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a  b  s  t  r  a  c  t

The  Phenomenological  Universalities  are  a  formal  way  to classify  growth.  We  apply  this  concept  to inves-
tigate  interactive  growth  phenomena  in  biological  and  ecological  systems.  Using  a  vector  formulation  of
these  Universalities  without  any  ad hoc  assumptions  on  the  nature  of  the  interactions,  we are able  to
characterize  the  joint  growth  of  two  or more  interacting  organisms  and  assess  the  direct  mutual  influ-
ences  between  them,  as well  as  the  indirect  influences  that operate  through  environment  modifications.
Various  interactions,  such  as  cooperation,  parasitism,  and  mutual  hindrance  can  be  suitably  described.
We  present  several  illustrative  examples,  including  an  examination  of  the  growth  dynamics  in  a mixed-
species  plantation  and  compare  the predictions  of  our  method  with  the  conclusions  obtained  by  biologists
through  direct  observation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Organisms have evolved to grow at rates adapted to their loca-
tion in an ecological niche. Although the variety of organisms
and niches is immense, many studies have been devoted to find
general laws describing the growth rates of biological systems.
These descriptions have often been based on simple dataset fit-
ting, without attempting to correlate the fits to the underlying
biophysical processes. However, some thought-provoking expla-
nations have emerged: In their seminal work, West et al. (2001)
and Zuo et al. (2008) described the observed uniformity in the onto-
genetic growth rates of a multiplicity of organisms on the basis of
energy conservation and the assumed fractality of the energy distri-
bution networks. They showed that these assumptions lead to von
Bertalanffian growth with a well-determined metabolic rate scal-
ing exponent (with some caveats such as that this procedure cannot
account simultaneously for the childhood and adulthood data in
humans (Dingli and Pacheco, 2007)). Less well known is the work of
Calderón and Kwembe (1991),  who explained Gompertzian tumor
growth in terms of entropy maximization. This work was later
extended by the use of non-extensive thermodynamics (González
and Rondón, 2006). Research in this field has been recently reinvig-
orated by careful studies of the properties of supply and collection
networks (Dodds, 2010; Corson, 2010; Katifori et al., 2010).

The influence of competition between species and individu-
als has been the object of numerous studies since the pioneering
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works of Lotka (1925),  Volterra (1926),  and Gause (1934) and is
now regularly discussed in population biology and population ecol-
ogy textbooks (May, 1973; Murray, 2003; Edelstein-Keshet, 2005;
Turchin, 2003). Our approach, however, is weakly related to popu-
lation ecology because we look for data fitting functions in the spirit
of model-selection (Burnham and Anderson, 2002; Zucchini, 2000):
if the model that we can think of is too complex to be described in
every detail from the information available or if no model exists,
we still can extract information about the system by analyzing a
suitable family of functions that fits the data.

A possible systematization of biological growth phenomena,
which provides a suitable family of fitting functions, was achieved
by Delsanto’s group (Castorina et al., 2006), which developed
the concept of Phenomenological Universalities (PUN) to classify
some well-known growth laws. This PUN approach can be applied
to unbiasedly extract information from a given experimental or
observational dataset, and could be especially useful if no a priori
model is available. It has been successfully applied to the analy-
sis of problems in various disciplines (Castorina et al., 2006; Pugno
et al., 2008; Delsanto et al., 2008, 2009; Gliozzi et al., 2009, 2010).
Recently, we presented a PUN-based method to identify possi-
ble correlations between variations in the physical features of an
organism. The method describes allometric growth with the use
of a time-dependent complex function whose real and imaginary
parts quantify two  phenotypic traits of the same organism (Barberis
et al., 2010; Delsanto et al., 2011).

A challenging field of study is that of the growth of resource-
sharing interacting organisms. Such organisms can affect each
other either through direct interactions or through indirect inter-
actions mediated by the modifications introduced by the other
actors in their environment. Twins in a womb, trees in a copse, and
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cancer cell subpopulations in a tumor are obvious examples. In the
case of plants it is an established fact that they nonadditively inte-
grate information about resource and neighbor-based cues in the
environment (Cahill et al., 2010).

