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Abstract

The purpose of this work is to rewrite the generating functional of φ4 theory for the n = 0 and n = 4
correlation functions as the inner product of a state with an observable, as we did in a previous work, for the two-
points correlation function. The observables are defined through the external sources and the states are defined
through the correlation function itself. In this sense, the divergences of Quantum Field Theory (QFT) appear in
the reduced state by taking the partial trace of the state with respect to the internal vertices that appear in the
perturbation expansion. From this viewpoint, the renormalization can be substituted by applying a projector on
the internal quantum state. The advantage of this new insight is that we can obtain finite contributions to the
correlation functions without introducing counterterms in the Lagrangian or by manipulating complex divergent
quantities.

1 Introduction

This paper, as its predecessor, develops the perturbation expansion of any correlation function in terms of the
mean values of some observables in particular states as we did in [1].1 In fact, our formalism produce unphysical

infinities in the form of [δ(0)]
k
that will be represented in a dimensional regularization scheme by the poles 1

ǫk
,

where ǫ = d− 4 and d is the space-time dimension.2 These infinities arise because the quantum state associated to
the internal vertices of the perturbation expansion has a diagonal part in the coordinate basis. In [1] we have shown
that we can simply disregard these unphysical infinities applying a projection operator on the quantum states. The
finite results found coincide with those of the usual renormalized QFT in several models (and we will present more
coincidences in this and forthcoming papers). In this sense, it seems that throwing away the unphysical infinities
due to the short-distance behavior through the projector is, after all, a good method. These ideas agree with those
introduced in [3] (vol. 1, page 499): QFT yields divergent integrals “but these infinities cancel when we express
all the parameters of the theory in renormalized quantities, such as the masses and the charges that we actually
measure”. Moreover, it also coincides with [4], since we believe that the process of subtracting infinities is really a
matter of subtracting the irrelevant effect of the “perhaps poorly understood physics at high energy or short scale
to obtain the meaningful physics at the scales actually studied in the laboratory” ([4], page 254). In this sense, the
constraining is done by neglecting the physics of high energy or short scale.

1.1 List of sections

The paper is organized as follows:
In section 2 we will explicitly show how to define the observables and states in a general way and the projection

procedure.
In section 3 we will show how to describe the n = 0 correlation function in φ4 theory using the observables and

states.
In section 4 we show in a similar way how to handle the observable-state model for the n = 4 correlation function.

In particular, we show how the renormalization group of the coupling constant arises.

1This idea has been called ”the observable-state model”.
2The equivalence between δ(0) and 1

ǫ
can be found in Quantum Field Theory textbooks, like [2], page 352, below eq.(11.55). In

appendix A we show how to obtain this equivalence in a formal way.
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In section 5 we show how to obtain the renormalization group equations for the mass and the coupling constant
using the finite contribution of the correlation function obtained by application of the projector on the quantum
state.

In section 6 we briefly discuss the conceptual meaning of the reduced state and partial traces and its relation
with the non-physical virtual particles and we introduce some general ideas of the observable-state model.

In section 7 we present the conclusions.
The appendix A shows the relation between the Dirac delta and the pole parameter representation of the

dimensional regularization. The appendix B shows how to obtain the relation between the vacuum energy and the
space volume. Finally, in appendix C we analyze the properties of the projector that gives the finite contribution
in each correlation function.

2 Observables and states in quantum field theory: the main idea

Let us recall the main idea of the observable-state model of paper [1], that can be considered as the first part
of this paper, and that will be used in this section. The starting point is some (symmetric) n-point functions
τ (n)(x1, ..., xn) (like Feynman or Euclidean functions), and its corresponding generating functional ([5], eq. (II.2.21),
[6], eq. (3.2.11)). Then, the main equation reads:

iZ [J ] =
∞∑

n=0

∞∑

p=0

in

n!

ip

p!

∫ 〈
Ω0

∣∣Tφ0(x1)...φ0(xn)L
0
I(y1)...L

0
I(yp)

∣∣Ω0

〉
J(x1)...J(xn)

n∏

i=1

d4xi

p∏

i=1

d4yi (1)

where yi are the internal vertices of the perturbation expansion and L0
I(yp) is the Lagrangian interaction density

(see eq.(II.2.33) of [5]).
This last equation will be our starting point, we will write Z[J ] as an mean value of an observable defined through

the J(xn) sources in a quantum state defined by the correlation function
〈
Ω0

∣∣Tφ(x1)...φ(xn)L
0
I(y1)...L

0
I(yp)

∣∣Ω0

〉
.3

This procedure will be done for each correlation function of n external points.
Using dimensional regularization (see [8]) we can write the one-particle irreducible contribution to the correlation

function such that (see [9] for φ4 theory):

∫ 〈
Ω0

∣∣Tφ(x1)...φ(xn)L
0
I(y1)...L

0
I(yp)

∣∣Ω0

〉 p∏

i=1

d4yi = f
(n)
0 (x1, ..., xn)

+∞∑

l=−L(n,p)

β
(n,p)
l (m2

0, µ)ǫ
l (2)

where f
(n)
0 is some function of the external points, β

(n,p)
l (m2

0, µ) are some coefficients of the dimensional regulariza-
tion that depends on the external momentum, the mass factor µ used to keep the coupling constant dimensionless
and the mass of the field m0. The parameter ǫ is ǫ = d − 4, where d is the dimension of space-time. The sum
in l starts at −L(n, p) where L(n, p) is the number of loops at order p in the correlation functions of n external

points (see Appendix A, eq.(A6) of [1]). The functions f
(n)
0 and L(n, p) are very simple in the case of φ4 theory, for

example

• n=0

f
(0)
0 = 1 , L(0, p) = p+ 1 (3)

• n=2

f
(2)
0 =

∫
d4p

(2π)4
e−ip(x1−x2)

(p2 −m2
0)

2
, L(2, p) = p (4)

• n=4

f
(4)
0 =

∫
d4p

(2π)4
e−ip(x1−x4)

p2 −m2
0

∫
d4q

(2π)4
e−iq(x2−x4)

q2 −m2
0

∫
d4l

(2π)4
e−il(x3−x4)

(l2 −m2
0)((p + q + l)2 −m2

0)
, L(4, p) = p− 1 (5)

3In some sense, these observables will be the particle detector (see [7], page 6, below eq.(2.6)).
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In general

f
(n)
0 =

n∏

i=1

∫
d4pi

(2π)4
e−ipixi

p2i −m2
0

δ(
n∑

j=1

p2j), L(n, p) = p−
n

2
+ 1 (6)

Inserting eq.(2) in eq.(1) we obtain4

iZ [J ] =
∞∑

n=0

∞∑

p=0

in

n!

ip

p!

0∑

l=−L(n,p)

β
(n,p)
l ǫl

∫
f
(n)
0 (x1, ..., xn)J(x1)...J(xn)

n∏

i=1

d4xi (7)

The observable-state model consist in the assumption that the generating functional of last equation can be rewritten
as a mean value of the following observable

O(n,p) = O
(n)
ext ⊗ I

(p)
int (8)

in the following quantum state

ρ(n,p) = ρ
(n)
ext ⊗ ρ

(n,p)
int (9)

where O
(n)
ext is some observable that acts on the external coordinates xi and I

(p)
int is the identity operator that acts on

the internal vertices due to the perturbation expansion. In a similar way, ρ
(n)
ext is the quantum state of the external

part and ρ
(n,p)
int is the quantum state of the internal part.

