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1. Introduction

In [7] M. Dunn began the study of Positive Modal Logic, i.e. modal logic in the propositional language
with only the logical symbols∧,∨,�,♦,⊥,⊤, that is, the negation-free, or positive, propositional modal
language. Since this language lacks a conditional, the systems of Positive Modal Logic, in contrast
with the usual modal systems, are not defined as sets of theorems but as consequence relations, or,
equivalently, as sets of sequents with certain closure conditions. This second way of defining them
suggests that sequents are the syntactic objects that will express semantic constrains. The minimum
system of Positive Modal Logic, calledSK+ in the present paper, is the(∧,∨,�,♦,⊥,⊤)-fragment
of the minimum normal modal logicK with local consequence, that is, the relation between both is
the following one: for any set of negation-free modal formulasΓ and any negation-free modal formula
ϕ, ϕ is deducible fromΓ in SK+ iff ϕ is a local consequence (with the usual Kripke semantics) of
Γ. The minimum system of Positive Modal Logic is also the(∧,∨,�,♦,⊥,⊤)-fragment of a suitable
intuitionistic modal logic.

Extensions ofSK+ can be obtained by adding new sequents. Moreover, sequents can be used to
define clases of frames. For instance the class of frames where the sequent�p ⊢ ��p is valid is the
class of transitive frames and so is the class of sequents where♦♦p ⊢ ♦p is valid. Therefore the notions
of validity of a sequent in a frame and in a model are of importance for the development of Positive
Modal Logic. It seems then natural to ask for sequents in the negation-free modal language the questions
typical of the model theory of modal logic. We address some ofthis questions in the present paper. In it
we develop some of the model theory for Positive Modal Logic along the yet standard lines of the model
theory for classical normal modal logic, see [1], [9], [13],[14], introducing the basic tools needed to
generalize the main results obtained for classical modal logic.

One of the main tools in the model theory of classical modal logic are bisimulations. In our way to
define positive bisimulations (p-bisimulations for short)in order to obtain preservation and definability
results for negation-free modal sequents we have come to thenotion of directed simulation also intro-
duced in [12] where N. Kurtonina and M. De Rijke also adress the problem of defining for the setting
of the negation-free modal language a suitable analog of bisimulations and where related results to ours
are obtained for negation-free modal formulas instead of sequents. A positive bisimulation between a
modelM1 and a modelM2 is the intersection of a directed simulation betweenM1 andM2 and the
inverse of a directed simulation betweenM2 andM1, in the sense of [12]. The results for sequents are
very natural in the context of Positive Modal Logic since, aswe said, sequents are what correspond to
conditions on frames and models, as witnessed by the examplementioned before. The standard trans-
lation of modal formulas into first-order formulas can be extended to sequents in a straightforward way,
and, therefore, sequents can be used to express first-order properties of models. From this perspective
we prove, among other things, a Keisler-Shelah type theoremthat says that two pointed models satisfy
the same negation-free modal sequents iff they have p-bisimilar ultrapowers.

The paper is divided into six sections. In the preliminariessection, the semantics for Positive Modal
Logic is defined as well as the minimun deductive system. Section 3 is devoted to introduce the no-
tion of positive bisimulation. In Section 4 the concepts of m-saturated model and of replete model are
generalized to PML and the notion of positive Hennessy-Milner class is introduced. Moreover, positive
maximal Hennessy-Milner classes are discused. Section 5 presents the already mentioned Keisler-Shelah
type theorem for positive bisimulations, a characterization of the first-order formulas invariant for pos-
itive bisimulations, two definability theorems by positivemodal sequents for classes of pointed models
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and a separation theorem. Finally in Section 6 we justify that all the results of the paper can be adapted
to the new semantics for PML introduced in [5].

2. Preliminaries

The negation-free, or positive, modal languageLK+ is defined by using a denumerable set of proposi-
tional variablesV ar = {p0, p1, . . . , pn, . . .}, the binary connectives∨ and∧, two propositional constants
⊥ and⊤, and two unary modal operators� and♦. The set of formulas as well as the formula algebra are
denoted byFm. We will refer indistinctly to the variables byp, q, . . . A substitutionis any homomor-
phism from the formula algebra into itself. Asequentis a pair(Γ, ϕ), usually denoted byΓ ⊢ ϕ, where
Γ is a finite set of formulas andϕ is a formula. Asubstitution instanceof a sequentΓ ⊢ ϕ is any sequent
σ[Γ] ⊢ σ(ϕ) obtained fromΓ ⊢ ϕ by a substitutionσ. A (finitary) deductive systemis a set of sequents
S that satisfies the following conditions:

1. If ϕ ∈ Γ, thenΓ ⊢ ϕ ∈ S.

2. If Γ ⊢ ϕ ∈ S and for everyψ ∈ Γ, ∆ ⊢ ψ ∈ S, then∆ ⊢ ϕ ∈ S.

3. If Γ ⊢ ϕ ∈ S, then any of its substitution instances belongs toS.

From (1) and (2) it follows that:

(4) If Γ ⊢ ϕ ∈ S then for anyψ, Γ ∪ {ψ} ⊢ ϕ ∈ S.

We say that a formulaϕ is deduciblein a deductive systemS from a set of formulas∆, in symbols
∆ ⊢S ϕ, if there is a finite set of formulasΓ ⊆ ∆ such that the sequentΓ ⊢ ϕ belongs toS. A
deductive systemS ′ is anextensionof a deductive systemS if S ⊆ S ′. Deductive systems are frequently
axiomatized by Gentzen style calculi with all the structural rules. Any such Gentzen calculus defines a
deductive system, the one whose elements are the derivable sequents.

In [7] and [5] the minimum system of Positive Modal Logic is introduced. It is the negation-free
modal fragment of the minimum normal modal logicK with the local consequence relation. In this
paper we call itSK+. In [5] that deductive system is axiomatized by means of the Gentzen calculusGm

with the following rules:

ϕ ⊢ ϕ ⊢ ⊤ ♦⊥ ⊢ ⊥

Γ ⊢ ϕ

Γ, ψ ⊢ ϕ

Γ ⊢ ⊥

Γ ⊢ ϕ

Γ ⊢ ϕ Γ, ϕ ⊢ ψ

Γ ⊢ ψ

Γ, ϕ, ψ ⊢ α

Γ, ϕ ∧ ψ ⊢ α

Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ ϕ ∧ ψ

Γ, ϕ ⊢ α Γ, ψ ⊢ α

Γ, ϕ ∨ ψ ⊢ α

Γ ⊢ ϕ

Γ ⊢ ϕ ∨ ψ

Γ ⊢ ψ

Γ ⊢ ϕ ∨ ψ

[�♦]
Γ, ϕ ⊢ ψ ∨ α

�Γ,♦ϕ ⊢ ♦ψ ∨ ♦α
[♦�]

Γ ⊢ ϕ ∨ ψ

�Γ ⊢ �ϕ ∨ ♦ψ
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and some of its extensions are studied obtaining completeness theorems and some correspondence results
for a frame semantics introduced there.

The pairs of sequentsϕ ⊢ ψ andψ ⊢ ϕ are denoted byϕ ⊣⊢ ψ. The sequents

1. � (ϕ ∧ ψ) ⊣⊢ �ϕ ∧�ψ,

2. ♦ (ϕ ∨ ψ) ⊣⊢ ♦ϕ ∨ ♦ψ,

3. � (ϕ ∨ ψ) ⊢ �ϕ ∨ ♦ψ,

4. �ϕ ∧ ♦ψ ⊢ ♦ (ϕ ∧ ψ),

5. �⊤ ⊣⊢ ⊤

6. ♦⊥ ⊣⊢ ⊥

are derivable sequents ofGm and the rules

Γ ⊢ ϕ

�Γ ⊢ �ϕ

Γ ⊢ ϕ

♦Γ ⊢ ♦ϕ

are derived rules. We will call a deductive system that is an extension ofSK+ normal if it is closed under
the rules of the Gentzen calculus. We consider only normal deductive systems.
A frame is a relational structureF = 〈X,R〉 whereX 6= ∅ andR is a binary relation onX. Given a
binary relationR on a setX, let for x ∈ X,

R(x) = {y ∈ X | (x, y) ∈ R}.