The purpose of this paper is to develop a general framework
to describe the growth dynamics of a given trait (height, weight,
biomass, limb length, etc.) in a set of n agents undergoing interac-
tive growth. By agent we mean any animal or vegetal organism or
even an ecological population. This last case may  encompass, for
instance, cell subpopulations in a tumor or joint plantations of two
or more tree species. A distinctive feature of these ecological prob-
lems is the presence of simultaneous intraspecific and interspecific
competition for resources and space.

The results of the work presented in this paper provide a descrip-
tion of joint growth phenomena in a purely phenomenological way,
i.e. for each growth-related dataset containing information about n
agents, the Vector Universalities of class N (VUN) machinery gives
n growth functions that may  fit the data with great accuracy. These
functions can be particularly advantageous when there is no pre-
existing theory to support the data. They could also be used to
give an analytical approximation to data points obtained from the
numerical integration of a mathematical model, such as a pop-
ulation dynamics or an evolutionary game theory model, which
has no analytical solution. As we shall see, additional informa-
tion can be obtained from the functions themselves concerning the
nature of the interactions and the growth potential of the involved
agents.

Suppose we have measurements of the size of a given trait
taken on two or more agents that are known (or suspected) to have
interacted during development. If we wish to investigate how the
interaction affects growth, the usual strategy is to write down the
growth equations for the separate specimens and, in some cases,
postulate ad hoc interaction terms. Examples of such strategy are
the separate Gompertz functions used to model protein growth
in competing prawn populations (Sara et al., 2009) and popula-
tion growth in microbial cocultures (Buchanan and Bagi, 1999).
If a separate Gompertzian fit is performed on each dataset, the
mutual interactions, the influence of the environment, and the
intraspecific interactions, if any, will all be inextricably mixed in
the Gompertz parameters of each agent, and the fits will not pro-
vide useful information on the strength and nature of the possible
interactions. There are also theoretical models for competing Gom-
pertzian (Yu et al., 2007; Kar, 2004) and �-logistic (Gilpin and Ayala,
1973) populations, but in all these cases the couplings are intro-
duced phenomenologically in such a way that they can describe
the desired behavior. Since these models postulate the interaction
terms, the fitted parameters that characterize the interaction will
inform us only about its strength. The method is satisfactory if we
know a priori the nature of the interaction, but this is often pre-
cisely what we want to identify. Often, we would like to predict
what happens if two or more organisms are forced to cooperate
or compete for resources in the same environment, i.e. we  wish
to develop rational predictions for the outcome of the interacting
growth process in the absence of precise evidence about the form
of the interaction. Preferably, the formalism should also help us to
obtain information about the nature of the interactions. The VUN
formalism we introduce here has no underlying model beyond
the universality class scheme; the interaction effects emerge nat-
urally and can be quantified. In summary, we put the PUN concept
developed in references Castorina et al. (2006), Pugno et al. (2008),
Delsanto et al. (2008, 2009), Gliozzi et al. (2009, 2010) in a vector
context in such a way that each vector component represents the
size of a trait in a given agent. The resulting formalism can be used
to obtain simultaneous fits to the datasets corresponding to the
different agents and separates the intraspecific and interspecific
interactions.

The outline of this paper is as follows. In the following section
we briefly review the PUN formulation and describe the VUN  for-
malism, providing an interpretation of the results. In Section 3 we
discuss three very different applications that illustrate the possi-
ble uses of the method. Finally, some potential applications of the
method are briefly referred to in Section 4.

2. Vector Universalities

2.1. Scalar growth equations

A clear and comprehensive characterization of the growth func-
tions of populations was  presented by de Vladar (2006),  who
described growth using two first order differential equations, one
for the population size y(t),

ẏ(t) = a(t)y(t), (1)

(the growth equation) and another for the growth rate a(t),

ȧ(t) = [�a(t) − �]a(t), (2)

(the rate equation) where � and � are two  real parameters. Vari-
ous combinations of these parameters reproduce, among others,
the �-logistic, von Bertalanffy, Gompertz, and potential growth
equations. De Vladar indicates that the size of the dimensionless
parameter � defines the density scale at which the reproduction
rate of an individual is affected by its interaction with the popula-
tion, while �−1 is a characteristic time over which the individual
downregulates its reproduction rate.

