′, 0+],[56, 2+],

[70, 0+] and [70, 2+] quark model SU(6) × O(3) multiplets. We use the prime on S ′
0 to

distinguish it from the ground state baryons S0, usually labeled as [56, 0+] in the Nc = 3

limit.

In a quark model calculation all states with same I, J mix, giving rise to large mixing

matrices and a complex pattern, see e.g. Ref. [39]. In the large Nc limit the mixing pattern

is much simpler, something that only becomes clear after classifying the states in a different
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way, according to the irreps of the contracted spin-flavor symmetry SU(4)c. These irreps

are labeled by K, which relates J and I as J = I + K, so that K = L in the symmetric

irreps and K = L+ 1 in the mixed symmetric ones [22][23]. In contrast to the spin-flavor

states for arbitrary Nc of Eq. (3), the 30 large Nc states carry an additional label K and

can be grouped as “tower states”

K = 0 : N1/2,∆3/2, · · ·
K = 1 : N1/2, N3/2,∆1/2,∆3/2,∆5/2, · · ·
K = 1′ : N1/2, N3/2,∆1/2,∆3/2,∆5/2, · · ·
K = 2 : N3/2, N5/2,∆1/2,∆3/2,∆5/2,∆7/2, · · ·
K = 2′ : N3/2, N5/2,∆1/2,∆3/2,∆5/2,∆7/2, · · ·
K = 3 : N5/2, N7/2,∆3/2,∆5/2,∆7/2,∆9/2, · · ·

(4)

where each tower state is in general in an admixture of the spin-flavor states shown in

Eq. (3). The nonstrange states in S ′
0 belong to a K = 0 tower, the ones in MS0 appear in

the decomposition of K = 1 states, the ones in S2 contribute to K = 2 states and finally the

MS2 states appear in the decomposition of K = 1, 2, 3 states. As we will show by an explicit

calculation in Sec. V, in the K basis only states with the same K label mix. This implies

that in the large Nc limit the tower structure that was first found by performing explicit

calculations within a single spin-flavor irrep [32][33][34] is also preserved when including the

effect of configuration mixing.

In the next Section we will present the simple leading order in Nc mass operator from

where this mixing pattern follows.

III. THE MASS OPERATOR

The leading order mass operator needed for our calculation is obtained by slightly gener-

alizing the construction of Ref. [24] as follows. As explained in detail in Ref. [24], the large

Nc states can be constructed as product states of a symmetric core of Nc − 1 quarks and an

Nc-th quark in a proper linear combination, so that the SNc and MSNc irreps with the de-

sired permutation properties are obtained. The operators contributing to the mass operator

at different orders in 1/Nc can then be constructed from the SU(6) generators acting on the

symmetric core and on the quark that was singled out, and the orbital angular momentum

operator ℓ. Here we will replace the orbital angular momentum operator by a generic spatial
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operator ξ to allow for configuration mixing of spin-flavor representations with different L.

This is similar to the construction of the effective operators for decay processes [40] [37],

where we also needed to describe transitions between states with different L.

The leading order Hamiltonian including operators up to order O(N0
c ) that will correctly

describe all possible mixings in our configuration space, spanned by the states given in

Eq. (3), has then the following form

H = cR1 11 + cR,R′

2 ξ · s+ cR,R′

3

1

Nc
ξ(2) · g ·Gc +O(1/Nc) , (5)

where ξ(2)ij = 1
2
{ξi, ξj} − ξ2

3
δij and R, R′ stand for the SN × O(3) irreps SL,MSL. The

coefficients cR,R′

1,2,3 are order O(N0
c ) and encode the details of the spatial wave function, as

has been shown explicitly within a single spin-flavor representation by different matching

calculations [41] [42] [43] [44] [45]. They take different values on different spin-flavor irreps

R. In our case we also have off-diagonal matrix elements, so that the coefficients depend

on both the R and R′ irreps that are mixing. For the diagonal matrix elements we have

R = R′ and we use the notation cRi = cR,R
i . The unit operator only contributes to diagonal

matrix elements.

The general expressions for the matrix elements of the operators in Eq. (5) are given in

App. A following closely the notation of Ref. [24].

IV. THE MASS MATRICES

In this Section we present the explicit form of the mass matrices we obtain by computing

the matrix elements of Eq. (5), after expanding in 1/Nc and taking the large Nc limit. The

matrix elements for arbitrary Nc are given in App. B. We also give the expressions for the

corresponding eigenvalues and eigenstates. The reader can skip through this Section and

continue reading Sec. V, where we work out an explicit example that better illustrates the

relevant points of the discussion.

It should be noted that in the coefficients cR1 , c
R,R′

2 , cR,R′

3 we absorb common group the-

oretical numerical factors and the reduced matrix elements of the ξ operator, as appearing

in Eqs. (A1, A6) or more explicitly, as in Tables I, II, III and IV of App. B. We do not

distinguish them from the original cR1 , c
R,R′

2 , cR,R′

3 appearing in Eq. (5) to keep the notation

simple.
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A. The I = 1/2 states

The I = 1/2 states with the same J can mix among each other. We have three J = 1/2,

four J = 3/2, three J = 5/2 and one J = 7/2 states. Their mass matrices are given below.