Then, the mean value of O(n,p) in ρ(n,p) reads

Tr(ρ(n,p)O(n,p)) = Tr(ρ
(n)
extO

(n)
ext)Tr(ρ

(n,p)
int ) (10)

Using last equation, the generating functional of eq.(7) can be written as

iZ [J ] =

∞∑

n=0

∞∑

p=0

in

n!

ip

p!
Tr(ρ(n,p)O(n,p)) =

∞∑

n=0

∞∑

p=0

in

n!

ip

p!
Tr(ρ

(n,p)
int )Tr(ρ

(n)
extO

(n)
ext) (11)

where

ρ
(n)
ext =

∫
f
(n)
0 (x1, ..., xn)

∣∣x1, ..., xn
2

〉 〈
xn

2
+1, ..., xn

∣∣
n∏

i=1

d4xi (12)

and

O
(n)
ext =

∫
J(x1)...J(xn)

∣∣x1, ..., xn
2

〉 〈
xn

2
+1, ..., xn

∣∣
n∏

i=1

d4xi (13)

In turn

Tr(ρ
(n,p)
int ) =

+∞∑

l=−L(n,p)

β
(n,p)
l ǫl (14)

which implies that the divergences of the quantum field theory are the consequence of taking the trace of the internal

quantum state ρ
(n,p)
int . This point is relevant; because the trace of an operator is an invariant quantity, this means

that it is the same in different basis. This implies that if we want to obtain a finite contribution β
(n,p)
0 , we must

apply a non-unitary transformation on ρ
(n,p)
int that changes its trace, i.e., we must project to another ρint.

2.1 Internal quantum state

To define the internal quantum state we will just recall some considerations (see Section VI in [1]): the algebra of
observables O is represented by ∗−algebra A of self-adjoint elements and states are represented by functionals on
O, that is, by elements of the dual space O′, ρ ∈ O′. We will construct a C∗−algebra of operators defined in terms
of elements with the property Tr(A∗A) < ∞. As it is well known, a C∗−algebra can be represented in a Hilbert
space H (GNS theorem)5 and, in this particular case O = O′; therefore O and O′ are represented by H⊗H that
will be called N , the Liouville space.

4The infinite sum in the l index in eq.(2) can be truncated in l = 0, because the remaining terms are proportional to ǫl and the final
result must be computed by taking the ǫ → 0 limit. In this sense, what concern us is the principal part plus the constant term of the
Laurent serie with poles d− 4.

5Gelfand, Naimark and Segal [10].
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As we are interested in the diagonal and non-diagonal elements of a matrix state we can define a sub algebra of
N , that can be called a van Hove algebra [11] since such a structure appears in his work as:

Nvh= NS ⊕NR ⊂ N (15)

where the vector space NR is the space of operators with O(x) = 0 and O(x, x′) is a regular function. Moreover
O = N vhS is the space of selfadjoint operators of Nvh, which can be constructed in such a way it could be dense in
NS (because any distribution can be approximated by regular functions) (for the details see [1], Section II.B and
Section VI). Therefore essentially the introduced restriction is the minimal possible coarse-graining. Now the ⊕ is a
direct sum because NS contains the factor δ(x− x′) and NR contains just regular functions and a kernel cannot be
both a δ and a regular function. Moreover, as our observables must be self-adjoint, the space of observables must
be

O = N vhS= N S ⊕NR ⊂ N (16)

The states must be considered as linear functionals over the space O (O′ the dual of space O):

O′= N ′

vhS= N ′

S ⊕N ′

R ⊂ N ′ (17)

The set of these generalized states is the convex set S ⊂ O′.
Having this in mind, we can define the internal quantum state in the following way

ρ
(n,p)
int =

∫ L(n,p)∏

i=1

(
ρ
(n,p,i)
D (yi)δ(yi − wi) + ρ

(n,p,i)
ND (yi, wi)

)
(18)

∣∣y1, ..., yL(n,p)

〉 〈
w1, .., wL(n,p)

∣∣
L(n,p)∏

i=1

d4yid
4wi

The trace reads (see Appendix B, eq.(106)):

Tr(ρ
(n,p)
int ) =

L(n,p)∏

i=1

(
ρ
(n,p,i)
D

πǫ
+ ρ

(n,p,i)
ND

)
(19)

where

ρ
(n,p,i)
D =

∫
ρ
(n,p,i)
D (yi)d

4yi ρ
(n,p,i)
ND =

∫
ρ
(n,p,i)
ND (yi, yi)d

4yi (20)

We can see from last equation that ρ
(n,p,i)
D and ρ

(n,p,i)
ND are merely normalization factors. Eq.(19) can be written as

Tr(ρ
(n,p)
int ) =

0∑

l=−L(n,p)

γ
(n,p)
l ǫl (21)

where

γ
(n,p)
0 =

L(n,p)∏

i=1

ρ
(n,p,i)
ND , ... , γ

(n,p)
L(n,p) =

1

πL(n,p)

L(n,p)∏

i=1

ρ
(n,p,i)
D (22)

All the terms γ
(n,p)
l with l > 0 that are multiplied by ǫl contain at least one ρ

(n,p,i)
D , that is, the diagonal part

of the state of the i̇−internal quantum system. In particular, we can make the following equality

β
(n,p)
l = γ

(n,p)
l (23)

In this sense, the coefficients obtained by the dimensional regularization can be associated with the products
of the diagonal and non-diagonal parts of the internal quantum state. In particular, the coefficient that is not

multiplied by a ǫ is γ
(n,p)
0 which depends exclusively on the non-diagonal quantum state.
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2.2 Projection over the finite contribution

As we saw in eq.(21) and eq.(22), the finite result exclusively depends on the non-diagonal quantum state, so we
can construct a projector that projects over the non-diagonal quantum state. This projector reads6

Πp(ρ
(n,p)
int ) = ρ

(n,p)
int −

∫
ρ
(n,p,1)
D (y1)ρ

(n,p,2)
D (y2)...ρ

(n,p,L(n,p))
D (yL(n,p))

∣∣y1, ..., yL(n,p)

〉 〈
y1, .., yL(n,p)

∣∣
L(n,p)∏

i=1

d4yi (24)

+

∫
ρ
(n,p,1)
D (y1)ρ

(n,p,2)
D (y2)...ρ

(n,p,L(n,p)−1)
D (yL(n,p)−1)ρ

(n,p,L(n,p))
ND (yL(n,p), wL(n,p))

∣∣y1, ..., yL(n,p)

〉 〈
y1, .., wL(n,p)

∣∣ d4wL(n,p)

L(n,p)−1∏

i=1

d4yi + ...+

∫
ρ
(n,p,1)
D (y1)ρ

(n,p,2)
ND (y2, w2)...ρ

(n,p,L(n,p))
ND (yL(n,p), wL(n,p))

∣∣y1, ..., yL(n,p)

〉 〈
y1, .., wL(n,p)

∣∣ d4y1
L(n,p)∏

i=2

d4yid
4wi)

The projection procedure consists in the subtraction of the part of the state that contains at least one internal
diagonal quantum state. This projector acting on the state ρ(n,p) yields

Πp(ρ
(n,p)
int ) =

∫ L(n,p)∏

i=1

ρ
(n,p,i)
ND (yi, wi)