The power set of a setX will be denoted byP(X).
A valuationV on a frameF = 〈X,R〉 is a functionV : V ar → P (X). A valuationV can be

extended recursively to the set of all formulas by means of the following clauses

1. V (⊥) = ∅ , V (⊤) = X

2. V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ), V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ)

3. V (�ϕ) = {x ∈ X : R (x) ⊆ V (ϕ)},

4. V (♦ϕ) = {x ∈ X : R (x) ∩ V (ϕ) 6= ∅}.

A modelis a pairM = 〈F , V 〉, whereF is a frame andV is a valuation on it. For a setΓ ⊆ Fm, we
write V (Γ) =

⋂

ϕ∈Γ
V (ϕ), if Γ is non-empty, andV (Γ) = X, if Γ = ∅.

Let M = 〈F , V 〉 be a model andx ∈ X. The notions of truth at a point, validity in a model and
validity in a frame for formulas and sequents are defined as follows:

• ϕ is true at pointx in a model〈F , V 〉, in symbols〈F , V 〉 �x ϕ, if x ∈ V (ϕ).

• Γ ⊢ ϕ is true at pointx in a model〈F , V 〉, in symbols〈F , V 〉 �x Γ ⊢ ϕ, if x 6∈ V (Γ) or
x ∈ V (ϕ).

• ϕ is valid in the model〈F , V 〉, in symbols〈F , V 〉 � ϕ, if V (ϕ) = X.

• Γ ⊢ ϕ is valid in the model〈F , V 〉, in symbols〈F , V 〉 � Γ ⊢ ϕ, if V (Γ) ⊆ V (ϕ).

The deductive systemSK+ is defined as follows: for every sequentΓ ⊢ ϕ, Γ ⊢ ϕ ∈ SK+ iff Γ ⊢ ϕ
is valid in every model. The proof of the fact that the GentzencalculusGm axiomatizesSK+ can be
obtained as in [7].
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Given a frame〈X,R〉 we consider the operations�R and♦R defined on subsets ofX by

�R(U) = {x ∈ X | R(x) ⊆ U},

♦R(U) = {x ∈ X | R(x) ∩ U 6= ∅}.

For each subsetD ofP(X) we define the subsets�−1R (D)={U ∈ P(X) | �R(U) ∈ D}}, and♦−1R (D) =
{U ∈ P(X) | ♦R(U) ∈ D}}. Given a model〈F , V 〉 the setDV = {V (ϕ) | ϕ ∈ Fm} of subsets of
X is closed under intersection, union and containsX and∅; therefore it is a bounded distributive lat-
tice of sets. Moreover, it is closed under the operations�R and♦R, because for every formulaϕ,
�R(V (ϕ)) = V (�ϕ) and♦R(V (ϕ)) = V (♦ϕ).

For every model〈F , V 〉 we define the functionH from the setX into the set of prime filtersX(DV )
of the bounded distributive latticeDV by

H(x) = {V (ϕ) | x ∈ V (ϕ)}.

Definition 2.1. We will say that a model〈F , V 〉 is surjectiveif its functionH is ontoX(DV ).

Given a model〈F , V 〉 we define a new model with universe the setX(DV ) and binary relation the
relationRV onX(DV ) defined by

〈P,Q〉 ∈ RV iff �−1R (P ) ⊆ Q ⊆ ♦−1R (P ),

for everyP,Q ∈ X(DV ). Notice that

〈P,Q〉 ∈ RV iff for all ϕ, (V (�ϕ) ∈ P ⇒ V (ϕ) ∈ Q) and(V (ϕ) ∈ Q⇒ V (♦ϕ) ∈ P ).

The valuation of the new model is defined by

VDV
(p) = {P ∈ X(DV ) | V (p) ∈ P}.

The model〈X(DV ), RV , VDV
〉 will be called the valuation modelof 〈X,R, V 〉. It is not difficult to

prove the following lemma.

Lemma 2.1. LetM be a model. Then for anyϕ ∈ Fm,

VDV
(ϕ) = {P ∈ X(DV ) | V (ϕ) ∈ P} .

Proof:
The proof is by induction on the complexity ofϕ. We consider only the case�ϕ. The case♦ϕ is similar
and the other cases are easy.
Let P ∈ X(DV ). If V (�ϕ) ∈ P and(P,Q) ∈ RV then, as�R(V (ϕ)) ∈ P , V (ϕ) ∈ Q. Therefore,
by the inductive hypothesis,Q ∈ VDV

(ϕ). HenceP ∈ VDV
(�ϕ). For the other direction suppose that

V (�ϕ) /∈ P . The set�−1R (P ) = {U ∈ DV | �R (U) ∈ P} is a filter ofDV . Let us consider the ideal
I generated by the set{V (ϕ)} ∪ {V (ψ) | V (ψ) 6∈ ♦−1R (P )}. We prove that�−1R (P ) ∩ I = ∅. Suppose
the contrary. Then there existsU ∈ �−1R (P ) such thatU ⊆ V (ϕ) ∪ V (ψ), with V (ψ) 6∈ ♦−1R (P ).
Then,�R (U) ⊆ V (�(ϕ ∨ ψ)). Since the sequent�(ϕ ∨ ψ) ⊢ �ϕ ∨ ♦ψ is valid in every model,
�R (U) ⊆ V (�ϕ ∨ ♦ψ). Therefore, since by assumptionV (�ϕ) 6∈ P , V (♦ψ) = ♦RV (ψ) ∈ P ,
which is impossible. Now, by Birkhoff-Stone’s theorem there is a prime filterQ ∈ X(DV ) such that
�−1R (P ) ⊆ Q ⊆ ♦−1R (P ) andV (ϕ) /∈ Q. Therefore,(P,Q) ∈ RV . Hence,P /∈ VDV

(�ϕ). ⊓⊔
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3. Positive Bisimulations

In classical modal logic bisimulations provide a tool to establish an equivalence relation between pointed
models. Modal formulas are invariant under bisimulations and two bisimilar pointed models are modally
equivalent. Moreover, for finite pointed models (and some other classes of models) the relations of
bisimilarity and modal equivalence are equal. In some respects, the bisimilarity relation plays for modal
logic a similar role the partial isomorphism relation playsfor first-order logic (with equality) and the
notion of partial relativeness plays for equality-free logic ([4]). One theorem that sustains this claim
is de Rijke’s theorem in [13] that says that two pointed models are modally equivalent iff they have
bisimilar ultrapowers.

In this section we introduce a notion of positive bisimulation for Kripke models with the help of
directed simulations (defined in Definition 3.1). A positivebisimulation is the intersection of two di-
rected simulations, an up-simulation and a down-simulation. Directed simulations have been introduced
independently of us by N. Kurtonina and M. de Rijke in [12]. The directed simulations of [12] are our
up-simulations and their inverses our down-simulations. We will obtain analogous results to the ones for
classical modal logic but now sequents will play the role of formulas.

In order to establish some facts on the just promised notion we need some notations. LetM =
〈F , V 〉 be a model and letx ∈ X. We define the set

FMx = {ϕ ∈ Fm | x ∈ V (ϕ)} .