The 11 mass eigenvalues for the large Nc, I = 1/2 states will be labeled as mNK
J

and their

degeneracies will be discussed in the next Section. Table I in App. B shows all the matrix

elements for the nucleons at finite Nc.

In the large Nc limit the mass matrix for the N1/2 states in the {2NS′

0

1/2,
2NMS0

1/2 , 4NMS2

1/2 }
basis is

MN1/2
=








c
S′

0

1 Nc 0 0

cMS0

1 Nc

√
2cMS0MS2

3

cMS2

1 Nc − 3
2
cMS2

2 − cMS2

3








. (6)

The MN1/2
mass matrix and all mass matrices that follow are symmetric. We only show the

upper right half of the matrix to keep the expressions more readable. The eigenvalues are

mNK=0

1/2
, mNK=1′

1/2
and mNK=1

1/2
. Their explicit dependence on the cR,R′

i coefficients is given in

the next Section. The corresponding eigenstates are








NK=0
1/2

NK=1′

1/2

NK=1
1/2








=








1 0 0

0 1 −ηMS0

0 ηMS0
1








, (7)

where each row vector on the right hand side indicates the composition of the eigenstate,

e.g. for the second eigenstate we have

|NK=1′

1/2 〉 = |2NMS0

1/2 〉 − ηMS0
|4NMS2

1/2 〉 , (8)

where ηMS0
can be expressed in terms of the cR,R′

i coefficients. We will use this matrix

notation to show the composition of the eigenstates throughout the rest of the paper. This

is very convenient to make the mixing pattern manifest. In the limit of no mixing (ηR = 0)

the eigenstates are normalized. In the general case there is still a normalization factor of

N = 1√
1+η2

R

that has to be taken into account.

The mass matrix for N3/2 states in the large Nc limit is given in the {4NMS0

3/2 , 2NS2

3/2,
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2NMS2

3/2 , 4NMS2

3/2 } basis by

MN3/2
=










cMS0

1 Nc 0 −cMS0MS2

3 −cMS0MS2

3

cS2

1 Nc cS2MS2

2 −cS2MS2

2

cMS2

1 Nc − cMS2

2 −1
2
cMS2

2 − cMS2

3

cMS2

1 Nc − cMS2

2










. (9)

We denote the eigenvalues as mNK=1′

3/2
, mNK=2′

3/2
, mNK=1

3/2
, and mNK=2

3/2
. The eigenstates of this

matrix are










NK=1′

3/2

NK=2′

3/2

NK=1
3/2

NK=2
3/2










=










1 0
√
2
2
ηMS0

√
2
2
ηMS0

0 1 −
√
2
2
ηS2

√
2
2
ηS2

−ηMS0
0

√
2
2

√
2
2

0 −ηS2
−

√
2
2

√
2
2










. (10)

For the N5/2 states in the {2NS2

5/2,
2NMS2

5/2 , 4NMS2

5/2 } basis we obtain

MN5/2
=








cS2

1 Nc −2
3
cS2MS2

2 −
√
14
3
cS2MS2

2

cMS2

1 Nc +
2
3
cMS2

2 −
√
14
6
cMS2

2 +
√
14
6
cMS2

3

cMS2

1 Nc − 1
6
cMS2

2 + 5
7
cMS2

3








, (11)

with eigenvalues mNK=2′

5/2
, mNK=2

5/2
and mNK=3

5/2
, and eigenstates








NK=2′

5/2

NK=2
5/2

NK=3
5/2








=








1
√
2
3
ηS2

√
7
3
ηS2

−ηS2

√
2
3

√
7
3

0 −
√
7
3

√
2
3








. (12)

Finally, the matrix element for the N7/2 large Nc state in MS2 is

mNK=3

7/2
= cMS2

1 Nc + cMS2

2 − 2

7
cMS2

3 . (13)

B. The I = 3/2 states

The I = 3/2 states with the same J can mix among each other. We have four J = 1/2,

six J = 3/2, five J = 5/2, three J = 7/2 and one J = 9/2 states. Their mass matrices are

given below. The 19 mass eigenvalues for the large Nc, I = 3/2 states will be labeled as

m∆K
J
and their degeneracies will be discussed in the next Section.
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Table II in App. B shows the matrix elements for ∆1/2 at finite Nc. In the large Nc limit

the mass matrix for the ∆1/2 states in the {2∆MS0

1/2 , 4∆S2

1/2,
4∆MS2

1/2 , 6∆MS2

1/2 } basis is

M∆1/2
=










cMS0

1 Nc 0 1√
5
cMS0MS2

3
3√
5
cMS0MS2

3

cS2

1 Nc
3√
5
cS2MS2

2 − 1√
5
cS2MS2

2

cMS2

1 Nc − 3
5
cMS2

2 + 4
5
cMS2

3 − 3
10
cMS2

2 − 3
5
cMS2

3

cMS2

1 Nc − 7
5
cMS2

2 − 4
5
cMS2

3










,(14)

with eigenvalues m∆K=1′

1/2
, m∆K=2′

1/2
, m∆K=1

1/2
and m∆K=2

1/2
. The corresponding eigenstates are










∆K=1′

1/2

∆K=2′

1/2

∆K=1
1/2

∆K=2
1/2










=











1 0 −1
2

√
2
5
ηMS0

−3
2

√
2
5
ηMS0

0 1 −3
2

√
2
5
ηS2

1
2

√
2
5
ηS2

−ηMS0
0 −1

2

√
2
5

−3
2

√
2
5

0 −ηS2
−3

2

√
2
5

1
2

√
2
5











. (15)

