

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 Editor: Anthony Linden

Aripiprazole salts. III. Bis(aripiprazolium) oxalate-oxalic acid (1/1)

Eleonora Freire, Griselda Polla and Ricardo Baggio

Acta Cryst. (2013). C69, 186–190

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org

organic compounds

Acta Crystallographica Section C Crystal Structure Communications

Aripiprazole salts. III. Bis(aripiprazolium) oxalate-oxalic acid (1/1)

Eleonora Freire,^{a,b}* **‡** Griselda Polla^a and Ricardo Baggio^a*

^aGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, and ^bEscuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Buenos Aires, Argentina

Correspondence e-mail: freire@tandar.cnea.gov.ar, baggio@cnea.gov.ar

Received 6 December 2012 Accepted 11 January 2013 Online 16 January 2013

The asymmetric unit of the title salt [systematic name: bis(4-(2,3-dichlorophenyl)-1-{4-[(2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)oxy]butyl}piperazin-1-ium) oxalate–oxalic acid (1/1)], $2C_{23}H_{28}Cl_2N_3O_2^+ \cdot C_2O_4^{2-} \cdot C_2H_2O_4$, consists of one protonated aripiprazole unit (HArip⁺), half an oxalate dianion and half an oxalic acid molecule, the latter two lying on inversion centres. The conformation of the HArip⁺ cation differs from that in organized into planar ribbons parallel to $(01\overline{2})$. The oxalate anions and oxalic acid molecules form hydrogen-bonded chains running along [010], which 'pierce' the planar ribbons, interacting with them through a number of stronger N– $H \cdots O$ and weaker C– $H \cdots O$ hydrogen bonds, forming a three-dimensional network.

Comment

Aripiprazole (Arip) is an antipsychotic drug, perhaps the most characteristic representative of a modern family of atypical antipsychotics, with a different therapeutic activity to those of the classical antipsychotic drugs in standard use.

The drug crystallizes in a number of polymorphic forms, some of which have been described in the patent literature (*e.g.* Brand *et al.*, 2007; Pongo *et al*, 2009: the structural information therein is far from complete and the main source

Figure 1

A displacement ellipsoid plot of (I), drawn at the 40% probability probability level, showing the asymmetric unit (in full ellipsoids and bonds). The Arip⁺ intramolecular hydrogen bond and the O-H···O interaction defining the anionic chain are shown with broken lines. [Symmetry codes: (iii) -x + 2, -y + 1, -z + 1; (v) -x + 2, -y + 2, -z + 1.]

other reported salts and resembles more the conformation of neutral Arip units in reported polymorphs and solvates. The intermolecular interaction linking $HArip^+$ cations is also similar to those in reported Arip compounds crystallizing in the space group $P\overline{1}$, with head-to-head $N-H\cdots$ O hydrogen bonds generating centrosymmetric dimers, which are further of structural information on aripiprazole consists of a paper by Tessler & Goldberg (2006), complemented by two excellent works by Braun *et al.* (2009*a*,*b*). In the first of the Braun *et al.* papers, a number of different polymorphic forms of the Arip molecule are reported, while in the second paper, different solvates (ethanol, methanol, 1,2-dichloroethane, water *etc.*) are studied.

The situation with AripH⁺ salts is different and even if they have been mentioned in the patent literature, no structures

[‡] Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Conicet.

Figure 2

A comparison of the stereodisposition of the present structure [(I), bold] with (a) reported Arip⁺ salts and (b) different solvates (**A** and **B**; Braun *et al.*, 2009*a*) and polymorphs (**C** to **H**; Braun *et al.*, 2009*b*). Compound codes: (II) is the nitrate salt, (III) is the perchlorate salt, **A** is an ethanol solvate (CSD refcode MELFEP01), and **B**, **C**, **D/E**, **F/G** and **H** are methanol solvates (CSD refcodes MELFOZ01 to MELFIT05).

had been reported until very recently when we presented the crystal structures of aripiprazole nitrate, hereafter (II) (Freire *et al.*, 2012*a*), and aripiprazole perchlorate, hereafter (III) (Freire *et al.*, 2012*b*). As discussed in these original reports, the protonated state of Arip results in interesting structural properties caused by N–H donor behaviour, which prompted us to proceed with the analysis of other AripH⁺ salts. We present here the results for a third AripH⁺ salt, *viz.* bis(aripiprazolium) oxalate–oxalic acid (1/1), 2(AripH⁺)·Oxal^{2–}·-H₂Oxal, (I) (H₂Oxal is oxalic acid).

The asymmetric unit of (I) consists of one protonated aripiprazole unit (HArip⁺), half an oxalate dianion and half an oxalic acid molecule, the latter two lying on inversion centres (Fig. 1).

The AripH⁺ cation in (I) is similar to those in (II) and (III) with respect to bond lengths and angles. However, the conformation of the cation in (I) differs from that of the cations in (II) and (III), mainly in the central region, as shown in Table 1 and Fig. 2(a). In fact, the shape of the cation in (I) resembles more those of the neutral Arip units found in the polymorphs and solvates described by Braun *et al.* (2009*a*,*b*) (Fig. 2*b*).

As usual in this type of structure, the most interesting features are the noncovalent interactions defining the spatial arrangement. In (I), only hydrogen bonds are present (Table 2) and neither π - π nor C-H··· π contacts are observed despite the presence of many aromatic rings.