We also say (abusing notation) that a sequentΓ ⊢ ϕ ∈ FMx iff x 6∈ V (Γ) or x ∈ V (ϕ).
Consider two modelsM1 andM2 and pointsx ∈ X1 andy ∈ X2. We say thatx andy aremodally

equivalent for positive formulas, p-modally equivalent for short, and in symbolsx ≈p y, if FM1
x =

FM2
y . Notice that ifx andy are p-modally equivalent, then for any sequentΓ ⊢ ϕ, Γ ⊢ ϕ ∈ FM1

x iff
Γ ⊢ ϕ ∈ FM2

y . We will also say that two modelsM1 andM2 arep-modally equivalentif the sets of
sequents valid in them are the same.

Definition 3.1. Let M1 andM2 be two models. A relationB→ ⊆ X1 ×X2 is anup-simulationif the
following conditions hold:

V1 If (a, b) ∈ B→, thena ∈ V1 (p) implies thatb ∈ V2 (p) , for everyp ∈ V ar.

F If (a, b) ∈ B→ and(a, x) ∈ R1, then there existsy ∈ X2 such that(b, y) ∈ R2 and(x, y) ∈ B→,
i.e.,(B→)−1 ◦R1 ⊆ R2 ◦ (B

→)−1.

B If (a, b) ∈ B→ and(b, y) ∈ R2, there existsx ∈ X1 such that(a, x) ∈ R1 and(x, y) ∈ B→, i.e.,
B→ ◦R2 ⊆ R1 ◦B

→.

A down-simulationis a relationB← ⊆ X1 ×X2 such that conditionsF and B above hold and also the
condition:

V2 If (a, b) ∈ B←, thenb ∈ V2 (p) implies thata ∈ V1 (p) , for everyp ∈ V ar.

A positive bisimulation, p-bisimulation for short, is a relationB ⊆ X1 × X2 for which there exits an
up-simulationB→ and a down-simulationB← such thatB = B→ ∩B←.
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Notice that the inverse of an up-simulation is a down-simulation and conversely. The notion of
positive bisimulation does not coincide with the usual notion of bisimulation between models, as defined
for example in [2]. Clearly, any bisimulation (in the usual sense) between two models is a p-bisimulation,
because it is at the same time an up-simulation and a down-simulation. However the converse does not
hold as shown in Example 3.3 in [12].

LetM1 andM2 be models and letx ∈ X1 andy ∈ X2. We say thatx andy areup-similar (down-
similar) if there exists an up-simulation (down-simulation)B→ (B←) betweenM1 andM2 such that
(x, y) ∈ B→ ((x, y) ∈ B←). We shall say thatx andy arep-bisimilar, if there is a p-bisimulationB
such that(x, y) ∈ B. In this case we write

M1, x↔pM2, y.

We will also say that two modelsM1 andM2 arep-bisimilar if there is a p-bisimulationB such that
its domain isX1 and its range isX2. Such a p-bisimulation is said to be atotal p-bisimulation. The
p-bisimilarity relation is symmetric because the inverse of a p-bisimulation is a p-bisimulation. It is also
easy to see that it is transitive.

Lemma 3.1. Let M1 andM2 be models. If there is an up-simulationB→ betweenM1 andM2, then
for all (a, b) ∈ B→, FM1

a ⊆ FM2

b . And if there is a down-simulationB← betweenM1 andM2, then
for all (a, b) ∈ B←, FM2

b ⊆ FM1
a .

Proof:
The proof is by induction on the complexity of the formulas. The non-modal cases are standard. We
will only deal with the modal cases andB→. Let �ϕ ∈ FM1

a and assume that(a, b) ∈ B→ and that
(b, y) ∈ R2. AsB→ is an up-simulation, by conditionB there is an elementy ∈ X2 such that(b, y) ∈ R2

and(x, y) ∈ B→. Sincex ∈ V1 (ϕ) and(x, y) ∈ B→, by the inductive hypothesis,y ∈ V2 (ϕ). Thus,
for all y ∈ R2 (b), y ∈ V2 (ϕ), i.e.,b ∈ V2 (�ϕ). The case of formulas of the form♦ϕ can be dealt with
similarly, using conditionF. ⊓⊔

Corollary 3.1. Let M1 andM2 be models and letB be a p-bisimulation between them such that
(a, b) ∈ B. Thena andb are p-modally equivalent and therefore, for every sequentΓ ⊢ ϕ, Γ ⊢ ϕ ∈ FM1

a

iff Γ ⊢ ϕ ∈ FM2

b .

From this corollary the next fact follows immediately.

Corollary 3.2. Any two p-bisimilar models are p-modally equivalent.

4. Saturation

Our goal in this section is to generalize for the positive modal language the well known notion of m-
saturated model ([11]), introduced by K.Fine in [8] under the label of modally saturated2 , its equivalent
of image compact model ([3]), and the also well known notion of replete model ([9]). Each one of these
notions can be generalized in (at least) two ways depending on the topologies we consider. Given a
model we can consider the topology having as a subbasis the family of the sets of points that are values
of negation-free formulas or are their complements, and demand that the sets of the formR(x) have to
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be compact in this topology. We can also consider two topologies, the topology having as a subbasis the
sets of points that are the values of negation-free formulas, and the topology having as a subbasis the
complements of these sets, and demand that the sets of the form R(x) are compact in both topologies.
Accordingly, we introduce the notions of positive m-saturated model (and its equivalent ofR-compact
model), weaklyR-compact model, positive replete model and weakly positivereplete model.

We will also introduce in this section the positive Hennessy-Milner classes and show that each one
of the classes of R-compact models, weaklyR-compact models, positive replete models and weakly
positive replete models are one of them. Moreover, we will study the maximal positive Hennessy-Milner
classes and see that the class of weaklyR-compact models is a maximal positive Hennessy-Milner class
and that it can be obtained by closing each one of the classes of R-compact models, positive replete
models or weakly positive replete models under the operations of taking positive generated submodels
and taking p-bisimilar models.

4.1. Positive m-saturated models

LetM be a model and letΓ ⊆ Fm. Recall thatV (Γ) =
⋂

ϕ∈Γ
V (ϕ) whenΓ is non-empty andV (Γ) = X

whenΓ = ∅. We will write
V (Γ)ic =

⋂

{X \ V (ϕ) | ϕ ∈ Γ} ,

whenΓ is non-empty, andV (Γ)ic = X, whenΓ = ∅.

Definition 4.1. Let M = 〈X,R, V 〉 be a model. We say that it is apositive m-saturated model, a p-m-
saturated model, for short, if for allx ∈ X and for all setsΓ,∆ ⊆ Fm it holds thatR (x) ∩ V (Γ) ∩
V (∆)ic 6= ∅ whenever for all finiteΓ0 ⊆ Γ and all finite∆0 ⊆ ∆,R (x) ∩ V (Γ0) ∩ V (∆0)

ic 6= ∅.

Clearly the notion of p-m-saturated model introduced in theabove definition is a generalization of
the known notion of m-saturated model for classical modal logic. Therefore any m-saturated model is a
p-m-saturated model.

Analogoulsly as it can be done with the notion of m-saturatedmodel, the notion of positive m-
saturated model can be reformulated in topological terms. Let 〈F , V 〉 be a model. Let us consider the
family of sets

{V (ϕ) | ϕ ∈ Fm} ∪ {X \ V (ϕ) | ϕ ∈ Fm},

and the topologyT onX generated by taking this set as a subbasis. By the Alexander’s subbasis theorem,
to say that a setY ⊆ X is compact is equivalent to saying that for any two setsΓ,∆ of formulas
such thatY ⊆

⋃

ϕ∈Γ

V (ϕ) ∪
⋃

ϕ∈∆

(X \ V (ϕ)) there are finite setsΓ′ ⊆ Γ and∆′ ⊆ ∆ such thatY ⊆
⋃

ϕ∈Γ′

V (ϕ) ∪
⋃

ϕ∈∆′

(X \ V (ϕ)).