Table III shows the matrix elements for ∆3/2 at finite Nc. For the ∆3/2 states in the { 4∆
S′

0

3/2,

4∆MS0

3/2 , 4∆S2

3/2,
2∆MS2

3/2 , 4∆MS2

3/2 , 6∆MS2

3/2 } basis we obtain

M∆3/2
=

















c
S′

0

1 Nc 0 0 0 0 0

cMS0

1 Nc 0 − 1√
10
cMS0MS2

3
4
5
cMS0MS2

3
3
5

√
7
2
cMS0MS2

3

cS2

1 Nc − 1√
2
cS2MS2

2
2√
5
cS2MS2

2 −
√

7
10
cS2MS2

2

cMS2

1 Nc +
1
2
cMS2

2
5

2
√
10
cMS2

2 − 1√
10
cMS2

3
3√
35
cMS2

3

cMS2

1 Nc − 2
5
cMS2

2 − 3
10

√
7
2
cMS2

2 − 3
7

√
7
2
cMS2

3

cMS2

1 Nc − 11
10
cMS2

2 − 2
7
cMS2

3

















,

(16)

with eigenvalues m∆K=0

3/2
, m∆K=1′

3/2
, m∆K=2′

3/2
, m∆K=1

3/2
, m∆K=2

3/2
and m∆K=3

3/2
and eigenstates
















∆K=0
3/2

∆K=1′

3/2

∆K=2′

3/2

∆K=1
3/2

∆K=2
3/2

∆K=3
3/2
















=

















1 0 0 0 0 0

0 1 0 1
2
√
5
ηMS0

−2
√
2

5
ηMS0

−3
√
7

10
ηMS0

0 0 1 1
2
ηS2

−
√

2
5
ηS2

1
2

√
7
5
ηS2

0 −ηMS0
0 1

2
√
5

−2
√
2

5
−3

√
7

10

0 0 −ηS2

1
2

−
√

2
5

1
2

√
7
5

0 0 0 −
√

7
10

−
√
7
5

1
5
√
2

















. (17)
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Table IV in App. B shows the matrix elements for ∆5/2, ∆7/2 and ∆9/2 at finite Nc. For

the ∆5/2 states in the { 6∆MS0

5/2 , 4∆S2

5/2,
2∆MS2

5/2 , 4∆MS2

5/2 , 6∆MS2

5/2 } basis we have

M∆5/2
=














cMS0

1 Nc 0
√

3
5
cMS0MS2

3 −1
5

√
21cMS0MS2

3 −1
5

√
14cMS0MS2

3

cS2

1 Nc −1
3

√
7cS2MS2

2
1

3
√
5
cS2MS2

2 −
√

6
5
cS2MS2

2

cMS2

1 Nc − 1
3
cMS2

2
5
6

√
7
5
cMS2

2 + 1
7

√
7
5
cMS2

3 2
√

6
35
cMS2

3

cMS2

1 Nc − 1
15
cMS2

2 − 4
7
cMS2

3 −3
5

√
3
2
cMS2

2 − 2
7

√
3
2
cMS2

3

cMS2

1 Nc − 3
5
cMS2

2 + 2
7
cMS2

3














,

(18)

with eigenvalues m∆K=1′

5/2
, m∆K=2′

5/2
, m∆K=1

5/2
, m∆K=2

5/2
, and m∆K=3

5/2
and eigenstates













∆K=1′

5/2

∆K=2′

5/2

∆K=1
5/2

∆K=2
5/2

∆K=3
5/2













=














1 0 −1
2

√
6
5
ηMS0

1
5

√
21
2
ηMS0

√
7
5
ηMS0

0 1 1
3

√
7
2
ηS2

−1
6

√
2
5
ηS2

√
3
5
ηS2

−ηMS0
0 −1

2

√
6
5

1
5

√
21
2

√
7
5

0 −ηS2

1
3

√
7
2

−1
6

√
2
5

√
3
5

0 0 −1
3

√
14
5

−8
√
2

15

√
3
5














. (19)

The matrix for the ∆7/2 states in the large Nc limit in the { 4∆S2

7/2,
4∆MS2

7/2 , 6∆MS2

7/2 } basis is

M∆7/2
=








cS2

1 Nc − 2√
5
cS2MS2

2 −
√

6
5
cS2MS2

2

cMS2

1 Nc +
2
5
cMS2

2 + 8
35
cMS2

3 −3
5

√
3
2
cMS2

2 + 18
35

√
3
2
cMS2

3

cMS2

1 Nc +
1
10
cMS2

2 + 17
35
cMS2

3








, (20)

with eigenvalues m∆K=2′

7/2
, m∆K=2

7/2
, and m∆K=3

7/2
, and with eigenstates








∆K=2′

7/2

∆K=2
7/2

∆K=3
7/2








=








1
√

2
5
ηS2

√
3
5
ηS2

−ηS2

√
2
5

√
3
5

0 −
√

3
5

√
2
5








. (21)