The first entry in Table 2 corresponds to an intramolecular $C-H\cdots Cl$ contact, characteristic for the 4-(2,3-dichloro-

Figure 3

The two different substructures in (I), showing (a) the anionic oxalate chain and (b) an assembly of dimers of Arip⁺ cations. [Symmetry code: (i) -x + 1, -y - 1, -z.]

Figure 4

Packing diagrams of (I), viewed down a, showing (a) a detailed view of the N-H···O interaction linking both substructures, and (b) the relative orientation of both substructures. The anionic chains (in bold) run in the plane of the figure, while the strand of cationic dimers are shown in projection (one of them in a shadowed background).

phenyl)piperazin-1-yl group in all reported Arip derivatives.

The next two entries in Table 2 define two well differentiated supramolecular substructures, *viz.* an anionic chain, comprising oxalate anions and oxalic acid molecules, and a ribbon of AripH⁺ cation dimers. The first of these is an $(Oxal^{2-} \cdots H_2Oxal)_n$ chain parallel to [010] (Fig. 3*a*), generated by an O-H···O hydrogen bond. The one-dimensional structure intersects the (010) crystallographic plane at x = 1, $z = \frac{1}{2}$ and embeds the inversion centres at $y = \frac{1}{2}$ and y = 0,1. These chains are well separated from each other by [100] and [001] translations.

Figure 5

The three different synthons found for the intermolecular $\operatorname{Arip}^+ \cdots \operatorname{Arip}^+$ interactions in (a) (I), (b) (II) and (c) (III).

The elemental building block of the cationic substructure is a head-to-head dimer. Cations in the dimer are linked by an N-H···O hydrogen bond (Table 2, third entry), which is characteristic of many Arip structures (see below). The elongated dimers thus formed [tail-to-tail C···C distance = 37.11 (2) Å] are oriented approximately along [021] and form ribbons parallel to $(01\overline{2})$ by translation along the *a* axis (Fig. 3*b*).

The ribbons are linked into a three-dimensional structure through a number of $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 2, entries 4–8) mediated by the anionic chains. The main agent is the $N-H\cdots O$ hydrogen bond (entry 4 in Table 2) and the way in which it acts is shown in detail in Fig. 4(*a*); the three components shown therein (the anionic chain and two AripH⁺ cations) appear parallel to the projection plane but at different heights, *X* being in the plane, while *Y* and *Z* lie below/above by approximately half of an *a* translation. Thus, the AripH⁺ ribbons are diagonally 'pierced' by the anionic chains, which generates the three-dimensional network shown in Fig. 4(*b*).

The N-H···O hydrogen bond between the amide groups of adjacent AripH⁺ cations (Table 2, third entry), which is characteristic of most of the reported Arip variants, is quite interesting. In all the Arip structures where this interaction exists, it produces one of two well defined supramolecular synthons, *viz*. either a C(4) catemer or a centrosymmetric diamide $R_2^2(8)$ ring (Bernstein *et al.*, 1995). The former synthon (Figs. 5b and 5c) appears in structures crystallizing in space groups with translation symmetry elements (2_1 axis, glide planes) translating along a short unit-cell dimension, and which serves for the 'threading' of the chain. The second (more frequent) synthon generates centrosymmetric dimers (Fig. 5*a*) and usually occurs in Arip variants crystallizing in the space group $P\overline{1}$.

In (II) and (III), the N-H···O hydrogen bond connecting adjacent groups gives rise to two only slightly different synthons, leading to almost identical C(4) substructures differing by the presence, in structure (II) [or its absence in structure (III)], of a secondary C-H···O interaction (Figs. 5b and 5c). The resulting catemers are related by quite different translation symmetry operations, *viz*. the *Pbca a*-glide plane in (II) and the $P2_1/c 2_1$ -axis in (III). The title salt (I) crystallizes in the space group $P\overline{1}$, with no translation elements, and presents the usual $R_2^2(8)$ hydrogen-bonded ring (Fig. 5a).

Thus, all three known Arip^+ salts, *viz.* (I), (II) and (III), adhere to this empirical rule linking symmetry and synthon character. However, the reasons for a given salt 'choosing' one or the other are for the moment unclear, and the speculation regarding the possible pre-eminence of the patterns found in (II) and (III), made in some of our previous discussions (Freire *et al.*, 2012*b*), now seems unsupported. Further work on the subject is in progress.

Experimental

Aripiprazole $(1.5 \times 10^{-4} \text{ mol}, 67 \text{ mg})$ was dissolved in a boiling mixture of methanol (5 ml) and acetone (0.5 ml). When dissolution was considered complete, an excess of oxalic acid was added and the resulting solution was left to cool slowly. Very good quality crystals of (I) in the form of colourless prisms appeared within a few hours and were used as obtained without further recrystallization.

Crystal data

3 restraints

$\begin{array}{l} 2\text{C}_{23}\text{H}_{28}\text{Cl}_2\text{N}_3\text{O}_2^{+}\cdot\text{C}_2\text{O}_4^{2-}\cdot\text{C}_2\text{H}_2\text{O}_4\\ M_r = 1076.82\\ \text{Triclinic, } P\overline{1}\\ a = 7.9609 \ (7) \ \text{\AA}\\ b = 11.2732 \ (9) \ \text{\AA}\\ c = 15.8323 \ (11) \ \text{\AA}\\ \alpha = 101.794 \ (6)^{\circ}\\ \beta = 95.410 \ (7)^{\circ} \end{array}$	$\gamma = 109.767 (8)^{\circ}$ $V = 1288.2 (2) \text{ Å}^{3}$ Z = 1 Mo K\alpha radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 294 K $0.60 \times 0.15 \times 0.08 \text{ mm}$
Data collection Oxford Diffraction Gemini CCD S Ultra diffractometer Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffrac- tion, 2009) $T_{min} = 0.95, T_{max} = 0.98$	16111 measured reflections 6079 independent reflections 3903 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.160$ S = 1.04 6079 reflections 337 parameters	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.32$ e Å ⁻³ $\Delta \rho_{\rm min} = -0.23$ e Å ⁻³

All H atoms were initially found in difference Fourier maps. H atoms bonded to heteroatoms were refined isotropically, with N-H

Table 1

Comparison of selected torsion angles (°) for (I), (II) and (III).