In the work of Castorina et al. (2006),  the right-hand side of Eq.
(2) is replaced by a power series expansion in the rate a(t),

ȧ(t) =
∞∑

m=0

˛mam(t). (3)

Of course, by truncation and a suitable choice of the parameters
˛m, Eq. (3) reduces to the different possibilities generated by Eq. (2),
but Castorina et al. (2006) suggest that the concept of Phenomeno-
logical Universalities may  be used in conjunction with Eqs. (1) and
(3) as a tool for the classification and interpretation of observed
data in the context of cross-disciplinary research. In fact, they have
applied this concept to fields as diverse as those of elastodynamics
(Pugno et al., 2008), human growth (Delsanto et al., 2008), and cell
proliferation in cancer (Gliozzi et al., 2010).

In Barberis et al. (2010),  the use of complex variables y(t) and a(t)
made it possible to investigate the simultaneous variations of two
phenotypic features of an individual. This procedure showed the
existence of correlations between changes in the fat distribution of
the human body. We  are now interested in the description of the
correlations between variations in the same trait of different agents.
As in the original case, our generalization of the Phenomenologi-
cal Universalities formulation is especially useful in those cases for
which no reliable model is available.

2.2. Vector formalism

We describe the time evolution of a given phenotypic feature
observed in n interacting agents through an n-component growth
vector Y(t), and postulate that the evolution of this vector is deter-
mined by a generalization of the autonomous growth equation
proposed by Castorina et al. (2006),

Ẏ(t) = AY(t), (4)

where t, the time, is a real continuous parameter, Y(t) ∈ R
n, and

the dynamic operator A[Y(t)] ∈ R
n×n. According to the PUN formu-

lation, we  assume that the rate of change of the functional A[Y(t)]
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can be expressed as a power series expansion in the operator A
itself, which we truncate to order N,

Ȧ(t) =
N∑

m=1

˛mAm. (5)

Eqs. (4) and (5) form a differential equation system whose initial
conditions are Y(0) = Y0 and A(0) = A0. To solve this system, we  start
by integrating Eq. (5).  The first step is to diagonalize the matrix A0
through a similarity transformation,

B0 = PA0Q, (6)

with QP = 1. This transformation always exists if the eigenvalues
�j of A0 are nondegenerate. B0 is a diagonal matrix whose entries
are the �j’s. Crucially, it can be shown (Barberis et al., 2011) that
the same transformation that diagonalizes the system at time t = 0
diagonalizes it for all t ≥ 0. Eq. (5) can thus be transformed into a
new diagonal system,

Ḃ(t) =
N∑

m=1

˛mBm. (7)

Since B is a diagonal matrix whose components have the form
Bij(t) = bN(�j ; t)ıij (ıij is Kronecker’s symbol), Eq. (7) can be decom-
posed into a set of n uncoupled differential equations,

ḃN(�j; t) =
N∑

m=1

˛m[bN(�j; t)]m , (8)

with the initial condition bN(�j ; 0) = �j. These equa-
tions are easily integrated for N = 0, 1, and 2,
yielding b0(�j ; t) = �j, b1(�j ; t) = �j exp (˛1t), and
b2(�j ; t) = �j˛1[(˛1 + �j˛2) exp (− ˛1t) − �j˛2]−1, respectively.
The transformed growth vector Z(t) = QY(t) satisfies the uncoupled
system,

Ż(t) = B(t)Z(t). (9)

Since B is diagonal, the components of Z(t) are easily calculated;
they have the form zj = z0jfN(�j ; t), where the fN(�j ; t) are the uni-
versal functions obtained by Castorina et al. (2006).  We  can thus
immediately find the time-dependent growth vector by inverting
the transformation, i.e.,  by writing Y(t) = PZ(t). Its components have
the form,

yi(t) =
n∑

j,k=1

PijQjky0kfN(�j; t), i = 1, . . . , n (10)

Here the truncation order N determines the Vector Universality
Class VUN, whose elements are linear combinations of the functions
fN(�j ; t). The lowest truncation orders yield,

f0(�j; t) = exp(�jt), (11)

f1(�j; t) = exp

[
�j

˛1
[exp(˛1t) − 1]

]
, (12)

f2(�j; t) =
{

˛2�j

˛1
[1 − exp(˛1t)] + 1

} 1
˛2

. (13)

2.3. Interpretation

The solutions (11)–(13), which depend on the eigenvalues �j of
the dynamical operator, correspond, respectively, to joint Malthu-
sian (VU0), joint Gompertzian (VU1), and joint von Bertalanffian
(VU2) growth processes. They apply to n interacting agents and are
natural generalizations of the functions obtained in Castorina et al.
(2006) for the single-agent problem.