Finally, the matrix element for the large Nc state ∆9/2 in MS2 is

m∆K=3

9/2
= cMS2

1 Nc + cMS2

2 − 2

7
cMS2

3 . (22)

V. THE LARGE Nc SPECTRUM

The diagonalization of the I = 1/2 and I = 3/2 mass matrices presented in the previous

Section leads to 30 mass eigenvalues. In the large Nc limit we find as a result of our explicit
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calculation the remarkable result that the masses assume only six different values, leading

to a highly degenerate spectrum. The 11 I = 1/2 and 19 I = 3/2 masses are grouped in six

energy levels mK as follows

m0 = mNK=0

1/2
= m∆K=0

3/2
,

m1′ = mNK=1′

1/2
= mNK=1′

3/2
= m∆K=1′

1/2
= m∆K=1′

3/2
= m∆K=1′

5/2
,

m2′ = mNK=2′

3/2
= mNK=2′

5/2
= m∆K=2′

1/2
= m∆K=2′

3/2
= m∆K=2′

5/2
= m∆K=2′

7/2
,

m1 = mNK=1

1/2
= mNK=1

3/2
= m∆K=1

1/2
= m∆K=1

3/2
= m∆K=1

5/2
,

m2 = mNK=2

3/2
= mNK=2

5/2
= m∆K=2

1/2
= m∆K=2

3/2
= m∆K=2

5/2
= m∆K=2

7/2
,

m3 = mNK=3

5/2
= mNK=3

7/2
= m∆K=3

3/2
= m∆K=3

5/2
= m∆K=3

7/2
= m∆K=3

9/2
. (23)

The “tower masses” mK correspond to the tower states listed in Eq. (4) and the degeneracy

in the spectrum reflects the SU(4)c symmetry present in the large Nc limit. Notice that

there are two towers with labels K = 1 and K = 2, their masses are unrelated by the

SU(4)c symmetry. The explicit expressions we obtain for the tower masses mK in terms

of the coefficients cR1 , c
R,R′

2 and cR,R′

3 result from the diagonalization of the mass matrices

given in Sec. IV and can be written in compact form as

m0 = Nc c
S′

0

1 ,

m1′ = m11′ + δ11′ ,

m2′ = m22′ + δ22′ , (24)

m1 = m11′ − δ11′ ,

m2 = m22′ − δ22′ ,

m3 = Nc c
MS2

1 + cMS2

2 − 2

7
cMS2

3 ,

where

m11′ =
1

2
(cMS0

1 + cMS2

1 )Nc −
3

4
cMS2

2 − 1

2
cMS2

3 , (25)

m22′ =
1

2
(cS2

1 + cMS2

1 )Nc −
1

4
cMS2

2 +
1

2
cMS2

3 , (26)

δ11′ =

√
[
1

2
(cMS0

1 − cMS2

1 )Nc +
3

4
cMS2

2 +
1

2
cMS2

3

]2

+ 2
(
cMS0MS2

3

)2
, (27)

δ22′ =

√
[
1

2
(cS2

1 − cMS2

1 )Nc +
1

4
cMS2

2 − 1

2
cMS2

3

]2

+ 2
(
cS2MS2

2

)2
. (28)
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Given the complexity of the mass matrices from where we started, these expressions are

surprisingly simple. It is possible to understand this by looking at the general structure

of the corresponding eigenstates shown in the previous Section: only some subset of spin-

flavor states are mixed among each other in the large Nc limit, namely those with same K

assignment. As we will show next by working out an explicit example, all our results can

be understood as a two level K,K ′ mixing. To make this manifest it is useful to write the

tower masses mK we obtained in terms of the mass eigenvalues m̊K that we would have in

the absence of configuration mixing

m̊K=0 = Nc c
S′

0

1 ,

m̊K=1′ = Nc c
MS0

1 ,

m̊K=2′ = Nc c
S2

1 , (29)

m̊K=1 = Nc c
MS2

1 − 3

2
cMS2

2 − cMS2

3 ,

m̊K=2 = Nc c
MS2

1 − 1

2
cMS2

2 + cMS2

3 ,

m̊K=3 = Nc c
MS2

1 + cMS2

2 − 2

7
cMS2

3 .

We see that mK = m̊K for K = 0, 3 and for the K = 1, 2 states we have

mK ′,K =
m̊K + m̊K ′

2
±
√
(
m̊K ′ − m̊K

2

)2

+ (µK)
2 , (30)

where µK=1 = −
√
2cMS0MS2

3 and µK=2 = −
√
2cS2MS2

2 are the matrix elements that mix

the two K states. For (mK − mK ′) ∼ O(N0
c ), i.e. cMS0

1 − cMS2

1 ∼ O(1/Nc) and cMS2

1 −
cS2

1 ∼ O(1/Nc), the mixing is strong and the energy levels get O(N0
c ) corrections due to

configuration mixing.