∣∣y1, ..., yL(n,p)

〉 〈
w1, .., wL(n,p)

∣∣
L(n,p)∏

i=1

d4yid
4wi (25)

Then, using the equivalence of eq.(23), the mean value of O(n,p) in the state Πp(ρ
(n,p)) reads:

Tr(Πp(ρ
(n,p))O(n,p)) = β

(n,p)
0

∫
f
(n)
0 (x1, ..., xn)O

(n)
ext (x1, ..., xn)

n∏

i=1

d4xi (26)

where O
(n)
ext (x1, ..., xn) = J(x1)...J(xn) (see eq.(13)). Multiplying by ip

p! and summing in p we obtain7

Tr(ρ(n)O
(n)
ext) =

+∞∑

p=0

ip

p!
Tr(Πp(ρ

(n,p))O(n,p)) =
+∞∑

p=0

ip

p!
β
(n,p)
0

∫
f
(n)
0 (x1, ..., xn)O

(n)
ext (x1, ..., xn)

n∏

i=1

d4xi (27)

where

ρ(n) =

(
+∞∑

p=0

ip

p!
β
(n,p)
0

)
ρ
(n)
ext (28)

where ip

p!β
(n,p)
0 is the coefficient of the quantum state ρ

(n)
ext.

In this way, we can eliminate all the divergences of the observable-state model by the application of the projector
over a well defined Hilbert subspace. This formalism has been applied to the two-point correlation function for φ4

theory (see [1]) and the idea of this work is to apply it to n = 0 and n = 4 correlation function of external points.
In appendix C we briefly show the relation between the projector and the R−operation of the BPHZ subtraction
method in QFT.

3 Examples: φ4 theory, n = 0

In this section we will briefly study the vacuum amplitude for the φ4 theory. When there are interactions, the
vacuum amplitude reads (see [12], page 87):

〈Ω|Ω〉 =
(
|〈Ω0|Ω〉|

2
e−iE02T

)
−1
〈
Ω0

∣∣∣∣∣∣
exp(−i

T∫

−T

dtHI(t))

∣∣∣∣∣∣
Ω0

〉
(29)

6Is not difficult to show that it is a projector: linearity implies that Π(a + b) = Π(a) + Π(b), then, if Π(a) = a − G, then,
Π2(a) = Π(a −G) = Π(a) − Π(G), but Π(G) = G−G = 0, then Π2(a) = Π(a).

7The factor ip

p!
is introduced for later convenience, but its meaning could be that in the observable-state model, the quantum state

is invariant under an exchange of internal vertices.
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where |Ω〉 is the vacuum vector for the interacting theory, |Ω0〉 is the vacuum vector for the free theory, E0 =
〈Ω |H |Ω〉 is the energy of the vacuum state of the interacting theory, H is the full Hamiltonian H = H0+HI where
HI is the interacting Hamiltonian and 2T is the time interval where the process occurs. The brackets in eq.(29)
can be written in terms of the perturbation expansion in the coupling constant λ0:

〈
Ω0

∣∣∣∣∣∣
exp(−i

T∫

−T

dtHI(t))

∣∣∣∣∣∣
Ω0

〉
= 1 + (−iλ0)

∫
d4y1

〈
Ω0

∣∣φ4(y1)
∣∣Ω0

〉
+ (30)

(−iλ0)
2
∫

d4y1d
4y2
〈
Ω0

∣∣φ4(y1)φ
4(y2)

∣∣Ω0

〉
+ ...+ (−iλ0)

p

∫
d4y1...d

4yp
〈
Ω0

∣∣φ4(y1)...φ
4(yp)

∣∣Ω0

〉
+ ...

The structure of the vacuum amplitude in terms of the perturbation expansion can be obtained, to do so we will
consider the first order in the perturbation expansion. We just recall that we will compute the connected diagrams
and not the products of them.

The first order p = 1 reads:

(−iλ0)

∫
d4y1

〈
Ω0

∣∣φ4(y1)
∣∣Ω0

〉
= iλ0 [∆(0)]2

∫
d4y1 = iλ0 [∆(0)]2 2TV (31)

where V is the volume of space and ∆(0) is the Feynman propagator of a scalar field. Using dimensional regular-
ization, eq.(31) reads

(−iλ0)

∫
d4y1

〈
Ω0

∣∣φ4(y1)
∣∣Ω0

〉
= iλ02TV

(
β
(0,1)
2

ǫ2
+

β
(0,1)
1

ǫ
+ β

(0,1)
0

)
(32)

where the coefficients β
(0,1)
i are some constants that can be obtained from the regularized propagator ∆(0) and

depends on a mass factor µ that is introduced to keep the coupling constant dimensionless, this is, we must replace
λ0 by λ0 (µ

−ǫ).8 The first superscript 0 in β refers to the number of external points and the second superscript 1
refers to the order in the perturbation expansion. The subscript refers to the power of the ǫ = d− 4 factor, where

d is the dimension of space-time. Using eq. (A.44) of Appendix A.4 of [12], page 807), the coefficients β
(0,1)
k reads

β
(0,1)
2 =

m4
0

64π4
(33)

β
(0,1)
1 =

m4
0

64π4

(
γ − 1 + ln

(
m2

0

4πµ

))

β
(0,1)
0 =

m4
0

24 · 64π4

(
18− 24γ + 12γ2 + π2 + 12

(
ln2(m2

0)− ln2(4π) + ln2(µ)
)
+ 24(1− γ + ln(4π)) ln(

4πµ

m2
0

)

)

The second order p = 2 in the perturbation expansion has three terms, where two of them are connected:

(−iλ0)
2
∫

d4y1d
4y2
〈
Ω0

∣∣φ4(y1)φ
4(y2)

∣∣Ω0

〉
= (−iλ0)

2
[∆(0)]

2
∫

d4y1d
4y2 [∆(y1 − y2)]

2
(34)

+ (−iλ0)
2
∫

d4y1d
4y2 [∆(y1 − y2]

4

It can be shown that the following orders for the connected Feynman diagrams in the perturbation expansion
can be accommodated following eq. (32):9

(−iλ0)
p

∫
d4y1...d

4yp
〈
Ω0

∣∣φ4(y1)...φ
4(yp)

∣∣Ω0

〉
=

p+1∑

j=0

(−iλ0)
p
i2p(2TV )

β
(0,p)
j

ǫj
(35)

8Is not difficult to show that the coupling constant has dimension [λ0] =mass4−d where d is the dimension of space-time (see [12],
page 322). Then, the mass factor µ−(4−d) multiplied to λ0 mantains the new coupling constant dimensionless. A dimensionless coupling
constant is necessary because it is the parameter we use to apply the perturbation expansion.

9The general solution showed in eq.(35) can be traced to general results which appears in the dimensional regularization scheme
((see [9], page 103-130 and [13], page 686)).
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where i2p comes from 2p propagators that can be obtain from the vacuum expectation values of the 4p quantum fields.
If we want to compute eq.(29) we must consider the non-connected Feynman diagrams that can be constructed by
multiplying the connected ones. For example, for the second order p = 2 we can obtain the non-connected Feynman
diagram by multiplying by itself the first order p = 1. This procedure can be done for all the orders, in particular,
to obtain the non-connected Feynman diagrams at order p we must multiply all the lowest orders where the sum of
them gives p. If we call the result of eq.(35) as f(p), then, the sum of the connected diagrams and the non-connected
diagrams reads

+∞∑

k=0

1

k!