Fig. 1. Three examples of two-agent interaction-influenced growth characterized
by  the A0 matrix. For simplicity, the two diagonal elements (the IGPs) and the initial
values have been chosen to be identical. In each case the solid line represents the
growth of a noninteracting specimen. In (a) we represent a parasite–host relation
(off-diagonal elements have different signs), while in (b) we represent the enhanced
growth of cooperators (off diagonal elements positive) and the depressed growth of
mutually hindered competitors (off diagonal elements negative).

Remarkably, the diagonalization of the dynamic operator A0 at a
fixed time results in the uncoupling of the system at all subsequent
times. This indicates that the interaction dynamics can always be
characterized by its elements at all times. The diagonal elements
of A0 determine the maximum size corresponding to the noninter-
acting agents and thus its trace characterizes the global potential
growth of the n independent agents. We  can say that each diag-
onal element defines the individual growth potential (IGP) of the
corresponding agent in a given environment. Agent–agent interac-
tions not only generate nonzero off-diagonal elements (the direct
interactions), but may  also modify the diagonal elements. This
would occur if there are indirect influences among the agents, as
it would be the case if the agents themselves modify the growth
environment and, consequently, change their own IGP. We  can
thus describe various kinds of n-agent growth processes with n2

real numbers, which allows us to quantify and classify various
ecological-like interactions. Some representative situations in the
VU1 class are depicted in Fig. 1 for the case of two agents. As a
benchmark, we  have chosen a trait that would evolve identically in
each of the agents in the absence of interactions. For simplicity, we
will assume here that the agents only influence each other directly,
i.e., without modifying the environment. Then, all the interaction
effects are represented by off-diagonal matrix elements. For a par-
asitic interaction, the trait of one of the agents grows at the expense
of the other, while for a cooperative (synergistic) interaction both
agents benefit and for a mutual hindrance (antagonistic) interaction
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both agents are negatively affected. The signs of the off-diagonal
matrix elements determine how much an agent may  gain (positive
elements) or lose (negative elements) from the direct interaction.
Note that the reciprocal of ˛1 defines a time scale that characterizes
the joint growth rate.

3. Applications

Next we provide three examples to illustrate the use of the VUN
to obtain information about the relevant interactions in a given
system. The first is a heuristic population model that has not been
obtained from a physically meaningful hypothesis but provides rea-
sonable numerical solutions. The second is a macroscopic model
for the joint growth of two cell phenotypes in a tumor. The third
example refers to real experimental data obtained from mixed
plantations of Acacia and Eucalyptus trees, which had not been
mathematically modeled. In the three examples we fit the given
datasets with VUN equations and provide an interpretation of the
resulting A0 matrix.

3.1. A Gompertzian population dynamics: a VU1 application

Our first example is the generalized Gompertz model for two
species (1 and 2) as was postulated in Kar (2004).  This is a heuris-
tic population dynamics model, which is defined by the following
equations for the populations N1 and N2:

dN1

dt
= N1[k1 − h11 ln(N1) − h12 ln(N2)], (14)

dN2

dt
= N2[k2 − h21 ln(N1) − h22 ln(N2)], (15)

where the ki and hij are, respectively, the growth and competition
rates. The diagonal hii rates stand for intraspecific negative interac-
tions, while the nondiagonal hij rates stand for negative influences
between the populations. This set of equations does not have an
analytical solution, but we will show that the VUN approach gives
a very good analytical approximation to the real solution. To do this
we build two datasets by the numerical integration of Eqs. (14) and
(15). Each dataset describes the evolution of the populations N1 and
N2, which we  fit using the VU1 class (Fig. 2).