Definition 4.2. We shall say that a model〈F , V 〉 isR-compactif for all x ∈ X the setR(x) is compact
in the topologyT , which is equivalent to saying that for allx ∈ X and all sets of formulasΓ,∆
such thatR(x) ⊆

⋃

ϕ∈Γ
V (ϕ) ∪

⋃

ϕ∈∆
(X \ V (ϕ)) there are finite setsΓ′ ⊆ Γ and∆′ ⊆ ∆ such that

R(x) ⊆
⋃

ϕ∈Γ′

V (ϕ) ∪
⋃

ϕ∈∆′

(X \ V (ϕ)).
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It is straighforward to show that this notion ofR-compact model is equivalent to the notion of p-m-
saturated model; we state this fact in the next theorem.

Theorem 4.1. For every modelM, M is p-m-saturated if and only ifM isR-compact.

Examples ofR-compact models are the image-finite models. Recall that a model 〈F , V 〉 is image-
finite if for all x ∈ X, R (x) is a finite set. Clearly, then, any open covering ofR(x) must have a finite
subcovering and therefore the image-finite models areR-compact.

The canonical models of the normal deductive systems of PML are alsoR-compact, which can be
proved using the next proposition. They are defined as follows. LetS be a normal deductive system of
Positive Modal Logic (see [5] or [7]). Atheory ofS is a set of negation-free modal formulasT such that
for any sequent∆ ⊢ ϕ ∈ S such that∆ ⊆ T , ϕ ∈ T . A theoryT of S is aprime theoryif for every
formulasϕ,ψ, if ϕ ∨ ψ ∈ T thenϕ ∈ T or ψ ∈ T . LetXS be the set of all prime theories ofS. Define
the binary relationRS in XS by

(T1, T2) ∈ RS iff {ϕ | �ϕ ∈ T1} ⊆ T2 ⊆ {ϕ | ♦ϕ ∈ T1},

for all T1, T2 ∈ XS , and the valuationVS by

VS(p) = {T ∈ XS | p ∈ T},

for all propositional variablesp. Then it follows that for every formulaϕ,

VS(ϕ) = {T ∈ XS | ϕ ∈ T}.

See [7] or [5] for a proof.

Proposition 4.1. Let 〈F , V 〉 be a surjective model such that for allx, y ∈ X, if (H(x),H(y)) ∈ RV ,
implies(x, y) ∈ R. Then〈F , V 〉 isR-compact.

Proof:
Let Γ,∆ be sets of formulas. Assume that for every finite setΓ0 ⊆ Γ and every finite set∆0 ⊆ Γ,

R(x) ∩
⋂

ϕ∈Γ0

V (ϕ) ∩
⋂

ϕ∈∆0

(X \ V (ϕ)) 6= ∅.

Consider the filterF of DV generated by the set�−1R (H(x)) ∪ {V (ϕ) : ϕ ∈ Γ} and the idealI of DV

generated by the set{V (ϕ) | V (ϕ) 6∈ ♦−1R (H(x))} ∪ {V (ϕ) : ϕ ∈ ∆}. Let us see thatF ∩ I = ∅. If
we suppose the contrary there areϕ,ψ, δ, ε such thatV (ϕ) ∈ �−1R (H(x)), ψ ∈ Γ, V (δ) 6∈ ♦−1R (H(x)),
ε ∈ ∆ andV (ϕ) ∩ V (ψ) ⊆ V (δ) ∪ V (ε). By assumption we haveR(x)∩ V (ψ)∩ (X \ V (ε)) 6= ∅. So,
there existsz ∈ R(x) such thatz ∈ V (ψ) andz 6∈ V (ε). SinceV (�ϕ) ∈ H(x), x ∈ V (�ϕ); therefore
R(x) ⊆ V (ϕ). Hencez ∈ V (ϕ)∩V (ψ). And sincez 6∈ V (ε), z ∈ V (δ). ThusR(x)∩V (δ) 6= ∅. Hence
V (♦δ)) ∈ H(x), which is absurd. We conclude thatF ∩ I = ∅. Then by Birkhoff-Stone’s Theorem
there isP ∈ X(DV ) such that(H(x), P ) ∈ RV , {V (ϕ) | ϕ ∈ Γ} ⊆ P and{V (ϕ) | ϕ ∈ ∆} ∩ P = ∅.
SinceH is surjective, lety ∈ X be such thatH(y) = P . Then, as(H(x),H(y)) ∈ RV , (x, y) ∈ R. So,
y ∈ R(x)∩

⋂

ϕ∈Γ
V (ϕ)∩

⋂

ϕ∈∆
(X \V (ϕ)); henceR(x)∩

⋂

ϕ∈Γ
V (ϕ)∩

⋂

ϕ∈∆
(X \V (ϕ) 6= ∅, as desired. ⊓⊔
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We can introduce a notion of positive descriptive model analogous to the one for classical modal
logic. A model〈X,R, V 〉 is apositive descriptive modelwhen the functionH is an isomorphism between
it and its valuation model〈X(DV ), RV , VDV

〉. Therefore positive descriptive models areR-compact.
Canonical models are a special kind of positive descriptivemodels.

The notion of image compact model can also be generalized in another way obtaining a weaker notion
than the one ofR-compactness by considering two topologies, one having as asubbasis the values of the
formulas and the other one having as a subbasis their complements.

Definition 4.3. A model〈F , V 〉 is weaklyR-compactif the following two conditions hold:

1. For everyx ∈ X and every set of formulasΓ such that for every finiteΓ′ ⊆ Γ,R(x)∩
⋂

ϕ∈Γ′

V (ϕ) 6=

∅, it also holds thatR(x) ∩
⋂

ϕ∈Γ

V (ϕ) 6= ∅.

2. For everyx ∈ X and every set of formulasΓ such that for every finiteΓ′ ⊆ Γ, R(x) ∩
⋂

ϕ∈Γ′

X \

V (ϕ) 6= ∅, it also holds thatR(x) ∩
⋂

ϕ∈Γ

X \ V (ϕ) 6= ∅.

Clearly, a model〈F , V 〉 is weaklyR-compact iff for everyx ∈ X, R(x) is a compact set in the
topology generated by{V (ϕ) | ϕ ∈ Fm} as a subbasis and is also a compact set in the topology
generated by{X \ V (ϕ) | ϕ ∈ Fm} as a subbasis. Therefore, everyR-compact model is weakly
R-compact.

An example of a weaklyR-compact model that is notR-compact is the following:

Example 4.1. Let p0, p1, p2, . . . , pn, . . . be an enumeration of the propositional variables and consider
the model whose universe is the setX := ω∪{a}, wherea 6∈ ω, whose relation isR = {〈a, n〉 : n ∈ ω}
and whose valuation is defined as follows:

V (pn) =

{

{n} if nis even

ω \ {n} if nis odd

The familyA of finite unions of sets in the collection

{{2n} | n ∈ ω} ∪ {ω \ {2n+ 1} | n ∈ ω} ∪ {{a}, ω, ∅}

is closed under finite intersections and under the operations♦R and�R, because forZ ⊆ X,

�R(Z) =

{

ω if ω 6⊆ Z

ω ∪ {a} if ω ⊆ Z

and

♦R(Z) =

{

ω if ω ∩ Z = ∅

{a} otherwise.