	(I) (this work)	(II) (Freire <i>et al.</i> , 2012 <i>a</i>)	(III) (Freire <i>et al.</i> , 2012 <i>b</i>)
C2-N2-C5-C6	74.3 (2)	161.37 (17)	160.4 (2)
C2-N2-C5-C10	-104.9(2)	-15.3(2)	-15.5(4)
C3-N2-C5-C6	-158.83 (19)	-67.8(2)	-66.6(3)
C3-N2-C5-C10	21.9 (3)	115.59 (17)	117.6 (2)
C1-N1-C11-C12	69.2 (2)	152.38 (14)	157.6 (2)
C4-N1-C11-C12	-167.23(19)	-84.54 (17)	-79.0(3)
N1-C11-C12-C13	163.53 (19)	-169.64 (14)	-172.7(2)
C11-C12-C13-C14	-170.8(2)	-69.0(2)	-71.0(3)
C15-O2-C14-C13	-77.1 (3)	-172.12 (14)	-167.47 (19)

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2 - H2B \cdots Cl1$ $O1A - H1A \cdots O1B$ $N3 - H3N \cdots O1^{i}$ $N1 - H1N \cdots O2B$ $C1 - H1C \cdots O2B^{ii}$ $C2 - H2A \cdots O2B$ $C1 - H1C \cdots O2B^{ii}$	0.97 0.86 (1) 0.85 (1) 0.97 0.97 0.97	2.62 1.71 (1) 2.01 (1) 1.90 (1) 2.49 2.48	3.224 (2) 2.561 (2) 2.866 (3) 2.730 (2) 3.272 (2) 3.197 (3)	120 174 (3) 173 (3) 164 (2) 137 131
$C11 - H11B \cdots O2A$ $C13 - H13B \cdots O2A^{iv}$	0.97	2.41 2.43	3.262 (3)	171 143

Symmetry codes: (i) -x + 1, -y - 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x - 1, y - 1, z.

and O–H bond-length restraints of 0.85 (1) Å. All other H atoms were placed in geometrically optimized positions, with C–H = 0.93 (aromatic) or 0.97 Å (methylene) and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Aripiprazole was provided by Laboratorios Maprimed and is gratefully acknowledged. The authors acknowledge also ANPCyT (project No. PME 2006–01113) for the purchase of the Oxford Gemini CCD diffractometer and the Spanish Research Council (CSIC) for provision of a free-of-charge license to the Cambridge Structural Database (Allen, 2002).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: YF3023). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Brand, M., Shookrun, M., Gribun, I., Adin, I., Iustain, C., Arad, O. & Kaspi, J. (2007). US Patent No. 20071837331.

Braun, D. E., Gelbrich, T., Kahlenberg, V., Tessadri, R., Wieser, J. & Griesser, U. (2009a). J. Pharm. Sci. 98, 2010–2026.

Braun, D. E., Gelbrich, T., Kahlenberg, V., Tessadri, R., Wieser, J. & Griesser, U. (2009b). Cryst. Growth Des. 9, 1054–1065.

Freire, E., Polla, G. & Baggio, R. (2012a). Acta Cryst. C68, 0170–0173. Freire, E., Polla, G. & Baggio, R. (2012b). Acta Cryst. C68, 0235–0239.

electronic reprint

- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Pongo, L., Simig, G., Dancso, A. & Morovjan, G. (2009). US Patent No. 20090111829.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tessler, L. & Goldberg, I. (2006). J. Incl. Phenom. Macrocycl. Chem. 55, 255-261.

supplementary materials

Acta Cryst. (2013). C69, 186-190 [doi:10.1107/S0108270113001133]

Aripiprazole salts. III. Bis(aripiprazolium) oxalate-oxalic acid (1/1)

Eleonora Freire, Griselda Polla and Ricardo Baggio

Bis(4-(2,3-dichlorophenyl)-1-{4-[(2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)oxy]butyl}piperazin-1-ium); oxalate; oxalic acid

Crystal data

$2C_{23}H_{28}Cl_2N_3O_2{}^+\cdot C_2O_4{}^{2-}\cdot C_2H_2O_4$
$M_r = 1076.82$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 7.9609 (7) Å
b = 11.2732 (9) Å
c = 15.8323 (11) Å
$\alpha = 101.794(6)^{\circ}$
$\beta = 95.410 \ (7)^{\circ}$
$\gamma = 109.767 (8)^{\circ}$
V = 1288.2 (2) Å ³

Data collection

Oxford Diffraction Gemini CCD S Ultra diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans, thick slices Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.95$, $T_{\max} = 0.98$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.160$ S = 1.046079 reflections 337 parameters 3 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 564 $D_x = 1.388 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3032 reflections $\theta = 3.8-29.1^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 294 KPlate, colourless $0.60 \times 0.15 \times 0.08 \text{ mm}$