For the first dataset (Fig. 2a), we assume that population 1 par-
asitizes (or preys on) population 2 (h21 = 0.0001), while population
2 does not directly influence population 1 (h12 = 0). In order to
isolate the effects of the interspecific (predation/parasitic) inter-
action, we set the same initial population sizes, growth rates and
intraspecific interactions for both populations (Ni = 1, ki = 0.1 and
hii = 0.01, i = 1, 2). The VU1 method fits this dataset with excel-
lent precision, with coefficients of determination R2

VU1 � 0.9995.
These coefficients are defined in the usual way  as the normal-
ized measure of the distances between the data points y∗

i
(t) and

their respective predicted values yi(t). A VU2 fitting, on the other
hand, yields ˛2 → 0, and R2

VU2 → R2
VU1, i.e. VU2 reduces to VU1 (a

Gompertzian-like model is recovered). Here and in what follows the
nonlinear fits were performed using the “Trust-Region-Reflective”
algorithm in the MATLAB environment. This procedure allowed us
to obtain accurate values for the parameters. The high R2 values
confirm the suitability of the VUN classification as was pointed
out in Delsanto et al. (2008).  The A0 matrix obtained from this fit
yields the following information: the parasite population obtains
some benefit (a12 = 0.00062 > 0) from its host population, which
loses (a21 = − 0.00054 < 0) growth capability as the outcome of the
parasitic (or predatory) interaction. Since we chose h11 = h22 and
relatively weak interspecific interactions, it is not surprising that
the IGPs turn out to be quite close to each other. From this example,
we conclude that the assumed benefits (or disadvantages) of the
interspecific interaction are closely reproduced by the A0 matrix.

Fig. 2. Two examples of VU1 fits to Kar’s model (Kar, 2004): (a) In the absence of a
direct action of population 2 on 1 (h21 = 0), the A0 matrix confirms that species 1 must
be either a parasite or a predator (a12 > 0), while a21(< 0) quantifies the losses suffered
by  the parasitized (or predated) species. Here R2

1 = 0.99964 and R2
2 = 0.99959. (b)

Starting with arbitrary values of the model parameters, VU1  not only provides a
very good fit but also helps us to interpret the data (see text). Here R2

1 = 0.99848
and R2

2 = 0.99902.

The second illustrative dataset corresponds to an arbitrary
parameter setting: k1 = 0.1; k2 = 0.11; h11 = 0.011; h12 = 0.0001;
h21 = 0.001; h22 = 0.01, y01 = 1; y02 = 1.1. Since in this set-up both
populations have advantages and disadvantages, it is not easy to
see, at first glance, what the outcome of their interaction will be.
But the results of the VU1 fits, shown in Fig. 2b, help us to interpret
what happens in the system: the IGPs are of the order of the ki but
not equal to them. The IGPs are not simply Gompertzian growth
rates, but they must account for the environmental contributions
to growth and for the intraspecific interactions. The opposite signs
of the Direct Interaction Factors (DIFs) a12 and a21 reveal a para-
sitic (or predatory) behavior. These DIFs represent the net effect of
complex interactions on each population, in such a way  that the
parasite–host (or predator–prey) interpretation of the interaction
is clear-cut only if both populations have similar IGPs, Otherwise,
it is difficult to assign precise roles to each population.

These examples show how the VU1 method can not only fit data
points generated by a population model with no analytical solution,
but also help us to interpret the data.

3.2. Growth of a heterogeneous tumor spheroid: a VU2
application

Multicellular tumor spheroids (MTS) are spherical aggregations
of tumor cells that may  be grown in vitro under strictly controlled
conditions (Hamilton, 1998; Mueller-Kliesler, 2000). Since oxygen
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Fig. 3. VU2 fitting for a growth model of an implanted tumor spheroid. The dataset
starts at the onset of necrosis. The A0 matrix describes how the necrotic subspecies
benefits from the living cell population, which is negatively affected by the necrosis
and limited in its growth by necrotic cell generated inhibitors. We  set ˛2 = − 1/3
in  agreement with the assumptions of Condat and Menchón (2006) for diffusion-
mediated feeding. Here R2

1 = 0.99997 and R2
2 = 0.99981.