(
+∞∑

p=1

f(p)

)k

= f(1) + f(2) + ...+ f(p) + ...+
1

2!
(f(1) + f(2) + ...) (f(1) + f(2) + ...) + ... (36)

the factor 1
k! is introduced to avoid double counting, for example f(i)f(j) and f(j)f(i). With this result, we can

proceed to evaluate eq.(29):

|〈Ω0|Ω〉|
2
e−iE02T =

+∞∑

k=0

1

k!




+∞∑

p=1

p+1∑

j=0

(−iλ0)
p
i2p(2TV )

β
(0,p)
j

ǫj




k

(37)

where we have put 〈Ω|Ω〉 = 1 and we have introduced the result of eq.(35) in f(p). The projection procedure will
be given by only keeping the j = 0 term in eq. (37) as we will show in the following section. We then have:

|〈Ω0|Ω〉|
2
e−iE02T =

+∞∑

k=0

(2TV )k

k!

(
+∞∑

p=1

(−iλ0)
p
i2pβ

(0,p)
0

)k

(38)

In Appendix A we show how to obtain the relation between the vacuum energy E0 and the volume of space
V in a formal way. This result has no direct relation with the aim of this work, but is a contribution to the
observable-state model.

3.1 The observable-state model for n = 0 in φ4

Now we can apply this mathematical structure to the case of vacuum bubbles in φ4 theory, where we can use eq.(18)
in the case n = 0, then:

ρ(0,p) = ρ
(0,p)
int =

∫ p+1∏

i=1

(ρ
(0,p,i)
D (yi)δ(yi − wi) + ρ

(0,p,i)
ND (yi, wi)) |y1, ..., yp+1〉 〈w1, ..., wp+1|

p+1∏

i=1

d4yid
4wi (39)

where ρ
(0,p,i)
D and ρ

(0,p,i)
ND are some regular functions. The trace Tr(ρ

(0,p)
int ) reads

Tr(ρ
(0,p)
int ) =

0∑

l=−(p+1)

γ
(0,p)
l ǫl (40)

where in particular

γ
(0,p)
0 =

p+1∏

i=1

ρ
(0,p,i)
ND , ... , γ

(0,p)
p+1 =

1

πp+1

p+1∏

i=1

ρ
(0,p,i)
D (41)

and the remaining coefficients γ
(0,p)
l with p+ 1 > l > 1 contains at least one ρD.

Comparing eq.(41) with eq.(35) we can see that the coefficients γ
(0,p)
l read

γ
(0,p)
l = (−iλ0)

p
i2p(2TV )β

(0,p)
l (42)

In the first order in the perturbation expansion, using eq.(40) and eq.(41) we have

2∑

l=0

γ
(0,p)
l ǫl = γ

(0,2)
0 + γ

(0,2)
1 ǫ−1 + γ

(0,2)
2 ǫ−2 (43)

= ρ
(0,2,1)
ND ρ

(0,2,2)
ND + (ρ

(0,2,1)
D ρ

(0,2,2)
ND + ρ

(0,2,2)
D ρ

(0,2,1)
ND )ǫ−1 + ρ

(0,2,1)
D ρ

(0,2,2)
D ǫ−2

7



Using eq.(33) and eq.(42) we have that :

ρ
(0,2,1)
D ρ

(0,2,2)
D =

iλ02TVm2
0

64π4
(44)

ρ
(0,2,1)
D ρ

(0,2,2)
ND + ρ

(0,2,2)
D ρ

(0,2,1)
ND =

iλ02TVm2
0

64π4

(
−1 + γ + ln

(
m2

0

4πµ

))

ρ
(0,2,1)
ND ρ

(0,2,2)
ND =

iλ02TVm4
0

24 · 64π4

(
18− 24γ + 12γ2 + π2 + 12

(
ln2(m2

0)− ln2(4π) + ln2(µ)
)
+ 24(1− γ + ln(4π)) ln(

4πµ

m2
0

)

)

This implies that the diagonal and nondiagonal quantum states are not well determined. In this case, we have four
unknown quantities and three equations. As we saw in Section 2, the finite contribution for the correlation function
comes from the non-diagonal quantum states, so the indetermination can be translate to an arbitrary election of one
of the non-diagonal quantum state. The indetermination will grow up with the order of the perturbation expansion;
in fact, at order p we will have p diagonal states and p non-diagonal states, so we have 2p unknown quantities,
but we have p+ 1 equations, so the indetermination grows like 2p − p− 1 = p− 1. In general, for the correlation
function of n external points we will have 2L(n, p) unknown quantities and L+1 equations, so the indetermination
will grow as 2L− L− 1 = L− 1.

The finite contribution of eq. (40) can be obtained by the application of the projector on the quantum state of
eq.(39):

Πp(ρ
(0,p)
int ) = ρ

(0,p)
int −

∫
ρ
(0,p,1)
D (y1)ρ

(0,p,2)
D (y2)...ρ

(0,p,p+1)
D (yp+1) |y1, ..., yp+1〉 〈y1, .., yp+1|

p+1∏

i=1

d4yi + (45)

∫
ρ
(0,p,1)
D (y1)ρ

(0,p,2)
D (y2)...ρ

(0,p,p+1)
ND (yp+1, wp+1) |y1, ..., yp+1〉 〈y1, .., wp+1| d

4wp+1

p∏

i=1

d4yi + ...

...+

∫
ρ
(0,p,1)
D (y1)ρ

(0,p,2)
ND (y2, w2)...ρ

(0,p,p+1)
ND (yp+1, wp+1) |y1, ..., yp+1〉 〈y1, .., wp+1| d

4y1

p+1∏

i=2

d4yid
4wi

This projector eliminates all the diagonal parts of the quantum state. Then, the trace with the projected state
reads

Tr(Πp(ρ
(0,p)
int )) = β

(0,p)
0 (46)

Adding all the orders in the perturbation expansion we finally obtain

Tr(Π(ρ
(0)
int)) = 1 +

+∞∑

p=1

(−iλ0)
p
i2p(2TV )β

(0,p)
0 (47)

Then, multiplying the non-connected Feynman diagrams, we obtain eq.(38).
In the case of no external points, the renormalization is a normalization of the quantum state itself. In the

observable-state model, this normalization is explicit, because the projection changes the trace of the quantum
state (see eqs.(40) and (46)). From this point of view, the renormalization is a change of the norm of the quantum
state by a projection, in a similar manner in which the projection postulate occurs in non-relativistic quantum
mechanics.

4 Example: φ4 theory, n = 4

The four-point correlation function, when there are interactions, reads

〈Ω |φ(x1)φ(x2)φ(x3)φ(x4)|Ω〉 = 〈Ω0 |φ(x1)φ(x2)φ(x3)φ(x4)|Ω0〉+ (48)

(−iλ0)

∫ 〈
Ω0

∣∣φ(x1)φ(x2)φ(x3)φ(x4)φ
4(y1)

∣∣Ω0

〉
d4y1 +

+(−iλ0)
2
∫ 〈

Ω0

∣∣φ(x1)φ(x2)φ(x3)φ(x4)φ
4(y1)φ

4(y2)
∣∣Ω0

〉
d4y1d

4y2 + ...