Therefore, the set{V (ϕ) : ϕ ∈ Fm} is a subset of this family. Each covering of the setR(a)(= ω)
by elements of the familyA has a finite subcovering, and each covering ofR(a) by complements of
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elements of the familyA has a finite subcovering. Therefore the model is weaklyR-compact. Moreover,
the covering

⋃

n∈ω

V (p2n) ∪
⋃

n∈ω

X \ V (p2n+1)

is a covering ofR(a) without any finite subcovering. Hence the model is notR-compact.

4.2. Replete models

Now we introduce the weakly positive replete models and the positive replete models. The definitions
are two generalizations of the definition of replete model give in [9].

Let 〈F , V 〉 be a model and let us consider the following property:

R For allx, y ∈ X if (H (x) ,H (y)) ∈ RV , then there are elementsz1, z2 ∈ X such thatz1, z2 ∈ R (x)
andH (z1) ⊆ H (y) ⊆ H (z2).

Definition 4.4. A model 〈F , V 〉 is a weakly positive replete modelif it satisfies conditionR and is
surjective.

The first result it is worth establishing relates the property of beingR-compact with the property of
satisfying conditionR.

Proposition 4.2. Any weaklyR-compact model〈F , V 〉 has propertyR.

Proof:
Assume that there are elementsx, y ∈ X such that(H (x) ,H (y)) ∈ RV . This implies thatR(x) 6= ∅.
Assume also that for allz ∈ R (x),H (z) * H (y). Then, for eachz ∈ R (x) there is a formulaϕz such
thatz ∈ V (ϕz) andy /∈ V (ϕz). ThenR (x) ⊆

⋃

z∈R(x)

V (ϕz) andy /∈
⋃

z∈R(x)

V (ϕz). Since the model

is weaklyR-compact, there is a finite sequencez1, z2, ..., zn of elements ofR (x) such thatR (x) ⊆
V (ϕz1)∪ . . .∪V (ϕzn) = V (ϕz1∨ . . .∨ϕzn) andy /∈ V (ϕz1∨ . . .∨ϕzn). ThenV (�(ϕz1∨ . . .∨ϕzn)) ∈
H (x) andV (ϕz1 ∨ . . . ∨ ϕzn) /∈ H (y). Since(H (x) ,H (y)) ∈ RV , V (ϕz1 ∨ . . . ∨ ϕzn) ∈ H (y),
which is not possible. ⊓⊔

Thus the models that satisfy the conditions in Proposition 4.1 are weakly positive replete models. A
typical example of weakly positive replete models are the positive descriptive models.

The next result shows that the weakly positive replete models are just the weaklyR-compact models
that are surjective.

Theorem 4.2. Let 〈F , V 〉 be a model. Then the following conditions are equivalent:

1. 〈F , V 〉 is weaklyR-compact and surjective.

2. 〈F ,D〉 is a weakly positive replete model.
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Proof:
That(1) implies(2) follows by Proposition 4.2. We prove that(2) implies(1). Assume thatx ∈ X and
let Γ be a set of formulas such that

R(x) ∩
{

V (ϕ) | ϕ ∈ Γ′
}

6= ∅,

for every finite subsetΓ′ of Γ. Let us consider the filterF generated by the set�−1R (H(x)) ∪ {V (ϕ) |
ϕ ∈ Γ} and prove that

F ∩ {V (ϕ) | V (ϕ) /∈ ♦−1R H(x)} = ∅ (4.1)

If we assume the contrary, letϕ, ψ, δ be such thatV (ϕ) ∈ �−1R (H(x)), ψ ∈ Γ, V (δ) 6∈ ♦−1R H(x) and
V (ϕ)∩V (ψ) ⊆ V (δ). By hypothesis,R(x)∩V (ψ) 6= ∅. So, letz ∈ R(x) be such thatz ∈ V (ψ). Since
V (ϕ) ∈ �−1R (H(x)), z ∈ V (ϕ). Thus,z ∈ V (ϕ) ∩ V (ψ) ⊆ V (δ). So,z ∈ V (δ) ∩ R(x), but this is
impossible becauseV (δ) 6∈ ♦−1R H(x). Therefore, as (4.1) holds, there is a prime filterP ∈ X(D) such
thatF ⊆ P andP ⊆ ♦−1R H(x). This implies that(H(x), P ) ∈ RV and{V (ϕ) | ϕ ∈ Γ} ⊆ P . SinceH
is surjective there is an elementy ∈ X such thatH(y) = P . So,(H(x),H(y)) ∈ RV andy ∈ V (ϕ) for
all ϕ ∈ Γ. As 〈F , V 〉 is replete, there arez1, z2 ∈ R(x) such thatH(z1) ⊆ H(y) ⊆ H(z2). But, as for
all ϕ ∈ Γ, y ∈ V (ϕ), then for allϕ ∈ Γ, z2 ∈ V (ϕ), and sincez2 ∈ R(x), thenz2 ∈ R(x) ∩

⋂

ϕ∈Γ
V (ϕ);

henceR(x) ∩
⋂

ϕ∈Γ
V (ϕ) 6= ∅.

The proof of the other condition in the definition of weaklyR-compact model is handled similarly con-
sidering the idealI generated by the set{V (ϕ) | V (ϕ) 6∈ ♦−1R (H(x))} ∪ {V (ϕ) | ϕ ∈ Γ} and proving
that�−1R (H(x)) ∩ I = ∅. ⊓⊔

In the light of this theorem there can be another generalization of the notion of replete model.

Definition 4.5. A model is apositive replete modelif it is R-compact and surjective.

Clearly every positive replete model is a weakly positive replete model. The converse does not
hold as follows from the fact that the model in Example 4.1 satifies conditionR. Indeed, for every
n,m, �−1R H(n) * H(m) because�−1R H(n) = A; therefore(H(n),H(m)) 6∈ RV . Moreover, for
everyn, H(a) 6⊆ ♦−1R H(n) because♦−1R H(n) = {∅, {a}}; therefore(H(a),H(n)) 6∈ RV . Finally
�−1R H(a) 6⊆ H(a) because�−1R H(a) = {Z ∈ A | ω ⊆ Z}; therefore(H(a),H(a)) 6∈ RV . Hence, if
(H(x),H(y)) ∈ RV thenx = a andy = m for somem, but in this casexRy.

An example of positive replete models are the positive descriptive models. Another interesting ex-
ample are the ultrapowers of a model by non-principal ultrafilters overω. Any such model is known to
be m-saturated (because it isω-saturated in the model-theoretic sense), therefore is p-m-saturated. It is
easy to see that it is surjective. We state this facts in a proposition for further use.

Proposition 4.3. LetM be any model and letU be any non-principal ultrafilter overω. The ultrapower
Mω/U is p-m-saturated and surjective, that is, replete.

The concepts of weaklyR-compact model, of surjective model and of model having property R, and
therefore the concept of weakly positive replete model, arepreserved by total p-bisimulations. This
shows that in a certain sense these concepts are the good generalizations of the classical concepts instead
of the concepts ofR-compact and positive replete that do not seem to be preserved under p-bisimulations.
To find an example showing this is an open problem.
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Proposition 4.4. Let M1 andM2 be two models and letB be a total p-bisimulation between them.
Then

1. M1 is weaklyR-compact iffM2 is weaklyR-compact.

2. M1 is surjective iffM2 is surjective.

3. M1 has propertyR iff M2 has propertyR.

Proof:
We prove only the implications from right to left. The other implications follow form the first ones
because the inverse of a p-bisimulation is a p-bisimulation. (The inverse of an up-simulation is a down-
simulation and conversely.) First of all assume thatB = B→ ∩ B← is a total p-bisimulation between
M1 andM2, whereB→ is an up-simulation andB← is a down-simulation.