16111 measured reflections 6079 independent reflections 3903 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 29.2^\circ, \ \theta_{min} = 3.7^\circ$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = 0 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0742P)^2 + 0.0853P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.24705 (8)	0.54881 (6)	0.79059 (5)	0.0672 (2)
Cl2	0.30443 (12)	0.80669 (8)	0.92693 (5)	0.0900 (3)
01	0.7228 (2)	-0.50763 (17)	-0.01832 (12)	0.0692 (5)
02	0.4837 (2)	-0.01643 (16)	0.21786 (11)	0.0608 (5)
N1	0.6067 (2)	0.33562 (15)	0.59188 (10)	0.0342 (4)
H1N	0.687 (2)	0.3920 (18)	0.5745 (14)	0.052 (7)*
N2	0.5850 (2)	0.51519 (16)	0.74493 (11)	0.0403 (4)
N3	0.6600 (3)	-0.35294 (19)	0.07242 (13)	0.0512 (5)
H3N	0.5451 (16)	-0.390 (3)	0.0532 (18)	0.082 (9)*
C1	0.4556 (3)	0.3858 (2)	0.59495 (13)	0.0406 (5)
H1B	0.3560	0.3270	0.6146	0.049*
H1C	0.4118	0.3896	0.5366	0.049*
C2	0.5193 (3)	0.51949 (19)	0.65630 (13)	0.0408 (5)
H2A	0.6161	0.5791	0.6356	0.049*
H2B	0.4201	0.5511	0.6575	0.049*
C3	0.7385 (3)	0.4717 (2)	0.74336 (14)	0.0485 (5)
H3A	0.7836	0.4700	0.8020	0.058*
H3B	0.8359	0.5320	0.7234	0.058*
C4	0.6791 (3)	0.3365 (2)	0.68233 (14)	0.0470 (5)
H4A	0.7815	0.3084	0.6811	0.056*
H4B	0.5862	0.2756	0.7042	0.056*
C5	0.6137 (3)	0.6317 (2)	0.80828 (14)	0.0435 (5)
C6	0.4646 (3)	0.6587 (2)	0.83523 (14)	0.0478 (5)
C7	0.4896 (4)	0.7729 (2)	0.89606 (15)	0.0570 (6)
C8	0.6596 (4)	0.8628 (3)	0.93203 (17)	0.0690 (8)
H8	0.6752	0.9393	0.9731	0.083*
C9	0.8076 (4)	0.8375 (3)	0.90613 (18)	0.0720 (8)
H9	0.9239	0.8978	0.9299	0.086*
C10	0.7856 (3)	0.7247 (2)	0.84598 (16)	0.0586 (6)
H10	0.8875	0.7098	0.8299	0.070*
C11	0.5517 (3)	0.20455 (18)	0.52984 (13)	0.0394 (5)
H11A	0.4421	0.1461	0.5430	0.047*
H11B	0.6464	0.1698	0.5382	0.047*
C12	0.5183 (3)	0.20936 (19)	0.43575 (13)	0.0441 (5)
H12A	0.6125	0.2846	0.4268	0.053*
H12B	0.4029	0.2192	0.4229	0.053*
C13	0.5163 (3)	0.0868 (2)	0.37300 (14)	0.0506 (6)
H13A	0.6230	0.0689	0.3914	0.061*
H13B	0.4101	0.0133	0.3748	0.061*
C14	0.5133 (4)	0.1022 (2)	0.28102 (15)	0.0548 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14A	0.4181	0.1340	0.2664	0.066*
H14B	0.6279	0.1669	0.2779	0.066*
C15	0.6264 (3)	-0.0600(2)	0.20975 (15)	0.0501 (5)
C16	0.5807 (3)	-0.1784 (2)	0.14990 (14)	0.0472 (5)
H16	0.4620	-0.2221	0.1200	0.057*
C17	0.7105 (3)	-0.2324 (2)	0.13404 (14)	0.0456 (5)
C18	0.8883 (3)	-0.1695 (2)	0.17826 (16)	0.0543 (6)
C19	0.9316 (3)	-0.0503 (3)	0.23817 (18)	0.0665 (7)
H19	1.0497	-0.0068	0.2688	0.080*
C20	0.8014 (4)	0.0060 (3)	0.25359 (17)	0.0635 (7)
H20	0.8332	0.0868	0.2929	0.076*
C21	0.7780 (3)	-0.4032 (2)	0.03771 (16)	0.0545 (6)
C22	0.9744 (3)	-0.3217 (3)	0.06867 (19)	0.0696 (7)
H22A	1.0136	-0.2658	0.0296	0.083*
H22B	1.0429	-0.3787	0.0648	0.083*
C23	1.0195 (3)	-0.2375 (3)	0.1617 (2)	0.0714 (8)