+...+ (−iλ0)
p

∫ 〈
Ω0

∣∣φ(x1)φ(x2)φ(x3)φ(x4)φ
4(y1)φ

4(y2)
∣∣Ω0

〉 p∏

i=1

d4yp + ...
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The first term of the last equation reads

〈Ω0 |φ(x1)φ(x2)φ(x3)φ(x4)|Ω0〉 = ∆(x1 − x2)∆(x3 − x4) + ∆(x1 − x3)∆(x2 − x4) + ∆(x1 − x4)∆(x2 − x3) (49)

where ∆(x − y) is the scalar propagator. This term does not contribute to the scattering amplitude because it
describes a trivial process where the initial and final states are identical.

The first order in the perturbation expansion reads

(−iλ0)

∫ 〈
Ω0

∣∣φ(x1)φ(x2)φ(x3)φ(x4)φ
4(y1)

∣∣Ω0

〉
d4y1 = f

(4)
0 (x1, x2, x3, x4) (50)

= (−iλ0)

∫
d4p

(2π)4
ie−ip(x1−x4)

p2 −m2
0

∫
d4q

(2π)4
ie−iq(x2−x4)

q2 −m2
0

∫
d4l

(2π)4
ie−il(x3−x4)

(l2 −m2
0)

i

((p+ q − l)2 −m2
0)

In this case, the first order does not have any loops.
The second order in the perturbation expansion reads

(−iλ0)
2
∫ 〈

Ω0

∣∣φ(x1)φ(x2)φ(x3)φ(x4)φ
4(y1)φ

4(y2)
∣∣Ω0

〉
d4y1d

4y2 = (51)

f
(4)
0 (x1, x2, x3, x4)λ

2
0

∫
d4r

(2π)4
1

(r2 −m2
0)((p+ q − r)2 −m2

0)
=

f
(4)
0 (x1, x2, x3, x4)λ

2
0

(
β
(4,2)
1

ǫ
+ β

(4,2)
0

)

where β
(4,2)
1 and β

(4,2)
0 read (see [14], page 120-122 or in eq.(4.4.16)):

β
(4,2)
1 =

1

32π2
(52)

β
(4,2)
0 =

1

2

3

32π2



ln(µ2)− γ + 2 + ln(
4πµ2

m2
0

)−
1

3

∑

z=s,t,u

√
1 +

4m2
0

z
ln





√
1 +

4m2

0

z
+ 1

√
1 +

4m2

0

z
− 1









where s, t and u are Mandelstam variables s = (p1 + p2)
2, t = (p1 + p3)

2 and u = (p1 + p4)
2 and 1

2 is the symmetry
factor and the µ factor appears by changing the coupling constant λ0 to λ0µ

−ǫ. Is not difficult to show that the
higher orders in the perturbation expansion obey the following rule

(−iλ0)
p

∫ 〈
Ω0

∣∣φ(x1)φ(x2)φ(x3)φ(x4)φ
4(y1)...φ

4(yp)
∣∣Ω0

〉 p∏

i=1

d4yp = (53)

f
(4)
0 (x1, x2, x3, x4)

p−1∑

l=0

(−iλ0)
p
i2+2pβ

(4,p)
l

ǫl

where p− 1 is the number of loops in the case of φ4 theory with four external points.
Following the idea of our work, we will apply the observable-state model to the four-point correlation function.

4.1 The observable-state model for n = 4 in φ4 theory

The state and the observable reads

ρ(4,p) =

∫
f
(4)
0 (x1, x2, x3, x4)

p−1∏

i=1

(
ρ
(4,p,i)
D (yi)δ(yi − wi) + ρ

(4,p,i)
ND (yi, wi)

)
(54)

|x1, x2, y1..., yp−1〉 〈x3, x4, w1, .., wp−1|
4∏

i=1

d4xi

p−1∏

i=1

d4yid
4wi

O(4,p) =

∫
J(x1)J(x2)J(x3)J(x4)

p−1∏

i=1

δ(yi − wi) |x1, x2, y1, ..., yp−1〉 〈x3, x4, w1, ..., wp−1|
4∏

i=1

d4xi

p−1∏

i=1

d4yid
4wi (55)
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Then, the trace reads

Tr(ρ(4,p)O(4,p)) =

p−1∑

l=0

γ
(4,p)
l

ǫl

∫
f
(4)
0 (x1, x2, x3, x4)J(x1)J(x2)J(x3)J(x4)

4∏

i=1

d4xi (56)

where
γ
(4,p)
l = (−iλ0)

p
i2+2pβ

(4,p)
l (57)

In particular

γ
(4,p)
0 =

p−1∏

i=1

ρ
(4,p,i)
ND , ... , γ

(4,p)
p−1 =

1

πp−1

p−1∏

i=1

ρ
(4,p,i)
D (58)

For the order p = 2, using eq. (52) and eq.(57), the γ
(4,2,1)
l coefficients read

γ
(4,2)
1 = ρ

(4,2,1)
D =

λ2
0

32π2
(59)

γ
(4,2)
0 = ρ

(4,2,1)
ND =

λ2
0

32π2


−

1

2
ln(µ)− γ + 2 + ln(

4πµ

m2
0

)−

√

1 +
4m2

0

(p+ q)2
ln




√
1 +

4m2

0

(p+q)2 + 1
√
1 +

4m2

0

(p+q)2 − 1






The projector over the finite contribution reads

Πp(ρ
(4,p)
int ) = ρ

(4,p)
int −

∫
ρ
(4,p,1)
D (y1)ρ

(4,p,2)
D (y2)...ρ

(4,p,p−1)
D (yp−1) |y1, ..., yp−1〉 〈y1, .., yp−1|

p−1∏

i=1

d4yi + (60)

∫
ρ
(4,p,1)
D (y1)ρ

(4,p,2)
D (y2)...ρ

(4,p,p−1)
ND (yp−1, wp−1) |y1, ..., yp−1〉 〈y1, .., wp−1| d

4wp−1

p−2∏

i=1

d4yi + ...

...+

∫
ρ
(4,p,1)
D (y1)ρ

(4,p,2)
ND (y2, w2)...ρ

(4,p,p−1)
ND (yp−1, wp−1) |y1, ..., yp−1〉 〈y1, .., wp−1| d

4y1

p−1∏

i=2

d4yid
4wi

Then, the trace of the observable in the projected state reads

Tr(Πpρ
(4,p)O(4,p)) = γ

(4,p)
0

∫
ρ
(4,1)
ext (x1, x2, x3, x4)J(x1)J(x2)J(x3)J(x4)

4∏

i=1

d4xi (61)

Summing all the perturbation expansion terms we obtain

Tr(Πρ(4)O(4)) =

∫
f
(4)
0 (x1, x2, x3, x4)J(x1)J(x2)J(x3)J(x4)

4∏

i=1

d4xi =
+∞∑

p=0

(−iλ0)
p
i2+2pβ

(4,p)
0 (62)

where we have replaced γ
(4,p)
0 by (−iλ0)

p
i2+2pβ

(4,p)
0 (see eq.(57)).