(1) AssumeM1 is weaklyR-compact and letb ∈ X2 andΓ be a set of negation-free formulas such
thatR2(b) ∩

⋂

ϕ∈Γ′ V2(ϕ) 6= ∅ for every finiteΓ′ ⊆ Γ. SinceB is total, leta ∈ X1 be such that
(a, b) ∈ B. Suppose thatΓ′ ⊆ Γ is finite. Takey ∈ R2(b) ∩

⋂

ϕ∈Γ′ V2(ϕ). Then, asbR2y and
(a, b) ∈ B←, there isx ∈ X1 such thataR1x and (x, y) ∈ B←. Therefore, sinceB← is a down-
simulation,x ∈

⋂

ϕ∈Γ′ V1(ϕ). We can conclude thatR1(a) ∩
⋂

ϕ∈Γ′ V1(ϕ) 6= ∅ for every finiteΓ′ ⊆ Γ.
Therefore,R1(a) ∩

⋂

ϕ∈Γ V1(ϕ) 6= ∅. Let x ∈ X1 be such thataR1x andx ∈
⋂

ϕ∈Γ V1(ϕ). As
(a, b) ∈ B→, there isy ∈ X2 such thatbR2y and(x, y) ∈ B→. Then,y ∈

⋂

ϕ∈Γ V2(ϕ), becauseB→

is an up-simulation. Hence,R2(b) ∩
⋂

ϕ∈Γ V2(ϕ) 6= ∅, as desired. The proof of the other condition of
weakR-compactness forM2 is similar and left to the reader.

(2) Assume thatM1 is surjective. LetP be a prime filter ofDV2
= {V2(ϕ) | ϕ ∈ Fm}. Define

Q = {V1(ϕ) | V2(ϕ) ∈ P}. We prove thatQ is a prime filter ofDV1
. For this, we prove first that

V2(ϕ) ⊆ V2(ψ) implies V1(ϕ) ⊆ V1(ψ). Using this fact it is easy to check thatQ has the desired
property. Assume thatV2(ϕ) ⊆ V2(ψ) anda ∈ V1(ϕ). SinceB is total, let b ∈ X2 be such that
(a, b) ∈ B. Then, asB is a p-bisimulation,b ∈ V2(ϕ); henceb ∈ V2(ψ) and, therefore,a ∈ V1(ψ).
Now, sinceM1 is surjective, leta ∈ X1 such thatH1(a) = Q. SinceB is total, letb ∈ X2 such that
(a, b) ∈ B. ThenV2(ϕ) ∈ H2(b) iff b ∈ V2(ϕ) iff a ∈ V1(ϕ) iff V1(ϕ) ∈ H1(a) iff V1(ϕ) ∈ Q iff
V2(ϕ) ∈ P . Therefore,H2(b) = P and we can conclude thatM2 is surjective.

(3) Assume thatM1 verifies propertyR. In order to prove thatM1 verifies also this property, as-
sume thata2, b2 ∈ X2 are such that(H2(a2),H2(b2)) ∈ RV2

. SinceB is total, leta1, b1 ∈ X1 be
such that(a1, a2), (b1, b2) ∈ B. First we prove that(H1(a1),H1(b1)) ∈ RV1

. Assume thatV1(ϕ) ∈
�−1R1

(H1(a1)). ThenV1(�ϕ) ∈ H1(a1). Therefore,a1 ∈ V1(�ϕ). Hencea2 ∈ V2(�ϕ), which im-
plies thatb2 ∈ V2(ϕ), because(H2(a2),H2(b2)) ∈ RV2

. Thenb1 ∈ V1(ϕ) andV1(ϕ) ∈ H1(b1).
Similarly we can prove thatH1(b1) ⊆ ♦−1R1

(H1(a1). So, (H1(a1),H1(b1)) ∈ RV1
. Now we apply

the assumption thatM1 verifies propertyR to obtainx1, y1 ∈ X1 such thata1R1x1, a1R1y1 and
H1(x1) ⊆ H1(b1) ⊆ H1(y1). Since(a1, a2) ∈ B← anda1R1x1 there isx2 ∈ X2 such thata2R2x2
and(x1, x2) ∈ B←. Similarly, asa1R1y1 there isy2 ∈ X2 such thata2R2y2 and(y1, y2) ∈ B→. Now
we prove thatH2(x2) ⊆ H2(b2) ⊆ H2(y2). If x2 ∈ V2(ϕ) thenx1 ∈ V1(ϕ), sob1 ∈ V1(ϕ) and hence
b2 ∈ V2(ϕ). Moreover, ifb2 ∈ V2(ϕ), b1 ∈ V1(ϕ) and soy1 ∈ V1(ϕ). Thereforey2 ∈ V2(ϕ). We
conclude thatM2 verifies propertyR. ⊓⊔
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Positive Hennessy-Milner classes

LetM1 andM2 be two models and letB ⊆ X1×X2 be a p-bisimulation. We proved that if(x, y) ∈ B
thenFM1

x = FM2
y , i.e., p-bisimilarity implies positive modal equivalence. The converse direction does

not hold in general. However, if the models are weaklyR-compact, p-bisimilarity does coincide with
positive modal equivalence. In [10] and [11] Goldblatt and Hollenberg, respectively, investigate the
Hennessy-Milner classes of models, i.e., classes for whosemembers the modal equivalence relation is a
bisimulation. We will study the similar notion for positivemodal logic.

Definition 4.6. LetM be a class of models. We say thatM is aPositive Hennessy-Milner class, or PHM-
class for short, if for every two modelsM1, M2 ∈ M and for any two elementsx ∈ X1 andy ∈ X2

such thatFM1
x = FM2

y it holds thatM1, x↔pM2, y. This condition is equivalent to saying that the
relation≈p of positive modal equivalence is a p-bisimulation.

LetM1 andM2 be two models. The relations., & ⊆ X1 ×X2 defined by

(x, y) ∈. iff FM1

x ⊆ FM2

y

and
(x, y) ∈& iff FM2

y ⊆ FM1

x

are not, in general, an up-simulation and a down-simulation, respectively. We will see that in the case of
weaklyR-compact models these relations. and& are an up-simulation and down-simulation, respec-
tively. This is a generalization of similar results for the classical modal logic case (see, for example, [10]
or [11])

Proposition 4.5. Let M1 andM2 be two weaklyR-compact models. Then the relations. and& are
an up-simulation and a down-simulation, respectively.

Proof:
We shall prove that. is an up-bisimulation. The proof of the fact that& is a down-simulation is similar
and left to the reader. ConditionV1 is clear. To prove conditionF, let a, x ∈ X1 andy ∈ X2 be such
thatFM1

a ⊆ FM2

b and(a, x) ∈ R1. We prove that there is an elementy ∈ X2 such that(b, y) ∈ R2 and
FM1
x ⊆ FM2

y . Suppose that for ally ∈ R2 (b), FM1
x * FM2

y . Then for eachy ∈ R2 (b) let ϕy be a
formula such thatϕy ∈ FM1

x andϕy /∈ FM2
y . Then

R2(b) ⊆
⋃

{V2(ϕy)
c | y ∈ R2(b)} .

By weakR-compactness, there arey1, . . . , yn ∈ R2(b) such that

R2(b) ⊆ V2(ϕy1)
c ∪ . . . ∪ V2(ϕyn)

c.

Thereforeb 6∈ V2(♦(ϕy1 ∧ . . . ∧ ϕyn)). Hence,a 6∈ V1(♦(ϕy1 ∧ . . . ∧ ϕyn)). But (a, x) ∈ R1 and
x ∈ V1(ϕy1 ∧ . . . ∧ ϕyn). So we have a contradiction.

The proof of conditionB is done analogously by using�(ϕy1 ∧ . . . ∧ ϕyn), and is left to the reader.
⊓⊔
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As an immediate consequence of the proposition we obtain:

Theorem 4.3. The following classes are Positive Hennessy-Milner classes:

(i) The class of weaklyR-compact models.