This mixing pattern, which is not obvious at all when starting from the mass matrices

written in the spin-flavor basis, can be made manifest by a change of basis. The I = 3/2, J =

3/2 states constitute a good example to see this, as they have the largest mass matrix, of

dimension six and given by Eq. (16), where all K states appear as eigenstates. To find

the change of basis we need, we first compute the eigenstates in the absence of mixing by

setting cR,R′

2,3 = 0 in Eq. (16). In our matrix notation they are given by the row vectors of

13



the following expression

S̊ =

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2
√
5

−2
√
2

5
−3

√
7

10

0 0 0 1
2

−
√

2
5

1
2

√
7
5

0 0 0 −
√

7
10

−
√
7
5

1
5
√
2

















. (31)

This provides us the change of basis matrix S̊. We obtain the large Nc mass matrix M̃∆3/2

in the K basis { K = 0, K = 1′, K = 2′, K = 1, K = 2, K = 3 } as follows

M̃∆3/2
= S̊M∆3/2

S̊−1 =
















m̊0

m̊1′ µ1

m̊2′ µ2

µ1 m̊1

µ2 m̊2

m̊3
















, (32)

where we only show matrix elements that are non-zero.

The eigenstates in this K basis are given now by the rows of the T matrix below and

take the simple form

T =
















1

1 ηMS0

1 ηS2

−ηMS0
1

−ηS2
1

1
















. (33)

Finally, from S = T S̊ we recover as the rows of S the eigenstates in the spin-flavor basis as

14



given by Eq. (17).

|∆K=0
3/2 〉 = |4∆S′

0

3/2〉 , (34)

|∆K=1′

3/2 〉 = |4∆MS0

3/2 〉+ ηMS0

(

1

2
√
5
|2∆MS2

3/2 〉 − 2
√
2

5
|4∆MS2

3/2 〉 − 3
√
7

10
|6∆MS2

3/2 〉
)

, (35)

|∆K=2′

3/2 〉 = |4∆S2

3/2〉+ ηS2

(

1

2
|2∆MS2

3/2 〉 −
√

2

5
|4∆MS2

3/2 〉+ 1

2

√

7

5
|6∆MS2

3/2 〉
)

, (36)

|∆K=1
3/2 〉 = −ηMS0

|4∆MS0

3/2 〉+ 1

2
√
5
|2∆MS2

3/2 〉 − 2
√
2

5
|4∆MS2

3/2 〉 − 3
√
7

10
|6∆MS2

3/2 〉 , (37)

|∆K=2
3/2 〉 = −ηS2

|4∆S2

3/2〉+
1

2
|2∆MS2

3/2 〉 −
√

2

5
|4∆MS2

3/2 〉+ 1

2

√

7

5
|6∆MS2

3/2 〉 , (38)

|∆K=3
3/2 〉 = −

√

7

10
|2∆MS2

3/2 〉 −
√
7

5
|4∆MS2

3/2 〉+ 1

5
√
2
|6∆MS2

3/2 〉 . (39)

The explicit expressions for ηMS0
, ηS2

that relate them to the mixing matrix elements µ1, µ2

are

ηMS0
=

2µ1

m̊1′ − m̊1 +
√

(m̊1′ − m̊1)
2 + 4 (µ1)

2
, (40)

ηS2
=

2µ2

m̊2′ − m̊2 +
√

(m̊2′ − m̊2)
2 + 4 (µ2)

2
. (41)

As it is clear from Eqs. (32,33), only the two K = 1 and K = 2 towers mix through the

mixing matrix elements µK=1 and µK=2, respectively. This explains why in the large Nc

limit all the mixing that can occur among the spin-flavor states of Eq. (3) can be expressed

in terms of only two parameters, and it confirms that the effective mass operator given by

Eq. (5) correctly accounts for the symmetry structure expected in large Nc QCD.

VI. CONCLUSIONS

We have extended the largeNc analysis of excited baryons to include configuration mixing.

In particular, in this paper we studied the configuration mixing of the symmetric and mixed

symmetric spin-flavor irreps that belong to the N = 2 band. Rather than the SU(2F ) spin-

flavor symmetry of the quark model, in the large Nc limit we have a contracted symmetry

SU(2F )c, which gives rise to numerous mass degeneracies and also fixes the mixing pattern

among the states. Degenerate states fill SU(2F )c irreps (“towers”), which are labeled by

15



K. They contain an infinite number of states with increasing spin and isospin. Here we

restricted ourselves to two flavors and to the low spin and isospin states that are identified

with the physical states at Nc = 3.

We found by an explicit calculation that, in contrast to the complex mixing pattern of

spin-flavor irreps in the quark model due to hyperfine interactions (see e.g. Ref. [39]), in

the large Nc limit the mixing pattern is governed by the symmetry: only states carrying

the same K label mix. For the states considered, this mixing can be described by just two

parameters related to the mixing of the mixed symmetric states with L = 0 and L = 2

(MS0 and MS2) and the mixing of the symmetric and mixed symmetric states with L = 2

(S2 and MS2).