4.2 Renormalization of λ

We can proceed by summing the perturbation expansion, but without taking account the p = 0 order, because it
describes a trivial process in which the initial and final states are identical. Only fully connected diagrams contribute
to the scattering amplitude. Then

〈Ω |φ(x1)φ(x2)φ(x3)φ(x4)|Ω〉 = f
(4)
0 (x1, x2, x3, x4)

+∞∑

p=1

p−1∑

l=0

(−iλ0)
p
i2+2pβ

(4,p)
l

ǫl
(63)

We can then put x4 = 0 and take the Fourier transform on both sides of last equation:
∫

d4x1d
4x2d

4x3e
−ipx1e−iqx2e−ilx3 〈Ω |φ(x1)φ(x2)φ(x3)φ(0)|Ω〉 = (64)

1

(p2 −m2
0)

1

(q2 −m2
0)

1

(l2 −m2
0)

1

((p+ q − l)2 −m2
0)

+∞∑

p=1

p−1∑

l=0

(−iλ0)
p
i2+2pβ

(4,p)
l

ǫl
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If we remove the propagators of the external lines we obtain the four point proper vertex Γ(4). We can write
iΓ(4)(0) = λ, this is, the renormalized coupling constant is equal to the magnitude of the scattering amplitude
at zero momentum (see [12], page 325). But from dimensional regularization we know that the coupling constant
depends on the mass factor µ, so in the most general case, iΓ(4) = λ(µ), then

iλ(µ) =
+∞∑

p=1

(−iλ0)
p
i2+2p

p−1∑

l=0

β
(4,p)
l

ǫl
(65)

where β
(4,p)
l depends on µ and the external momentum. The last equation is identical to eq.(2.3.b) of [15]. Once

renormalized, we must only keep the l = 0 term, then

iλ(µ) =

+∞∑

p=1

(−iλ0)
p
i2+2pβ

(4,p)
0 (66)

In terms of the observable-state model, this reads (see eq.(57)):

iλ(µ) =

+∞∑

p=1

γ
(4,p)
0 (67)

In this sense, the non-diagonal functions of the quantum state of eq.(54), that is, the renormalized coupling constant.

5 The renormalization group

In this last section we will see how the renormalization group arises in the context of the observable-state model.
As we see in [1] and this paper, the n = 2 and n = 4 correlation functions give the mass and coupling constant
renormalization. Those equations read (see eq.(B18) of [1] and eq.(66) of this paper):10

m2 = m2
0 +

+∞∑

p=1

(−iλ0)
p
i1+2p

~
pβ

(2,p)
0 (m2

0, µ) = m2
0 − λ0~β

(2,1)
0 (m2

0, µ) + ... (68)

λ = λ0 +

+∞∑

p=2

(−iλ0)
p
i2+2p

~
p−1β

(4,p)
0 (m2

0, µ) = λ0 + λ2
0~β

(4,2)
0 (m2

0, µ) + ... (69)

In the other side, since m2
0 and λ0 do not depend on µ in the absence of loop correction, we have:

dm2
0

dµ
= O(~) ,

dλ0

dµ
= O(~) (70)

The renormalization group can be obtained by imposing the fact that the dressed mass m2 and λ do not depend

on µ, this is, dm2

dµ
= 0 and dλ

dµ
= 0. Using the chain rule in eq.(68), we have for m2:

dm2

dµ
=

∂m2

∂m2
0

dm2
0

dµ
+

∂m2

∂λ0

dλ0

dµ
+

∂m2

∂µ
= 0 (71)

using eqs.(68) and (70), eq.71) reads at order ~:

dm2
0

dµ
− λ0

∂β
(2,1)
0

∂µ
= 0 (72)

From eq.(82) of [1]

β
(2,1)
0 =

m2
0

16π2

[
1− γ + 2 ln

(
4πµ2

m2
0

)]
(73)

then
∂β

(2,1)
0

∂µ
=

m2
0

8π2

1

µ
(74)

10In the following equations we will restore the Planck constant ~ for later convenience.
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replacing eq.(74) in eq.(72) we obtain a differential equation for m2
0 at order ~:

dm2
0

dµ
= λ0

m2
0

8π2

1

µ
(75)

we can solve it and obtain
m2

0 = m2
S(

µ

µS

)
λ0

8π2 (76)

where m2
S is the value of the mass when µ = µS . This result is in concordance with eq.(4.6.20) and eq.(4.6.22),

page 142 of [14] at order ~. In a similar way, we can obtain the change of λ0 in terms of µ at order ~. To do so, we
must impose that the dressed coupling constant do not depend on µ:

dλ

dµ
=

∂λ

∂m2
0

dm2
0

dµ
+

∂λ

∂λ0

dλ0

dµ
+

∂λ

∂µ
= 0 (77)

using eq. (69) and eq.(70), last equation reads at order ~:

λ2
0

∂β
(4,2)
0

∂µ
−

dλ0

dµ
= 0 (78)

Using the result of eq.(52), last equation reads

dλ0

dµ
+

3

16π2

λ2
0

µ
= 0 (79)

The last equation can be solved with the following result:

λ0 =
λS

1− 3λS

16π2 ln(
µ
µS

)
(80)

which is identical to eq.(4.6.15), page 139 of [14]. This last equation is the one-loop correction to the coupling
constant that arises from eq.(78).11

Thus, we can see that the projection method not only allow finite perturbation expansions, but also, finite values
that are consistent with the results shown in textbooks and the renormalization group.

6 Discussion

The formalism introduced in Section 1 has a physical content which can be traced to the decoherence formalism
(see [16], [17], [18], [19], [20], [21]) and to systems with continuous spectrum (see [22], [23], [17], [24],[25], [18]).
The trace of the internal quantum state of eq.(14) can be interpreted as a reduced state, since the observable is an
identity operator in the Hilbert space of the internal vertices.This has a physical meaning. It is well known that the
reduction of a state decreases the information available to the observer about the composite system. In this case,
the reduction is done over the internal vertices where the interaction occurs due to the perturbation expansion. In
QFT, the particles that are created in these vertices are virtual particles because they are off-shell, that is, they
do obey the conservation laws, but the propagators must be integrated out, which implies that the momentum of
the particle associated with each internal propagator may not obey the mass-energy relation pµp

µ = m2
0. In this

sense, the conceptual meaning of the partial trace of the internal degrees of freedom is to neglect these virtual
non-physical particles. This is consistent with the experiments of scattering because basically what is seen are the
in and out states. However, perturbation theory introduces off-shell intermediate states whose existence depends
on the uncertainty principle ∆E∆t ≥ ~

2 . In turn, these give us an interpretation of this integration as a reduction
of the degrees of freedom of the theory. In the conventional interpretation of this integration “The integral d4z
instruct us to sum over all points where this process can occur. This is just the superposition principle of quantum
mechanics: when a process can happen in alternative ways, we add the amplitudes for each possible way.”, ([12],
page 94). In our case, the integration over the internal vertices reflects the fact that we are neglecting the degrees
of freedom of this virtual particles and what we finally obtain is a reduced state which is divergent.