(ii) The class ofR-compact models.

(iii) The class of image-finite models.

(iv) The class of positive replete models.

(v) The class of weakly positive replete models.

4.3. Maximal Hennessy-Milner classes

In the following we will proceed to prove that the class of weakly R-compact models is a maximal
positive Hennessy-Milner class, that is, is a positive Hennessy-Milner class not properly included in
any positive Hennessy-Milner class. The proof is analogousto the proof of the fact that the class of m-
saturated models is Hennessy-Milner, as exposed in [11]. The concept that will play the role of generated
submodels is the concept of positive generated submodel that we introduce in the following definition.

A modelM = 〈X,R, V 〉 is apositively generated submodel, p-generated submodel for short, of a
modelM′ = 〈X ′, R′, V ′〉, in symbolsM ⊆pg M

′, if

1. X ⊆ X ′

2. R = R′ ∩ (X ×X)

3. V (p) = V ′(p) ∩X, for every propositional variablep

4. If x ∈ X andxR′y, then there arey1, y2 ∈ X such thatxRy1, xRy2 andFM
′

y1 ⊆ FM
′

y ⊆ FM
′

y2 .

The proof of the following lemma is straightforward.

Lemma 4.1. If M = 〈X,R, V 〉 is a p-generated submodel ofM′ = 〈X ′, R′, V ′〉, then for every for-
mulaϕ,

V (ϕ) = V ′(ϕ) ∩X.

We define the following operations on classes of models. LetM be a class of models.

Sp(M) = {M | ∃M′ ∈ M such thatM ⊆pg M
′}

Bp(M) = {M | ∃M′ ∈ M such thatM andM′ are totally p-bisimilar}

Let 〈Xc, Rc, Vc〉 be the canonical model ofSK+ as defined in Section 4. This model is also called the
Henkin model ofSK+. A positive Henkin-likemodel is a structureM = 〈Xc, R

M, Vc〉 with universe
and valuation the sames as in the canonical model ofSK+ and accessibility relation a relationRM ⊆ Rc

such that for every formulaϕ and everyT ∈ Xc

M |=T ϕ iff ϕ ∈ T.

The analogous of the next result for the classical case is dueto A.Visser; see [11] for its proof. Our
proof is just an adaptation to PML.
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Lemma 4.2. If M is a positive Henkin-like model, thenBpSp(M) is a maximal positive Hennessy-
Milner class.

Proof:
Let M be a Henkin-like model. InM, T ≈p T

′ iff T = T ′. Therefore,≈p is a bisimulation inM and
hence a p-bisimulation. Thus,M has the positive Hennessy-Milner property.

First of all we see that the classBpSp(M) is a positive Hennessy-Milner class. InSp(M) the
relation≈p between two models is the identity, because this holds inM, and therefore a p-bisimulation.
HenceSp(M) is a positive Hennessy-Milner class. Moreover, it is easy tosee that ifM is a positive
Hennessy-Milner class,Bp(M) is so. We conclude thatBpSp(M) is a positive Hennessy-Milner class
as desired.

Let us see thatBpSp(M) is maximal among the positive Hennessy-Milner classes. Assume thatM
is a positive Hennessy-Milner class that includesBpSp(M). Let N = 〈X,R, V 〉 ∈ M. Consider the
modelN ′ = 〈{FNx : x ∈ X}, R′, V ′〉 whereR′ is defined by

FNx R′FNy iff �−1(FNx ) ⊆ FNy ⊆ ♦−1(FNx )

and V ′(p) = {FNx : p ∈ FNx } for each propositional variablep. Let us see thatN ′ ∈ Sp(M).
Clearly {FNx : x ∈ X} ⊆ Xc since eachFNx is a prime theory. Assume thatx ∈ X,T ∈ Xc and
(FNx , T ) ∈ RM. Thenx is p-bisimilar toFNx becausex ≈p FNx (in N ), M is a PHM class and
M,N ∈ M. Therefore, there arey, z ∈ X such thatxRy, xRz andFNy ⊆ T ⊆ FNz . ThusN ′ is a
p-generated submodel ofM. SinceN ∈ M, N ′ ∈ BpSp(M) ⊆ M andM is a PHM class, we obtain
that the relationx ≈p F

N
x is a p-bisimulation betweenN andN ′. Therefore,N ∈ BpSp(M). ⊓⊔

LetM be any class of models. We denote byMM the positive Henkin-like model whose accesibility
relationRM is defined by:

(T, T ′) ∈ RM iff (1) (T, T ′) ∈ Rc andT 6= FNx for all N ∈ M, or

(2) T = FNx for someN = 〈X,R, V 〉 ∈ M and somex ∈ X,

and∃y, z ∈ X such thatxRy, xRz andFNy ⊆ T ′ ⊆ FNz .

It is easy to check that this model is a positive Henkin-like model.

Lemma 4.3. Let M be a positive Hennessy-Milner class of models. Then(T, T ′) ∈ RM implies that
for all N = 〈X,R, V 〉 ∈ M and everyx ∈ X, if T = FNx , then there arey, z ∈ R(x) such that
FNy ⊆ T ′ ⊆ FNz .

Proof:
Assume that(T, T ′) ∈ RM. If there is noN = 〈X,R, V 〉 ∈ M such that for somex ∈ X, T = FNx , then
we are done. On the contray, by the definition we have aN = 〈X,R, V 〉 ∈ M, anx ∈ X andy, z ∈ R(x)
such thatFNy ⊆ T ′ ⊆ FNz . Consider anyN ′ = 〈X ′, R′, V ′〉 ∈ M and anyx′ ∈ X ′ such thatT = FN

′

x′ .
SinceM is a positive Hennessy-Milner class, letB→ andB← and up and a down simulation such that
(x, x′) ∈ B→ ∩B←. Then it is easy to findy′, z′ ∈ R′(x′) such thatFN

′

y′ ⊆ T ′ ⊆ FN
′

z′ . ⊓⊔
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Lemma 4.4. LetM be a positive Hennessy-Milner class whose elements are weakly R-compact models.
ThenMM is also weakly R-compact.

Proof:
We prove that the first condition of the definition of weaklyR-compact model holds and leave the analo-
gous proof of the other condition to the reader. Assume thatΓ is a set of formulas such that for every finite
subsetΓ0, RM(T ) ∩ Vc(Γ0) 6= ∅, for a prime theoryT . We reason by cases. IfT is not of the formFNx
for someN ∈ M and somex on the domain ofN , given a finite setΓ0 ⊆ Γ let T ′ ∈ RM(T ) ∩ Vc(Γ0).
ThenT ′ ∈ Rc(T ). Therefore, since the canonical model is weaklyR-compact, there isT ′′ ∈ Rc(T )
such thatT ′′ ∈ Vc(Γ). AsT ′′ ∈ RM(T ) we conclude thatRM(T ) ∩ Vc(Γ) 6= ∅.

If T = FNx for someN = 〈X,R, V 〉 ∈ M and somex ∈ X, consider any finite setΓ0 ⊆ Γ. As
RM(T ) ∩ Vc(Γ0) 6= ∅, let T ′ ∈ RM(T ) ∩ Vc(Γ0). By the previous lemma takey, z ∈ R(x) be such
thatFNy ⊆ T ′ ⊆ FNz . Hencez ∈ R(x) ∩ V (Γ0). We can conclude that for any finite setΓ0 ⊆ Γ,
R(x) ∩ V (Γ0) is non-empty. SinceN is weaklyR-compact,R(x) ∩ V (Γ) is non-empty. Consider now
u ∈ R(x) ∩ V (Γ). Then(FNx ,F

N
u ) ∈ RM andFNu ∈ Vc(Γ). ThereforeRM(T ) ∩ Vc(Γ) 6= ∅. ⊓⊔

The next lemma and its proof are a positive version of an analogous lemma for arbitrary Hennessy-
Milner classes due to A.Visser, see [11] for a proof. It is open whether the lemma holds for arbitrary
positive Hennessy-Milner classes.