and nutrients cannot diffuse beyond a viable outer shell, spheroids
whose diameters exceed a few tenths of a millimeter develop a
necrotic core. Due to their simple geometries and the possibility to
produce them in large quantities, MTS  have become popular model
systems for cancer research. It was shown by Guiot and coworkers
that the growth of a homogeneous spheroid can be described in
terms of the ideas proposed in West et al. (2001) by a von Bertalanf-
fian growth equation (Guiot et al., 2003; Delsanto et al., 2004). This
description was later generalized to spheroids containing a necrotic
core by Condat and Menchón (2006) and Menchón and Condat
(2007). The time evolution of the live (mlive), necrotic (mdead) and
total (M = mlive + mdead) spheroid masses is given by the equations,

dM

dt
= cM

2
3 − b[M − (M

1
3 − m̃

1
3 )3], (16a)

dmdead

dt
=  M− 2

3 (M
1
3 − m̃

1
3 )2 dM

dt
, (16b)

dmlive

dt
= dM

dt
− dmdead

dt
, (16c)

where m̃ is the MTS  mass at the time the first dead cell appears,
and b and c are the metabolic rates defined in West et al. (2001).
The key assumptions used to obtain Eqs. (16b) and (16c) are the
validity of the growth description in West et al. (2001) and the con-
stancy of the thickness � of the outer live cancer cell shell, a feature
first predicted by Burton (1966) and then discussed by Groebe and
Mueller-Klieser (1996).  This equation has been shown to provide
a precise fit to Steel’s experimental data on implanted spheroids
(Steel, 1977) as reported by Guiot et al. (2006).  In Fig. 3 we present
synthetic datasets for the live and necrotic MTS  masses obtained
using the constant � assumption and Eq. (16b) with the parameters
given by Menchón and Condat (2007).  From the fit of experimen-
tal data: m = 0.03496 g, c = 0.2812 g1/3/day and b = 0.3515 1/day. The
data obtained by this procedure were then fitted by using VU2. In
the figure, the time t = 0 corresponds to the onset of necrosis (at ear-
lier times a single species was present). The excellent values of the
coefficients of determination R2 bear witness to the quality of the
fit. The resulting A0 matrix reveals that the necrotic cells (species 1)
benefit from the presence of the live cancer cells (species 2), while
the increase in the number of the latter is handicapped by their
transformation into necrotic cells (a12 > 0 and a21 < 0). This asym-
metry results in a decrease in the slope of the live cell population
(the large initial slope of this population results from a preceding
period without necrosis, i.e. without interspecies competition).

Table 1
VU1 simultaneous fittings to diameter datasets of mixed populations of E. globulus
(species 1) and A. mearnsii (species 2) trees (Forrester et al., 2004). The aij are the
elements of the dynamic matrix A0. The absolute value of ˛1 is the inverse of a joint
characteristic growth time. The y0j are the (extrapolated) initial diameters. The R2

j

(j = 1, 2) are the respective coefficients of determination.

100E:0A 75E:25A 50E:50A 25E:75A 0E:100A

a11 0.5566 0.5831 0.6923 0.5951 –
a22 – 0.7538 0.7328 0.6370 0.4877

a12 – −0.0029 −0.0078 −0.0092 –
a21 – −0.8056 −0.5910 −0.5295 –

y01 1.1603 1.1447 1.123 1.2444 –
y02 – 3.4779 3.1280 3.2797 2.8627

˛1 −0.2421 −0.2460 −0.2685 −0.2276 −0.3517

R2
1 0.9950 0.9905 0.99637 0.9904 –

R2
2 – 0.9891 0.9884 0.9867 0.9858

The results are exceedingly good: the VU2 fitting has a remark-
able regression parameter (R2 > 0.9998) for both datasets. The
smaller value of a22 as compared to a11 may  be at least partially
attributed to the generation of growth inhibitors by the necrotic
cells; these inhibitors modify the environment of the live cells,
constraining their growth.

Incidentally, Fig. 3 shows that the VU2 functions can adequately
fit points located approximately along a straight segment.

3.3. Dynamics of mixed plantations: an empirical case study

As a final example, we  use the VUN formalism to analyze the
growth dynamics of mixed plantations of Eucalyptus globulus and
Acacia mearnsii, which have been exhaustively studied by Forrester
et al. (2004, 2005b, 2006) and Richards et al. (2010).  It was  observed
that E. globulus heights, diameters and above-ground biomass are
higher in mixtures than in monocultures. Indeed, the diameters
and heights of both species increase nearly monotonically with the
degree of admixture. Since there is no obvious a priori mathemat-
ical model to describe the relevant tree-tree interactions, the VUN
appear to be especially well-suited to investigate them.