11The power of the Planck constant counts the number of loops, so at order O(~), we obtain the one-loop correction (see [13], page
623).
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Summarizing, the main idea of this work is that in the p order in the perturbation expansion of any quantum
field theory, we can define a quantum state as

ρ(n,p) = ρ
(n)
ext ⊗ ρ

(n,p)
int (81)

and an observable
O(n,p) = O

(n)
ext ⊗ I

(p)
int (82)

then the trace reads
Tr(ρ(n,p)O(n,p)) = Tr(ρ

(n,p)
int )Tr(ρ

(n)
extO

(n)
ext) (83)

The divergences of the quantum field theory occur in the trace of the internal quantum state Tr(ρ
(n,p)
int ). These

divergences appear because the internal quantum state contains diagonal functions multiplied by Dirac deltas that
cannot be avoided unless we remove the diagonal functions by a projection. This is the only available transformation
that can cure the divergences, because the trace is an invariant quantity that does not depend on the basis in which
the state is written. The projector reads

Π(n,p) = I
(n)
ext ⊗Π

(n,p)
int = I

(n)
ext ⊗ (ρ

(n,p)
int − ρ

(n,p)
D ) (84)

where ρ
(n,p)
D is the sum of all the states that has a diagonal part of the quantum state ρ

(n,p)
int . Then, the trace of

Πρ(n,p) reads

Tr(Π(n,p)ρ(n,p)O(n,p)) =
(
Tr(ρ

(n,p)
int )− Tr

(
ρ
(n,p)
D

))
Tr(ρ

(n)
extO

(n)
ext) (85)

which is our finite desired physical contribution. Basically, the projection is a translation of the quantum state
by an amount given by the diagonal state. In this work, the renormalization procedure is done by the projection
method, but without introducing counterterms, which in principle is much more advantageous, because it can be
applied to non-renormalizable theories, like φ6 in four space-time dimensions, or the quantum field theory of a
massless particle with spin 2, such as gravitation. These two theories will be worked out in future works.

6.1 A general procedure

Suppose we define the following projector that acts on the external quantum state ρ(n) of eq.(28):

Π
(n)
0 = I1 ⊗ I2 ⊗ ...In−1 ⊗ |0〉 〈0| (86)

where |0〉 correspond to xn = 0. When we apply it to ρ(n) we obtain

ρ(n)Π
(n)
0 =

+∞∑

p=0

ip

p!
β
(n,p)
0

∫
f
(n)
0 (x1, x2, ..., xn−1, 0)

∣∣x1, ..., xn
2

〉 〈
xn

2
+1, ..., xn−1, 0

∣∣
n−1∏

i=1

d4xi−1 (87)

The trace with O
(n)
ext reads

Tr(ρ(n)Π
(n)
0 O

(n)
ext) =

+∞∑

p=0

ip

p!
β
(n,p)
0

∫
f
(n)
0 (x1, x2, ..., xn−1, 0)J(x1)...J(xn−1)J(0)

n−1∏

i=1

d4xi−1 (88)

If we allow the currents to be plane waves:12

J(xk) = e−ipkxk (89)

then, the trace reads

Tr(ρ(n)Π
(n)
0 Õ

(n)
ext) =

+∞∑

p=0

ip

p!
β
(n,p)
0 F

[
f
(n)
0 (x1, x2, ..., xn−1, 0)

]
(k1, ...kn−1) (90)

where Õ
(n)
ext is the plane wave observable and F [f ] is the Fourier transform of the function f .

12This idea is in concordance with [7], page 19, ”For an ingoing particle, we use a source function J(x) whose Fourier components
emit a positive amount of energy k0. For an out-going particle the source emits a negative k0.”
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• The mass shift

In the case n = 2:

f
(2)
0 (x1, 0) =

∫
d4p

(2π)4
e−ip(x1−x2)

(p2 −m2
0)

2
(91)

then

Tr(ρ(2)Π
(2)
0 Õ

(2)
ext) =

1

(p2 −m2
0)

2

+∞∑

p=1

(−iλ0)
p
β
(2,p)
0 =

M

(p2 −m2
0)

2
(92)

where M =
+∞∑
p=1

(−iλ0)
p
β
(2,p)
0 . Then, this equation implies that

(p2 −m2
0)

2Tr(ρ(2)Π
(2)
0 Õ

(2)
ext) = M (93)

The mass renormalization is obtained by having in mind that the last equation is the result of the one-particle
irreducible diagrams.13 The full contribution of the n = 2 correlation function is equal to the following geometric
series (see [12], eq.(10.27), page 328):

∫
〈Ω |φ(x1)φ(x0)|Ω〉 e

−ipx1d4x1 =
1

p2 −m2
0

+
M

(p2 −m2
0)

2
+

M2

(p2 −m2
0)

3
+ ... =

1

p2 − (m2
0 +M)

(94)

On the other side, using eq.(using eq.(92)) we have

∫
〈Ω |φ(x1)φ(x0)|Ω〉 e

−ipx1d4x1 =
1

p2 −m2
0 − (p2 −m2

0)
2Tr(ρ(2)Π

(2)
0 Õ

(2)
ext)

(95)

which implies the mass shift reads

∆m = m2 −m2
0 = M = (p2 −m2

0)
2Tr(ρ(2)Π

(2)
0 Õ

(2)
ext) (96)

• The coupling constant

In the n = 4 case

f
(4)
0 (x1, x2, x3, 0) =

∫
d4p

(2π)4
e−ipx1

p2 −m2
0

∫
d4q

(2π)4
e−iqx2

q2 −m2
0

∫
d4l

(2π)4
e−ilx3

(l2 −m2
0)

1

((p+ q − l)2 −m2
0)

(97)

then

[
(l2 −m2

0)(p
2 −m2

0)(q
2 −m2

0)((p+ q − l)2 −m2
0)
]
Tr(ρ(4)Π

(4)
0 Õ

(4)
ext) =

+∞∑

p=1

(−iλ0)
p
β
(4,p)
0 = λ (98)

which has the same structure of eq.(93).
In a general way we can write

Tr(ρ(n)Π
(n)
0 Õ

(n)
ext)

∫ n∏

i=1

(
p2i −m2

0

)
δ(pn −

n−1∑

i=1

pi)d
4pn = Cn (99)

where Cn is the renormalized quantity.
This last equation is important, because it can be applied to non-renormalizable theories. In [26], the renormal-

ization group has been generalized to Lagrangians of arbitrary form, in particular, to non-renormalizables theories.
The idea of this work and [1] follows the same line of thought because the observable-state model treats on equal
footing the non-renormalizable theories and the renormalizable ones.

13A one-particle irreducible diagram is any diagram that cannot be split in two by removing a single line.
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7 Conclusions

The aim of this work was to extend the observable-state model in φ4 theory to the n = 0 and n = 4 external
points in the correlation function, showing how to build a projector that eliminates all the divergences that appear
in the perturbation expansion. This procedure allows us to renormalize the quantum field theory of φ4 without
introducing counterterms in the Lagrangians. Besides this, we have shown how the renormalization group arise in
this context obtaining the same results as the conventional renormalized QFT.
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A The Dirac delta and the dimensional regularization poles

To understand the relation between the Dirac delta and the poles of the dimensional regularization we can use the
following representation of the Dirac delta (see [27], page 35):14

δ(x) = lim
ǫ→0

1

π

ǫ

x2 + ǫ2
(100)

where ǫ is some parameter that tends to zero. In particular, we can assume that this parameter is the pole parameter
of the dimensional regularization, that is, ǫ = d− 4.