H23A	1.0163	-0.2914	0.2025	0.086*
H23B	1.1414	-0.1731	0.1719	0.086*
C1A	1.0303 (3)	0.94180 (19)	0.48760 (16)	0.0439 (5)
O1A	0.9369 (2)	0.84251 (14)	0.51231 (14)	0.0642 (5)
H1A	0.976 (4)	0.779 (2)	0.503 (2)	0.099 (11)*
O2A	1.1549 (3)	0.94871 (19)	0.45082 (18)	0.0999 (8)
C1B	0.9590 (3)	0.55404 (18)	0.50263 (14)	0.0388 (5)
O1B	1.0421 (2)	0.64998 (13)	0.47545 (12)	0.0586 (5)
O2B	0.8173 (2)	0.53727 (14)	0.53253 (11)	0.0550 (4)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0512 (4)	0.0691 (4)	0.0832 (5)	0.0232 (3)	0.0261 (3)	0.0152 (3)
0.1043 (6)	0.0955 (6)	0.0942 (6)	0.0634 (5)	0.0522 (5)	0.0135 (4)
0.0576 (11)	0.0657 (11)	0.0818 (12)	0.0354 (9)	0.0097 (9)	-0.0075 (9)
0.0550 (10)	0.0633 (10)	0.0602 (10)	0.0296 (9)	0.0138 (8)	-0.0084 (8)
0.0358 (9)	0.0322 (9)	0.0416 (9)	0.0179 (8)	0.0122 (7)	0.0128 (7)
0.0422 (10)	0.0434 (10)	0.0400 (9)	0.0248 (8)	0.0048 (8)	0.0063 (7)
0.0419 (11)	0.0493 (11)	0.0594 (12)	0.0212 (10)	0.0059 (10)	0.0008 (9)
0.0396 (11)	0.0466 (12)	0.0424 (11)	0.0262 (10)	0.0057 (9)	0.0089 (9)
0.0436 (12)	0.0423 (11)	0.0446 (11)	0.0262 (10)	0.0096 (9)	0.0096 (9)
0.0498 (13)	0.0559 (14)	0.0471 (12)	0.0329 (11)	0.0016 (10)	0.0086 (10)
0.0556 (13)	0.0524 (13)	0.0472 (12)	0.0353 (11)	0.0099 (10)	0.0162 (10)
0.0482 (13)	0.0449 (12)	0.0422 (11)	0.0234 (11)	0.0091 (10)	0.0099 (9)
0.0521 (13)	0.0490 (13)	0.0484 (12)	0.0236 (11)	0.0133 (10)	0.0149 (10)
0.0760 (18)	0.0610 (15)	0.0486 (13)	0.0404 (14)	0.0243 (13)	0.0130 (12)
0.092 (2)	0.0558 (16)	0.0534 (15)	0.0339 (16)	0.0063 (15)	-0.0082 (12)
0.0643 (18)	0.0616 (17)	0.0717 (18)	0.0186 (14)	-0.0011 (14)	-0.0088 (13)
0.0527 (15)	0.0593 (15)	0.0577 (15)	0.0241 (12)	0.0035 (12)	-0.0012 (11)
0.0404 (11)	0.0310 (10)	0.0507 (12)	0.0155 (9)	0.0151 (9)	0.0113 (9)
0.0519 (13)	0.0368 (11)	0.0470 (12)	0.0198 (10)	0.0138 (10)	0.0096 (9)
0.0605 (15)	0.0380 (12)	0.0556 (14)	0.0187 (11)	0.0217 (12)	0.0100 (10)
0.0646 (16)	0.0531 (14)	0.0513 (14)	0.0269 (12)	0.0189 (12)	0.0100 (11)
	U^{11} 0.0512 (4) 0.1043 (6) 0.0576 (11) 0.0550 (10) 0.0358 (9) 0.0422 (10) 0.0419 (11) 0.0396 (11) 0.0436 (12) 0.0498 (13) 0.0556 (13) 0.0482 (13) 0.0556 (13) 0.0521 (13) 0.0760 (18) 0.092 (2) 0.0643 (18) 0.0527 (15) 0.0404 (11) 0.0519 (13) 0.0605 (15) 0.0646 (16)	U^{11} U^{22} 0.0512 (4) 0.0691 (4) 0.1043 (6) 0.0955 (6) 0.0576 (11) 0.0657 (11) 0.0550 (10) 0.0633 (10) 0.0358 (9) 0.0322 (9) 0.0422 (10) 0.0434 (10) 0.0419 (11) 0.0493 (11) 0.0396 (11) 0.0466 (12) 0.0436 (12) 0.0423 (11) 0.0498 (13) 0.0559 (14) 0.0556 (13) 0.0524 (13) 0.0482 (13) 0.0449 (12) 0.0521 (13) 0.0490 (13) 0.0760 (18) 0.0610 (15) 0.092 (2) 0.0558 (16) 0.0643 (18) 0.0616 (17) 0.0527 (15) 0.0593 (15) 0.0404 (11) 0.0310 (10) 0.0519 (13) 0.0368 (11) 0.0605 (15) 0.0380 (12) 0.0646 (16) 0.0531 (14)	U^{11} U^{22} U^{33} 0.0512 (4) 0.0691 (4) 0.0832 (5) 0.1043 (6) 0.0955 (6) 0.0942 (6) 0.0576 (11) 0.0657 (11) 0.0818 (12) 0.0550 (10) 0.0633 (10) 0.0602 (10) 0.0358 (9) 0.0322 (9) 0.0416 (9) 0.0422 (10) 0.0434 (10) 0.0400 (9) 0.0419 (11) 0.0493 (11) 0.0594 (12) 0.0396 (11) 0.0466 (12) 0.0424 (11) 0.0436 (12) 0.0423 (11) 0.0446 (11) 0.0498 (13) 0.0559 (14) 0.0471 (12) 0.0556 (13) 0.0524 (13) 0.0472 (12) 0.0482 (13) 0.0449 (12) 0.0484 (12) 0.0521 (13) 0.0490 (13) 0.0484 (12) 0.0760 (18) 0.0610 (15) 0.0486 (13) 0.092 (2) 0.0558 (16) 0.0534 (15) 0.0643 (18) 0.0616 (17) 0.0717 (18) 0.0527 (15) 0.0593 (15) 0.0577 (15) 0.0404 (11) 0.0310 (10) 0.0507 (12) 0.0519 (13) 0.0368 (11) 0.0470 (12) 0.0605 (15) 0.0380 (12) 0.0556 (14) 0.0646 (16) 0.0531 (14) 0.0513 (14)	U^{11} U^{22} U^{33} U^{12} $0.0512 (4)$ $0.0691 (4)$ $0.0832 (5)$ $0.0232 (3)$ $0.1043 (6)$ $0.0955 (6)$ $0.0942 (6)$ $0.0634 (5)$ $0.0576 (11)$ $0.0657 (11)$ $0.0818 (12)$ $0.0354 (9)$ $0.0550 (10)$ $0.0633 (10)$ $0.0602 (10)$ $0.0296 (9)$ $0.0358 (9)$ $0.0322 (9)$ $0.0416 (9)$ $0.0179 (8)$ $0.0422 (10)$ $0.0434 (10)$ $0.0400 (9)$ $0.0248 (8)$ $0.0419 (11)$ $0.0493 (11)$ $0.0594 (12)$ $0.0212 (10)$ $0.0396 (11)$ $0.0466 (12)$ $0.0424 (11)$ $0.0262 (10)$ $0.0436 (12)$ $0.0423 (11)$ $0.0446 (11)$ $0.0262 (10)$ $0.0498 (13)$ $0.0559 (14)$ $0.0471 (12)$ $0.0329 (11)$ $0.0556 (13)$ $0.0524 (13)$ $0.0472 (12)$ $0.0353 (11)$ $0.0482 (13)$ $0.0490 (13)$ $0.0484 (12)$ $0.0236 (11)$ $0.0521 (13)$ $0.0610 (15)$ $0.0486 (13)$ $0.0404 (14)$ $0.092 (2)$ $0.0558 (16)$ $0.0534 (15)$ $0.0339 (16)$ $0.0643 (18)$ $0.0616 (17)$ $0.0717 (18)$ $0.0186 (14)$ $0.0527 (15)$ $0.0593 (15)$ $0.0577 (15)$ $0.0241 (12)$ $0.0519 (13)$ $0.0368 (11)$ $0.0470 (12)$ $0.0198 (10)$ $0.0605 (15)$ $0.0380 (12)$ $0.0556 (14)$ $0.0187 (11)$ $0.0646 (16)$ $0.0531 (14)$ $0.0269 (12)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0512 (4)0.0691 (4)0.0832 (5)0.0232 (3)0.0261 (3)0.1043 (6)0.0955 (6)0.0942 (6)0.0634 (5)0.0522 (5)0.0576 (11)0.0657 (11)0.0818 (12)0.0354 (9)0.0097 (9)0.0550 (10)0.0633 (10)0.0602 (10)0.0296 (9)0.0138 (8)0.0358 (9)0.0322 (9)0.0416 (9)0.0179 (8)0.0122 (7)0.0422 (10)0.0434 (10)0.0400 (9)0.0248 (8)0.0048 (8)0.0419 (11)0.0493 (11)0.0594 (12)0.0212 (10)0.0057 (9)0.0436 (12)0.0423 (11)0.0424 (11)0.0262 (10)0.0057 (9)0.0436 (12)0.0423 (11)0.0471 (12)0.0329 (11)0.0016 (10)0.0556 (13)0.0524 (13)0.0472 (12)0.0353 (11)0.0099 (10)0.0556 (13)0.0524 (13)0.0472 (12)0.0353 (11)0.0099 (10)0.0551 (13)0.0490 (13)0.0484 (12)0.0236 (11)0.0133 (10)0.0760 (18)0.0610 (15)0.0486 (13)0.0404 (14)0.0243 (13)0.092 (2)0.0558 (16)0.0534 (15)0.0339 (16)0.0063 (15)0.0643 (18)0.0616 (17)0.0777 (15)0.0241 (12)0.0035 (12)0.0404 (11)0.0310 (10)0.0507 (12)0.0155 (9)0.0151 (9)0.0519 (13)0.0368 (11)0.0470 (12)0.0198 (10)0.0138 (10)0.0605 (15)0.0380 (12)0.0556 (14)0.0187 (11)0.0217 (12)0