We performed the calculation of the mass spectrum by slightly extending the construction

of Ref. [24] and using a common mass operator for all states, Eq. (5), expressed in the quark

operator basis. We verified explicitly that this simple leading order effective mass operator

correctly describes the configuration mixing pattern expected from the symmetry present

in the large Nc limit. We also checked explicitly that the inclusion of configuration mixing

preserves the largeNc tower structure in the spectrum of positive parity excited baryons: The

11 N -states and 19 ∆-states are the lowest isospin members of six degenerate towers of large

Nc states labeled by K = 0, 1, 1′, 2, 2′, 3. The matrix elements presented in App. B show that

ghost states that only exist for Nc > 3 decouple from the physical states. This decoupling is

a general feature of large Nc calculations [32], that was also pointed out in the meson-baryon

scattering picture [38]. Another important point to note is that only the presence of core

operators makes the mixing of symmetric and mixed-symmetric states possible. A mass

operator constructed solely in terms of symmetric SU(4) generators Si, T a, Gia would not

mix spin-flavor states in different irreps of the permutation group.

All these are non-trivial checks of the correctness of the core-excited quark picture and

the operator construction in terms of SU(2F ) generators that started the program of ap-

plying the large Nc expansion to the study of excited baryons [21] [24]. Most importantly,

the leading order calculation presented here provides the first step towards a systematic

inclusion of configuration mixing effects at subleading order in the large Nc analysis of the

phenomenology of excited baryons. The predicted large Nc spectrum and the configuration

mixing pattern could also be checked in the future by lattice calculations, providing a useful

guide for the ongoing explorations of the baryon spectrum at arbitrary Nc values [31].
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Appendix A: Calculation of matrix elements

After replacing the orbital angular momentum operator ℓ by a generic spatial operator

ξ, we obtain the generalization of equation (A7) of Ref. [24]:

〈ξ · s〉 = δJ ′JδM ′MδI′IδI′
3
I3(−1)L

′+1/2+S′−S

√

3

2

√

(2S ′ + 1)(2S + 1)〈L′||ξ||L〉

×
∑

Ls=L±1/2

(−1)Ls(2Ls + 1)







Ls
1
2

L′

1 L 1
2







∑

η=±1

cRρ ηc
R′

ρ′η







Ic
1
2

S ′

L J Ls













Ic
1
2

S

L J Ls






,(A1)

where R,R′ denote a symmetric (SYM) or mixed symmetric (MS) irrep and the coefficients

cRρ η with S = I + ρ and Sc = Ic = I + η/2 are given by

cMS
±± = 1 , (A2)

cSYM
±± = cSYM

±∓ = cMS
±∓ = 0 , (A3)

cSYM
0− = cMS

0+ =

√

S (Nc + 2 (S + 1))

Nc (2S + 1)
, (A4)

cSYM
0+ = −cMS

0− =

√

(S + 1) (Nc − 2S)

Nc (2S + 1)
. (A5)

In all other Sections we use S to label the symmetric irrep SYM . Here, for the sake of

clarity, we use the SYM label to distinguish it from the S we also use to denote the total

spin of the quarks. The rank two tensor operator in the effective mass operator accounts for

the mixing of L = 0 and L = 2 states. It generalizes Eq. (A9) in Ref. [24] to

〈ξ(2) · g ·Gc〉 = δJ ′JδM ′MδI′IδI′
3
I3(−1)J−2I+L+S 3

8

√
5
√

(2S ′ + 1)(2S + 1)〈L′||ξ(2)||L〉

×







2 L L′

J S ′ S







∑

η′η=±1

cR
′

ρ′η′c
R

ρ η(−1)(1+η′)/2
√

(2I ′c + 1)(2Ic + 1)

×
√

(Nc + 1)2 −
(
η′−η
2

)2
(2I + 1)2







1
2

1 1
2

I ′c I Ic













I ′c Ic 1

S ′ S 2

1
2

1
2

1







. (A6)

The reduced matrix elements 〈L′||ξ||L〉 and 〈L′||ξ(2)||L〉 are unknown and can be absorbed

in the operator coefficients of the 1/Nc expansion.
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Appendix B: Explicit matrix elements for arbitrary Nc

We list in this Appendix all the explicit matrix elements for the operators O1 = Nc11,

O2 = ξ · s and O3 = 1
Nc
ξ(2) · g · Gc, for finite Nc. We defined ξ122 = 1√

30
〈2||ξ||2〉, ξ222 =

1√
105

〈2||ξ(2)||2〉 and ξ202 =
1

16
√
2
〈0||ξ(2)||2〉, which contain the reduced matrix elements of the

generic ξ operator. Note that the ghost ∆ states decouple from the physical states through

Nc − 3 factors, see also [38] for a related discussion.
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O1 O2 O3

2N
S′

0

1/2 Nc 0 0

2NMS0

1/2 Nc 0 0

4NMS2

1/2 Nc −3
2ξ122 − 7

16Nc
(Nc + 1)ξ222

2N
S′

0

1/2 − 2NMS0

1/2 0 0 0

2N
S′

0

1/2 − 4NMS2

1/2 0 0 − 1
Nc

√
2(Nc−1)