In the preceding examples, the Kar and spheroid models are, by
construction, in the VU1 and VU2 classes, respectively. In particu-
lar, the spheroid growth equations are based on the ideas of West
and co-workers, so that they are directly in VU2. Since there is no a
priori choice for the mixed plantations, the Occam’s razor criterion
suggests the use of VU1, which has one parameter less. Further-
more, according to our experience with the use of these functions,
VU1 generally works better when there are strong variations at
intermediate times.

The experimental values of tree diameters for three degrees of
admixture are depicted in Fig. 4, together with the correspond-
ing VU1 fits, as functions of time. As it is shown in Table 1, the R2

coefficients have very good values; indeed the p-value (the proba-
bility of having a value of R2 at least as good as the one obtained)
is lower than 0.001 in all cases, confirming the robustness of the
fitting method.

The A0 elements aij resulting from VU1 fits to diameter data are
presented in Table 1. The analysis of the matrix elements corre-
sponding to the various mixtures yields the following qualitative
features:

• The E. globulus IGP (a11) grows with the addition of A. mearnsii
(which we  interpret as an environment-mediated enhancement),
reaching a maximum for the 50:50 admixture; for higher admix-
tures it decreases. Thus, the 50:50 admixture appears to provide
the optimal conditions for E. globulus growth, although obser-
vation indicates that at the 11th year E. globulus diameters are
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Fig. 4. VU1 simultaneous fits to diameter datasets of mixed populations of E. glob-
ulus (species 1) and A. mearnsii (species 2) trees (Forrester et al., 2004). The species
proportions and the corresponding A0 matrices are specified in the figure. Other
parameters and the regression coefficients are given in Table 1. Note the strong
increase in E. globulus diameters for the acacia-rich mixtures (A. mearnsii also ben-
efits  from growing in mixture). Here R2

1 and R2
2 are given in Table 1.

slightly larger for 25:75 admixtures. A. mearnsii not only dilutes
the E. globulus concentration but also affects other growth-related
factors. For example A. mearnsii increases nutrient availability via
accelerated rates of nitrogen and phosphorus cycling (Forrester
et al., 2005a)  and symbiotic nitrogen fixation (Forrester et al.,
2007).

• The A. mearnsii IGP (a22) increases monotonically when the E.
globulus admixture increases. This result indicates that the main
effect of E. globulus is to decrease the intraspecific competition
between acacia trees.

Table 2
U1 (Gompertzian) fittings to diameter datasets taken separately for populations of
E.  globulus (gray) and A. mearnsii (white) inside a mixture.

100E:0A 75E:25A 50E:50A 25E:75A 0E:100A

a0E 0.5566 0.5470 0.6540 0.5503 –
a0A – 0.5700 0.6021 0.6200 0.4877

˛E −0.2421 −0.2370 −0.2610 −0.2180 –
˛A – -0.3350 −0.3823 −0.3994 −0.3517

y0E 1.1603 1.1996 1.1590 1.2965 –
y0A – 3.0952 2.8337 2.6608 2.8627

R2
E

0.9950 0.9900 0.9960 0.9905 –

R2
A

– 0.9900 0.9872 0.9898 0.9858

• As noted before, the negative values of a12 and a21 can be inter-
preted as representing a negative direct influence of the presence
of one species on the growth of the other. Since the increase in
the A. mearnsii IGP is bigger than that of E. globulus IGP, they com-
pensate their bigger DIF losses (|a12| < |a21|). The large negative
value of a21 is probably responsible for the fact that the E. globu-
lus diameter eventually overtakes that of A. mearnsii for the 75%
acacia admixtures.

• The absolute value of the parameter ˛1, which is the inverse of
a joint characteristic growth time, does not change much with
the degree of admixture. It has a weak maximum for the 50:50
admixture and then decays, in accordance with the observation
that the diameters of 25:75 Eucalyptus trees take longer to reach
their maximum asymptotic value. However, we  notice that ˛1 is
only slightly bigger than the ˛E values resulting from a U1 (purely
Gompertzian) fit to the E. globulus data (see Table 2). The value of
˛1 is always determined by the slowest-growing species.