Acta Cryst. (2013). C69, 186-190

C15	0.0442 (13)	0.0518 (13)	0.0489 (13)	0.0145 (11)	0.0135 (10)	0.0038 (10)
C16	0.0410 (12)	0.0523 (13)	0.0453 (12)	0.0172 (10)	0.0107 (10)	0.0044 (10)
C17	0.0478 (13)	0.0458 (12)	0.0409 (12)	0.0177 (11)	0.0064 (10)	0.0058 (9)
C18	0.0421 (13)	0.0564 (14)	0.0598 (14)	0.0154 (11)	0.0073 (11)	0.0100 (11)
C19	0.0422 (14)	0.0678 (17)	0.0682 (17)	0.0075 (13)	-0.0001 (12)	-0.0023 (13)
C20	0.0578 (16)	0.0569 (15)	0.0650 (16)	0.0162 (13)	0.0170 (13)	-0.0027 (12)
C21	0.0509 (14)	0.0568 (15)	0.0621 (15)	0.0294 (12)	0.0118 (12)	0.0109 (12)
C22	0.0489 (15)	0.0772 (18)	0.091 (2)	0.0356 (14)	0.0186 (14)	0.0141 (15)
C23	0.0435 (14)	0.0716 (17)	0.098 (2)	0.0260 (13)	0.0051 (14)	0.0135 (16)
C1A	0.0302 (10)	0.0331 (11)	0.0743 (15)	0.0154 (9)	0.0122 (10)	0.0186 (10)
O1A	0.0530 (10)	0.0318 (8)	0.1244 (16)	0.0217 (8)	0.0391 (10)	0.0339 (9)
O2A	0.0898 (14)	0.0666 (12)	0.200 (3)	0.0566 (11)	0.0992 (16)	0.0747 (14)
C1B	0.0319 (10)	0.0292 (10)	0.0599 (13)	0.0146 (9)	0.0116 (10)	0.0137 (9)
O1B	0.0490 (9)	0.0370 (8)	0.1116 (14)	0.0253 (7)	0.0367 (9)	0.0386 (9)
O2B	0.0483 (9)	0.0413 (8)	0.0963 (13)	0.0279 (7)	0.0361 (9)	0.0322 (8)

Geometric parameters (Å, °)

Cl1—C6	1.730 (2)	C11—C12	1.504 (3)
Cl2—C7	1.731 (3)	C11—H11A	0.9700
O1—C21	1.231 (3)	C11—H11B	0.9700
O2—C15	1.388 (3)	C12—C13	1.522 (3)
O2—C14	1.428 (3)	C12—H12A	0.9700
N1-C4	1.489 (3)	C12—H12B	0.9700
N1-C11	1.493 (2)	C13—C14	1.500 (3)
N1—C1	1.493 (2)	C13—H13A	0.9700
N1—H1N	0.848 (9)	C13—H13B	0.9700
N2—C5	1.414 (3)	C14—H14A	0.9700
N2-C3	1.464 (2)	C14—H14B	0.9700
N2-C2	1.467 (2)	C15—C20	1.372 (3)
N3—C21	1.354 (3)	C15—C16	1.379 (3)
N3—C17	1.405 (3)	C16—C17	1.383 (3)
N3—H3N	0.862 (10)	C16—H16	0.9300
C1—C2	1.504 (3)	C17—C18	1.388 (3)
C1—H1B	0.9700	C18—C19	1.388 (3)
C1—H1C	0.9700	C18—C23	1.503 (3)
C2—H2A	0.9700	C19—C20	1.402 (4)
C2—H2B	0.9700	C19—H19	0.9300
C3—C4	1.518 (3)	C20—H20	0.9300
С3—НЗА	0.9700	C21—C22	1.493 (3)
С3—Н3В	0.9700	C22—C23	1.516 (4)
C4—H4A	0.9700	C22—H22A	0.9700
C4—H4B	0.9700	C22—H22B	0.9700
C5—C10	1.395 (3)	C23—H23A	0.9700
С5—С6	1.404 (3)	C23—H23B	0.9700
С6—С7	1.381 (3)	C1A—O2A	1.186 (3)
С7—С8	1.369 (4)	C1A—O1A	1.277 (2)
С8—С9	1.381 (4)	C1A—C1A ⁱ	1.536 (4)
С8—Н8	0.9300	O1A—H1A	0.858 (10)
C9—C10	1.370 (3)	C1B—O2B	1.235 (2)

С9—Н9	0.9300	C1B—O1B	1.246 (2)
С10—Н10	0.9300	C1B—C1B ⁱⁱ	1.557 (4)
			()
C15—O2—C14	118.99 (18)	H11A—C11—H11B	107.9
C4—N1—C11	112.11 (14)	C11—C12—C13	111.76 (16)
C4—N1—C1	109.18 (15)	C11—C12—H12A	109.3
C11—N1—C1	112.60 (15)	C13—C12—H12A	109.3
C4—N1—H1N	108.5 (15)	C11—C12—H12B	109.3
C11—N1—H1N	110.5 (16)	C13—C12—H12B	109.3
C1—N1—H1N	103.5 (16)	H12A—C12—H12B	107.9
C5—N2—C3	115.85 (16)	C14—C13—C12	110.97 (17)
C5—N2—C2	112.34 (15)	C14—C13—H13A	109.4
C3—N2—C2	109.44 (15)	C12—C13—H13A	109.4
$C_{21} = N_{3} = C_{17}$	1247(2)	C14—C13—H13B	109.4
C_{21} N_{3} H_{3N}	121.7(2)	C12—C13—H13B	109.1
C17 N3 H3N	1121(2) 114(2)	$H_{13}A = C_{13} = H_{13}B$	108.0
N1 - C1 - C2	119(2) 110.49(16)	$0^{2}-C^{14}-C^{13}$	112.98 (18)
NI CI HIB	100.6	$O_2 = C_1 4 = C_{13}$	100.0
$C_2 C_1 H_1 B$	109.0	$C_1^2 = C_1^4 = H_1^4 A$	109.0
N1 C1 H1C	109.6	C13 - C14 - H14R	109.0
$C_2 = C_1 = H_1 C_2$	109.0	$C_1^2 = C_1^4 = H_1^4 D$	109.0
	109.0	$U_{13} = C_{14} = H_{14D}$	109.0
ND C2 C1	100.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0
$N_2 = C_2 = C_1$	110.14 (15)	$C_{20} = C_{15} = C_{16}$	120.3(2)
$N_2 - C_2 - H_2 A$	109.6	$C_{20} = C_{15} = 0_2$	125.5 (2)
C1 - C2 - H2A	109.6	C16-C15-O2	114.16 (19)
N2—C2—H2B	109.6		120.3 (2)
CI-C2-H2B	109.6	C15—C16—H16	119.8
H2A—C2—H2B	108.1	C17—C16—H16	119.8
N2—C3—C4	109.74 (17)	C16—C17—C18	121.0 (2)
N2—C3—H3A	109.7	C16—C17—N3	119.0 (2)
C4—C3—H3A	109.7	C18—C17—N3	120.0 (2)
N2—C3—H3B	109.7	C19—C18—C17	117.8 (2)
C4—C3—H3B	109.7	C19—C18—C23	124.0 (2)
НЗА—СЗ—НЗВ	108.2	C17—C18—C23	118.1 (2)
N1—C4—C3	110.95 (16)	C18—C19—C20	121.5 (2)
N1—C4—H4A	109.4	C18—C19—H19	119.2
C3—C4—H4A	109.4	C20—C19—H19	119.2
N1—C4—H4B	109.4	C15—C20—C19	119.0 (2)
C3—C4—H4B	109.4	С15—С20—Н20	120.5
H4A—C4—H4B	108.0	С19—С20—Н20	120.5
C10—C5—C6	116.9 (2)	O1—C21—N3	120.7 (2)
C10—C5—N2	123.28 (19)	O1—C21—C22	123.3 (2)
C6—C5—N2	119.78 (19)	N3—C21—C22	115.9 (2)
C7—C6—C5	120.7 (2)	C21—C22—C23	114.5 (2)
C7—C6—C11	119.64 (19)	C21—C22—H22A	108.6
C5—C6—Cl1	119.63 (17)	C23—C22—H22A	108.6
C8—C7—C6	121.2 (2)	C21—C22—H22B	108.6
C8—C7—Cl2	118.48 (19)	C23—C22—H22B	108.6
C6—C7—Cl2	120.3 (2)	H22A—C22—H22B	107.6