Nc
ξ202

2NMS0

1/2 − 4NMS2

1/2 0 0 1
Nc

(2Nc − 1)
√

2(Nc+3)
3Nc

ξ202

4NMS0

3/2 Nc 0 0

2NS2

3/2 Nc − 3
2Nc

ξ122 0

2NMS2

3/2 Nc − 1
2Nc

(2Nc − 3)ξ122 0

4NMS2

3/2 Nc −ξ122 0

4NMS0

3/2 − 2NS2

3/2 0 0 1
Nc

√
Nc−1
Nc

ξ202

4NMS0

3/2 − 2NMS2

3/2 0 0 − 1√
3Nc

(2Nc − 1)
√

Nc+3
Nc

ξ202

4NMS0

3/2 − 4NMS2

3/2 0 0 − 2√
3Nc

(Nc + 1)ξ202

2NS2

3/2 − 2NMS2

3/2 0 1
2Nc

√

3(Nc + 3)(Nc − 1)ξ122 0

2NS2

3/2 − 4NMS2

3/2 0 −1
2

√
3(Nc−1)

Nc
ξ122

7
32Nc

√
3(Nc−1)

Nc
ξ222

2NMS2

3/2 − 4NMS2

3/2 0 −1
2

√
Nc+3
Nc

ξ122 − 7
32Nc

(2Nc − 1)
√

Nc+3
Nc

ξ222

2NS2

5/2 Nc
1
Nc

ξ122 0

2NMS2

5/2 Nc
1

3Nc
(2Nc − 3)ξ122 0

4NMS2

5/2 Nc −1
6ξ122

5
16Nc

(Nc + 1)ξ222

2NS2

5/2 − 2NMS2

5/2 0 − 1
3Nc

√

(Nc + 3)(Nc − 1)ξ122 0

2NS2

5/2
− 4NMS2

5/2
0 −

√
7
6

√
Nc−1
Nc

ξ122 − 1
16Nc

√
21
2

√
Nc−1
Nc

ξ222

2NMS2

5/2
− 4NMS2

5/2
0 −1

3

√
7
2

√
Nc+3
Nc

ξ122

√
7
2
(2Nc−1)
16Nc

√
Nc+3
Nc

ξ222

4NMS2

7/2 Nc ξ122 − 1
8Nc

(Nc + 1)ξ222

TABLE I: Matrix elements for I = 1/2 states at finite Nc.
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O1 O2 O3

2∆MS0

1/2 Nc 0 0

4∆S2

1/2 Nc − 9
2Nc

ξ122
21
8N2

c
ξ222

4∆MS2

1/2 Nc
3

10Nc
(15− 2Nc)ξ122

7
40N2

c
(2N2

c + 2Nc − 15)ξ222

6∆MS2

1/2 Nc −7
5ξ122 − 7

20Nc
(Nc + 1)ξ222

2∆MS0

1/2 − 4∆S2

1/2 0 0 − 1
Nc

√
Nc+5
Nc

ξ202

2∆MS0

1/2 − 4∆MS2

1/2 0 0 1√
15Nc

(2Nc + 5)
√

Nc−3
Nc

ξ202

2∆MS0

1/2 − 6∆MS2

1/2 0 0 2
Nc

√
3
5

√

(Nc + 5)(Nc − 3)ξ202

4∆S2

1/2 − 4∆MS2

1/2 0 3
2Nc

√
3
5

√

(Nc + 5)(Nc − 3)ξ122 − 7
8N2

c

√
3
5

√

(Nc + 5)(Nc − 3)ξ222

4∆S2

1/2 − 6∆MS2

1/2 0 −1
2

√
3
5

√
Nc−3
Nc

ξ122
21

32Nc

√
3
5

√
Nc−3
Nc

ξ222

4∆MS2

1/2 − 6∆MS2

1/2 0 − 3
10

√
Nc+5
Nc

ξ122 − 21
160Nc

(2Nc − 3)
√

Nc+5
Nc

ξ222

TABLE II: Matrix elements for the I = 3/2, J = 1/2 states at finite Nc.
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O1 O2 O3

4∆S0

3/2 Nc 0 0

4∆MS0

3/2 Nc 0 0

4∆S2

3/2 Nc − 3
Nc

ξ122 0

2∆MS2

3/2 Nc
1
2ξ122 0

4∆MS2

3/2 Nc − 1
5Nc

(2Nc − 15)ξ122 0

6∆MS2

3/2 Nc −11
10ξ122 − 1

8Nc
(Nc + 1)ξ222

4∆
S′

0

3/2
− 4∆MS0

3/2
0 0 0

4∆
S′

0

3/2 − 4∆S2

3/2 0 0 4
√
3

N2
c
ξ202

4∆
S′

0

3/2 − 2∆MS2

3/2 0 0 1√
2Nc

√
Nc+5
Nc

ξ202

4∆
S′

0

3/2 − 4∆MS2

3/2 0 0 − 4√
5N2

c

√

(Nc + 5)(Nc − 3)ξ202

4∆
S′

0

3/2 − 6∆MS2

3/2 0 0 − 3
Nc

√
7
10

√
Nc−3
Nc

ξ202

4∆MS0

3/2 − 4∆S2

3/2 0 0 − 4√
5N2

c

√

(Nc + 5)(Nc − 3)ξ202

4∆MS0

3/2 − 2∆MS2

3/2 0 0 − 1√
30Nc

(2Nc + 5)
√

Nc−3
Nc

ξ202

4∆MS0

3/2 − 4∆MS2

3/2 0 0 4
5
√
3N2

c

(
2N2

c + 2Nc − 15
)
ξ202

4∆MS0

3/2 − 6∆MS2

3/2 0 0 1
5Nc

√
21
2 (2Nc − 3)