A completely similar analysis can be carried out for the height
data from (Forrester et al., 2004). After noting that the diame-
ters of both tree species increase due to the admixture, Forrester
et al. (2004) interpreted this as meaning that the weakening of the
intraspecific interaction (due to the reduction in the tree density
of each species) dominates the direct interspecific effect. A similar
observation had been previously made by Debell et al. (1997),  who
explained the increase in height and diameter of Eucalyptus saligna
when mixed with Albizia falcataria by the reduction in intraspecific
competition between E. saligna trees and nutrient status enhance-
ment. This interpretation is also consistent with theoretical results
indicating that when species coexist competition is stronger within
than between forest tree species (Clark, 2010). This is all in agree-
ment with the VUN interpretation of the experiment.

The advantages of the VUN can be put into perspective if we
compare Table 1 with the data shown in Table 2. In this Table we
present the results of separate, species specific U1 (Gompertzian)
fittings for each species to the same datasets as used for Table 1. The
monocultures (columns 1 and 5) have the same parameter values
as in Table 1 because the VUN reduce to separate UN  equations in
this limit. The corresponding solutions have the form,

yj(t) = y0j exp

[
−a0j

˛j

(
exp

(
t

˛j

)
− 1

)]
, (17)

where the index j stands for E (E. globulus) or A (A. mearnsii). Because
there are no crossed terms in these fittings, the modifications intro-
duced by changing the degree of admixture are collected in the
individual parameters for each species. All the results presented in
Table 2 are compatible with observation. For instance, the inverse
characteristic time |˛E| is smaller than |˛A|, in agreement with
the observation that E. globulus grows over longer periods than
A. mearnsii. However, these results do not reveal anything new
about the system, because the simple U1 model does not allow
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us to discriminate the origin of the interactions. If VU1 fittings are
performed instead, as in Table 1, the interspecific interactions are
separated from the intraspecific ones, and new, useful information
can be extracted.

4. Possible extensions

In the preceding section we have worked out examples where
two agents are jointly growing, but it is possible to describe in detail
interactions between three or more agents. In the case of an n-agent
system, we can obtain 3n(n−1) possible interaction combinations by
modifying the signs of the nondiagonal elements of the dynamic
matrix, or taking some of them equal to zero. For instance, if all non-
diagonal matrix elements are positive, we will have a completely
synergistic interaction where all agents benefit from the presence
of the other agents. The possible applications of the many agent
system deserve a more detailed study.

Although the main goal of the UN formalism is to classify
joint growth using a universal framework, the natural emergence
of interaction parameters could be useful to understand other
biology-related problems. An intriguing possibility is to apply the
method developed here to those problems in evolutionary biol-
ogy and ecology where an outcome can be influenced by the
interactions involved in the competition for resources in a given
ecosystem. For instance, both Life History Theory (LHT) (Stearns,
2000) and Evolutionary Game Theory (EGT) (Argasinski, 2006)
address the problem of evolution by following the adaptation of
a (physiological, morphological or strategic) trait to the environ-
mental conditions. The populations involved in such studies might
grow until they reach a stable state in which the coexistence of the
best strategies is possible. But LHT does not say what happens dur-
ing the fixation process for the involved traits. Indeed, in Stearns
(2000),  the author writes: “One limitation of optimality theory is
that it provides no opportunity to consider what happens when two
or more life history phenotypes compete with each other within a
population”. If a given trait in LHT becomes fixed, it could be due to
an (interspecific) advantage over the others or because it weakens
some intraspecific competition process. In EGT, the pay-off matrix,
which determines the interaction between (intraspecific and inter-
specific) strategies, remains constant in time, while the A0 matrix
contains the initial conditions for the temporal evolution of the
interaction. Since the VUNs are adequate to make predictions on the
outcome of the interactions between specimens sharing an envi-
ronment, it could evolve into a useful tool to work in the framework
of LHT and EGT.

In summary, the vector version of the Phenomenological Uni-
versalities formalism presented here is an adequate framework for
studying the joint growth of interacting agents, admitting direct
and indirect, i.e.,  environment mediated, influences. It leads to a
natural generalization of the usual ontogenetic growth laws whose
power and convenience have been exhibited through several exam-
ples, including the characterization and interpretation of a concrete
ecological system.
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