С7—С8—С9	118.6 (2)	C18—C23—C22	111.5 (2)	
С7—С8—Н8	120.7	C18—C23—H23A	109.3	
С9—С8—Н8	120.7	C22—C23—H23A	109.3	
C10—C9—C8	121.0 (3)	C18—C23—H23B	109.3	
С10—С9—Н9	119.5	C22—C23—H23B	109.3	
С8—С9—Н9	119.5	H23A—C23—H23B	108.0	
C9—C10—C5	121.5 (2)	O2A—C1A—O1A	125.28 (19)	
С9—С10—Н10	119.3	O2A—C1A—C1A ⁱ	121.3 (2)	
С5—С10—Н10	119.3	O1A—C1A—C1A ⁱ	113.4 (2)	
N1—C11—C12	112.24 (14)	C1A—O1A—H1A	114 (2)	
N1—C11—H11A	109.2	O2B—C1B—O1B	125.62 (17)	
C12—C11—H11A	109.2	O2B-C1B-C1B ⁱⁱ	117.6 (2)	
N1—C11—H11B	109.2	O1B—C1B—C1B ⁱⁱ	116.7 (2)	
C12—C11—H11B	109.2			

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2 <i>B</i> ···Cl1	0.97	2.62	3.224 (2)	120
01 <i>A</i> —H1 <i>A</i> ···O1 <i>B</i>	0.86(1)	1.71 (1)	2.561 (2)	174 (3)
N3—H3 <i>N</i> ···O1 ⁱⁱⁱ	0.86(1)	2.01 (1)	2.866 (3)	173 (3)
N1—H1 <i>N</i> ···O2 <i>B</i>	0.85(1)	1.90 (1)	2.730 (2)	164 (2)
$C1$ — $H1C$ ··· $O2B^{iv}$	0.97	2.49	3.272 (2)	137
C2—H2 <i>A</i> ···O2 <i>B</i>	0.97	2.48	3.197 (3)	131
C11—H11 <i>B</i> ···O2 <i>A</i> ⁱⁱ	0.97	2.41	3.368 (3)	171
C13—H13 <i>B</i> ···O2 <i>A</i> ^v	0.97	2.43	3.262 (3)	143

Symmetry codes: (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y-1, -z; (iv) -x+1, -y+1, -z+1; (v) x-1, y-1, z.

Table 1.	Comparison of	f selected	torsion angles	$(^{\circ})$	for (I),	(II)	and ((III))
	1	/		\ <i>/ ./</i>		\ /	1	. /	

Torsion angle	(I) (this work)	(II) (Freire et al., 2012a)	(III) (Freire <i>et al.</i> , 2012 <i>b</i>)
C2—N2—C5—C6	74.3 (2)	161.37 (17)	160.4 (2)
C2—N2—C5—C10	-104.9 (2)	-15.3 (2)	-15.5 (4)
C3—N2—C5—C6	-158.83 (19)	-67.8 (2)	-66.6 (3)
C3—N2—C5—C10	21.9 (3)	115.59 (17)	117.6 (2)
C1—N1—C11—C12	69.2 (2)	152.38 (14)	157.6 (2)
C4—N1—C11—C12	-167.23 (19)	-84.54 (17)	-79.0 (3)
N1-C11-C12-C13	163.53 (19)	-169.64 (14)	-172.7 (2)
C11—C12—C13—C14	-170.8 (2)	-69.0 (2)	-71.0 (3)
C15—O2—C14—C13	-77.1 (3)	-172.12 (14)	-167.47 (19)