√
Nc+5
Nc

ξ202

4∆S2

3/2 − 2∆MS2

3/2 0 −1
2

√
3
2

√
Nc+5
Nc

ξ122
7

32Nc

√
3
2

√
Nc+5
Nc

ξ222

4∆S2

3/2 − 4∆MS2

3/2 0 1
Nc

√
3
5

√

(Nc + 5)(Nc − 3)ξ122 0

4∆S2

3/2 − 6∆MS2

3/2 0 −1
2

√
21
10

√
Nc−3
Nc

ξ122
3

32Nc

√
105
2

√
Nc−3
Nc

ξ222

2∆MS2

3/2 − 4∆MS2

3/2 0 1
2

√
5
2

√
Nc−3
Nc

ξ122 − 7
32

√
10Nc

(2Nc + 5)
√

Nc−3
Nc

ξ222

2∆MS2

3/2 − 6∆MS2

3/2 0 0 3
16Nc

√
7
5

√

(Nc + 5)(Nc − 3)ξ222

4∆MS2

3/2 − 6∆MS2

3/2 0 − 3
10

√
7
2

√
Nc+5
Nc

ξ122 − 3
32Nc

√
7
2(2Nc − 3)

√
Nc+5
Nc

ξ222

TABLE III: Matrix elements for the I = 3/2, J = 3/2 states at finite Nc.
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O1 O2 O3

6∆MS0

5/2 Nc 0 0

4∆S2

5/2 Nc − 1
2Nc

ξ122 − 15
8N2

c
ξ222

2∆MS2

5/2 Nc −1
3ξ122 0

4∆MS2

5/2 Nc − 1
30Nc

(2Nc − 15)ξ122 − 1
8N2

c
(2N2

c + 2Nc − 15)ξ222

6∆MS2

5/2 Nc −3
5ξ122

1
8Nc

(Nc + 1)ξ222

6∆MS0

5/2 − 4∆S2

5/2 0 0 1
Nc

√
21
5

√
Nc−3
Nc

ξ202

6∆MS0

5/2 − 2∆MS2

5/2 0 0 2√
5Nc

√

(Nc + 5)(Nc − 3)ξ202

6∆MS0

5/2
− 4∆MS2

5/2
0 0 −

√
7

5Nc
(2Nc − 3)

√
Nc+5
Nc

ξ202

6∆MS0

5/2 − 6∆MS2

5/2 0 0 − 2
5Nc

√
14
3 (Nc + 1)ξ202

4∆S2

5/2 − 2∆MS2

5/2 0 −1
2

√
7
3

√
Nc+5
Nc

ξ122 −
√
21

32Nc

√
Nc+5
Nc

ξ222

4∆S2

5/2 − 4∆MS2

5/2 0 1
2
√
15Nc

√

(Nc + 5)(Nc − 3)ξ122
√
15

8N2
c

√

(Nc + 5)(Nc − 3)ξ222

4∆S2

5/2 − 6∆MS2

5/2 0 − 3√
10

√
Nc−3
Nc

ξ122
3

16Nc

√
5
2

√
Nc−3
Nc

ξ222

2∆MS2

5/2 − 4∆MS2

5/2 0
√
35
6

√
Nc−3
Nc

ξ122
1

32Nc

√
7
5(2Nc + 5)

√
Nc−3
Nc

ξ222

2∆MS2

5/2 − 6∆MS2

5/2 0 0 1
4Nc

√
21
10

√

(Nc + 5)(Nc − 3)ξ222

4∆MS2

5/2 − 6∆MS2

5/2 0 −3
5

√
3
2

√
Nc+5
Nc

ξ122 − 1
16Nc

√
3
2(2Nc − 3)

√
Nc+5
Nc

ξ222

4∆S2

7/2 Nc
3
Nc

ξ122
3

4N2
c
ξ222

4∆MS2

7/2 Nc
1

5Nc
(2Nc − 15)ξ122

1
20N2

c
(2N2

c + 2Nc − 15)ξ222

6∆MS2

7/2 Nc
1
10ξ122

17
80Nc

(Nc + 1)ξ222

4∆S2

7/2 − 4∆MS2

7/2 0 − 1
Nc

√
3
5

√

(Nc + 5)(Nc − 3)ξ122 − 1
4N2

c

√
3
5

√

(Nc + 5)(Nc − 3)ξ222

4∆S2

7/2 − 6∆MS2

7/2 0 − 3√
10

√
Nc−3
Nc

ξ122 − 27
16

√
10Nc

√
Nc−3
Nc

ξ222

4∆MS2

7/2 − 6∆MS2

7/2 0 −3
5

√
3
2

√
Nc+5
Nc

ξ122
9

80Nc

√
3
2(2Nc − 3)

√
Nc+5
Nc

ξ222

6∆MS2

9/2 Nc ξ122 − 1
8Nc

(Nc + 1)ξ222

TABLE IV: Matrix elements for the I = 3/2, J = 5/2, 7/2, 9/2 states at finite Nc.
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