Consider now for simplicity, the following quantum state

ρ =

∫
[ρD(x)δ(x − x′) + ρND(x, x′)] |x〉 〈x′| dxdx′ (101)

replacing the representation of the Dirac delta of eq.(100) in last equation we obtain

ρ =
1

π
lim
ǫ→0

∫
ρD(x)

ǫ

(x − x′)2 + ǫ2
|x〉 〈x′| dxdx′ +

∫
ρND(x, x′) |x〉 〈x′| dxdx′ (102)

Taking the trace of ρ we obtain

Tr(ρ) =

∫
〈x′′| ρ |x′′〉 dx′′ =

1

π
lim
ǫ→0

∫
ρD(x)

ǫ

(x − x′)2 + ǫ2
δ(x′ − x)dxdx′ +

∫
ρND(x, x′)δ(x′ − x)dxdx′ (103)

We can proceed with the integral of the Dirac delta in both terms, so finally we obtain

Tr(ρ) = lim
ǫ→0

1

π

1

ǫ
ρD + ρND (104)

where

ρD =

∫
ρD(x)dx ρND =

∫
ρND(x, x)dx (105)

In the case of the quantum state of eq.(19) we will have (we do not put the lim
ǫ→0

for simplicity)

Tr(ρ
(n,p)
int ) =

L(n,p)∏

i=1

(
ρ
(n,p,i)
D

πǫ
+ ρ

(n,p,i)
ND

)
=

0∑

j=−L(n,p)

γ
(n,p)
j ǫj (106)

where in particular

γ
(n,p)
0 =

L(n,p)∏

i=1

ρ
(n,p,i)
ND , ... , γ

(n,p)
L(n,p) =

1

πL(n,p)

L(n,p)∏

i=1

ρ
(n,p,i)
D (107)

In [1] we suggest the relation between the Dirac delta valuated at zero and the pole of the dimensional regular-
ization but we do not prove it.15

14The relation between the Dirac delta and the dimensional regularization pole in this appendix is introduced by formal mathematical
operations, but we must warm the reader that this development is not mathematically rigorous.

15From a different point of view, if we expand in Taylor series the representation of the Dirac delta of eq.(100) we obtain δ(x) =

lim
ǫ→0

1
π
( 1
ǫ
−

x2

ǫ3
+ x4

ǫ5
+ ...). Taking the trace of the quantum state implies to replace x = 0 in the representation of the Dirac delta.
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B Relation between the vacuum energy and the space volume

To obtain the relation between the energy of the vacuum and the space volume V we can recall the renormalized
result of eq.(38):

|〈Ω0|Ω〉|
2
e−iE02T =

+∞∑

k=0

(2TV )
k

k!

(
+∞∑

p=1

(−iλ0)
p
β
(0,p)
0

)k

(108)

then we can call

(−i)kR(k) =

(
+∞∑

p=1

(−iλ0)
p
β
(0,p)
0

)k

(109)

which implies that
R(k) = [R(1)]

k
(110)

where

R(1) =

+∞∑

p=1

(−iλ0)
p
β
(0,p)
0 (111)

then, eq.(108) reads

|〈Ω0|Ω〉|
2
e−iE02T =

+∞∑

k=0

1

k!
(−i2TVR(1))k = e−i2TV R(1) (112)

then the vacuum energy reads

E0 = V R(1)−
i

2T
ln(|〈Ω|Ω0〉|

2) (113)

in particular, for T → ∞
E0 ∼ V (114)

which is the desired result (see [12], page 98). This result is valid if the R(1) as a sum converges. In fact, the ratio
test applied to argument of the sum in eq.(111) implies that

lim
p→∞

∣∣∣β(0,p+1)
0

∣∣∣
∣∣∣β(0,p)

0

∣∣∣
<

1

λ0
(115)

This inequality can be tested on the l.h.s. step by step using dimensional regularization. Is not the purpose of this
work to prove the convergence of the n = 0 correlation function of φ4 theory, besides that it would be a long task.

C The projection in algebraic terms

Let us remember the transformation of eq.(24). For simplicity we will describe it when there are only one diagonal
state and one non-diagonal state, in this case, the transformation act in the following way

Π(ρ) = ρ− ρD (116)

This transformation is linear

Π(ρ(1) + ρ(2)) = ρ(1) + ρ(2) − (ρ
(1)
D + ρ

(2)
D ) = ρ(1) − ρ

(1)
D + ρ(2) − ρ

(2)
D = Π(ρ(1)) + Π(ρ(2)) (117)

Then it is a projector because

Π2(ρ) = Π(Π(ρ)) = Π(ρ− ρD) = Π(ρ) −Π(ρD) = ρ− ρD − (ρD − ρD) = Π(ρ) (118)

or by using that the diagonal part of the transformed state Π(ρ)D is zero

Π(Π(ρ)) = Π(ρ)− Π(ρ)D = ρ− ρD −Π(ρ)D = Π(ρ) (119)

In this sense, the projector can be written as
Π = I −Q (120)
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where
Q(ρ) = ρ− ρND (121)

then, eq.(120) is the relation of orthogonal projections. In fact

QΠ(ρ) = Q(ρ− ρD) = Q(ρ)−Q(ρD) = ρD + ρND − ρND − ρD = 0 (122)

which implies that Π(ρ) is the null space of Q.
What the projector does is to subtract from ρ its diagonal part, which gives a divergent structure when we

compute the trace with the observable. In this sense, to subtract the ǫ−l terms via a projection is similar to
the minimal subtraction, where an operator K is defined to pick out the pure poles terms of the dimensional
regularization (see [9], eq. 9.76)):

K

[
+∞∑

n=−k

Anǫ
n

]
=

−1∑

n=−k

Anǫ
n (123)

then

(I −K)

[
+∞∑

n=−k

Anǫ
n

]
=

+∞∑

n=0

Anǫ
n = A0 +A1ǫ+ ... (124)

In fact, K2 = K , then K is a projector. The main difference is that our projector acts on a quantum state and not
over a Laurent series. It will be source of future works to study the relationship between the projection procedure
and the BPHZ subtraction method [28].

Finally, we can rewrite the projector that acts on the whole Liouville space in algebraic language. For this, in
the order p of the perturbation expansion we have the following Hilbert spaces:

H(n,p) = Hext

L(n,p)
⊕
i=0

H(i) (125)

The total Hilbert space to all orders in the perturbation theory reads

H = H(n,0) ⊕H(n,1) ⊕ ...⊕H(n,p) =
p

⊕
i=0

H(n,p) (126)

The observables are defined in the Liouville space N :

N = H⊗H =(
p

⊕
i=0

H(n,p))⊗ (
p

⊕
i=0

H(n,p)) =
p

⊕
i=0

N (i) (127)

We can decompose as (see eq.128)):
Nvh= NS ⊕NR ⊂ N (128)

Then, the relevant Liouville space will reads

Nvh =
p

⊕
i=0

(
N

(i)
S ⊕N

(i)
R

)
(129)

Because the states must be considered as linear functionals over the space Nvh (N ′

vh the dual of space Nvh):

N ′

vh=
p

⊕
i=0

(
N

′(i)
S ⊕N

′(i)
R

)
(130)

Then, the projector will be a map from N ′

vh to N ′

R:

Π = Π(0) ⊕ ...⊕Π(p) : N ′

vhS → N ′

R (131)

This is the simple trick that allows us to neglect the singularities (i.e. the δ(x− x′)) in a rigorous mathematical
way and to obtain correct physical results. Essentially we have defined a new dual space N ′

vh (that contains the
states ρ without divergences) that are adapted to solve our problem.

So, essentially we have substituted an “ad hoc” counterterm procedure (or an ad hoc subtraction procedure
[28]) with a clear physical motivated theory. These are the essential features of the proposed formalism, where the
deltas are absent.
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