Lemma 4.5. LetM be a positive Hennessy-Milner class whose elements are weakly R-compact models.
ThenM ⊆ BpSp(MM).

Proof:
LetM = 〈X,R, V 〉 ∈ M and let us consider the model

M′ = 〈{FMx | x ∈ X}, R′M, V 〉,

where
R′M = RM ∩ {FMx | x ∈ X}2

and
V (p) = Vc(p) ∩ {FMx | x ∈ X},

for every propositional variablep. ThenM′ is a p-generated submodel ofMM, for if FMx RMT then
there isN = 〈Y, S, V1〉 ∈ M andy, y1, y2 ∈ Y such thatFMx = FNy , xSy1, xSy2 andFNy1 ⊆ T ⊆ FNy2 .
Then, asM is Hennesy-Milner andx ≈p y, x is p-bisimlar toy. So there arez1, z2 ∈ X such thatz1 is
p-bisimilar toy1, z2 is p-bisimilar toy2 andxRz1, xRz2. It follows thatFMx R′

M
FMz1 andFMx R′

M
FMz2 .

Moreover,FMz1 ⊆ T ⊆ FMz2 . This shows thatM′ is a p-generated submodel ofMM. By the previous
lemma,MM is weakly R-compact. Moroever its p-generated submodels are also weakly R-compact as it
is easy to show. Therefore,M′ is weakly R-compact. By Proposition 4.5, the relation∼=. ∩ & is a p-
bisimulation betweenM andM′. Moreover, it is total because for eachx ∈ X, x ≈p F

M
x ; this follows

from the fact thatM′ is a p-generated submodel of a Henkin-like model. Hence,M ∈ BpSp(MM). ⊓⊔

Theorem 4.4. LetMc be the canonical model ofSK+ . The classMwc of all weakly R-compact models
is preciselyBpSp(Mc). Thus, it is a maximal positive Hennessy-Milner class.
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Proof:
SinceMc ∈ Mwc, it is easy to check thatMMwc

= Mc. The conditions of the above lemma apply to
Mwc. Hence,Mwc ⊆ BpSp(Mc). The other inclusion follows form the fact thatMc ∈ Mwc andMwc is
closed underBp andSp. ⊓⊔

Corollary 4.1. LetMs,Mr andMwr be, repectively, the classes of positively m-saturated models, replete
models and weakly replete models. Then the three classesBpSp(Ms), BpSp(Mr), BpSp(Mwr) and the
classMwc of all weaklyR-compact models are equal.

Proof:
The canonical modelMc belongs to the three classes. We show thatBpSp(Ms) = Mwc. The proofs of
the other equalities are analogous. SinceMc ∈ Ms,Mwc = BpSp(Mc) ⊆ BpSp(Ms) ⊆ BpSp(Mwc) =
Mwc. ⊓⊔

5. Positive bisimulations, positive modal equivalence andfirst-order trans-
lations

Let M = 〈X,T, V 〉 be a model. LetI be a set, andU be a ultrafilter overI. Let MI/U be the
ultrapower ofM moduloU . For each elementa ∈ X let fa ∈ MI be the constant function such that
fa(i) = a, for alli ∈ I. Recall that ifM1 andM2 are models,a ∈ X1 andb ∈ X2, a andb are said to
be p-modally equivalent if they satisfy the same positive modal formulas; in this case we writea ≈p b,
or M1, a ≈p M2, b. We say thatM1, a andM2, b havep-bisimilar ultrapowersif there is a setI and
an ultrafilterU overI such thatMI

1/U , fa/U ↔pM
I
2/U , fb/U .

Theorem 5.1. (p-Bisimulation Theorem)
Let M1 andM2 be models, and leta ∈ X1 and b ∈ X2. Thena ≈p b iff they have p-bisimilar
ultrapowers.

Proof:
⇒) Assume thatM1, a ≈p M2, b. Let U be a non-principal ultrafilter overω. Consider the ultrapow-
ersMω

1 /U andMω
2 /U , that, by Proposition 4.3, are p-m-saturated, and the objects fa/U andfb/U .

ThenM1, a ≈p Mω
1 /U , fa/U andM2, b ≈p Mω

2 /U , fb/U . Since the ultrapowers are p-m-saturated,
the corresponding relations. and&, as defined after Definition 4.6, are an up-simulation and a down-
simulation, respectively. Moreover,(fa/U , fb/U) ∈. ∩ &. Therefore,Mω

1 /U , fa/U ↔pM
ω
2 /U , fb/U .

⇐) Assume that we have ultrapowersMI
1/U andMI

2/U , for an ultrafilterU overI, such thatMI
1/U ,

fa/U ↔pM
I
2/U , fb/U . SinceM1, a ≈p MI

1/U , fa/U andM2, b ≈p MI
2/U , fb/U we conclude that

M1, a ≈p M2, b. ⊓⊔

Now we introduce the usual standard translation of modal formulas into first-order formulas, but
restricted to the positive modal language; we will also translate sequents into first-order formulas. In
order to do it we have to fix our first order-language. It has a denumerable set of predicate symbols,
P0, P1, . . . and a binary relation symbolR.
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The translation of modal formulas is defined as follows:

ST (pi) = Pix

ST (⊤) = x ≈ x

ST (⊥) = ¬x ≈ x

ST (ϕ ∧ ψ) = ST (ϕ) ∧ ST (ψ)

ST (ϕ ∨ ψ) = ST (ϕ) ∨ ST (ψ)

ST (�ϕ) = ∀y(Rxy → ST (ϕ)(y/x))

ST (♦ϕ) = ∃y(Rxy ∧ ST (ϕ)(y/x))

The translation of a sequentΓ ⊢ ϕ is defined by:

ST (Γ ⊢ ϕ) = ¬ST (
∧

Γ) ∨ ST (ϕ).

Notice that the translation of a formula and the translationof a sequent have just one free variable, the
variablex.

Modal models correspond to first-order structures in the fixed first-order language. Given a model
M = 〈X,R, V 〉, its associated first-order structure is denoted byA(M) and given a first-order structure
A, we denote byM(A) its associated model.

For any positive modal formulaϕ, any modal sequentΓ ⊢ ϕ, any (modal) modelM and anya ∈ X:

1. M |=a ϕ iff A(M) |= ST (ϕ)[a].

2. M |=a Γ ⊢ ϕ iff A(M) |= ST (Γ ⊢ ϕ)[a].

From now on we will not distinguish typographically either amodelM from its associated first-order
structureA(M), neither a first-order structureA from its associated modelM(A).

We will characterize the first-order formulas, in at most onefree variable, that are invariant for p-
bisimulations. They are the formulas equivalent to conjunctions of translations of modal sequents in the
negation-free modal language. A first-order formulaα(x), in at most one free variablex, is invariant for
p-bisimulationsiff for any two modelsM1 andM2 and any two objectsa ∈ X1 andb ∈ X2 such that
M1, a↔pM2, b it holds thatM1 |= α[a] iff M2 |= α[b].

Theorem 5.2. A first-order formulaα(x) is equivalent to a conjunction of translations of positive modal
sequents iff it is invariant for p-bisimulations.

Proof:
The proof of the implication from left to right is easy. To prove the other implication assume thatα is
invariant for p-bisimulations and let us consider the set

T (α) = {ST (Γ ⊢ ϕ) | Γ ⊢ ϕ is a modal sequent andα |= ST (Γ ⊢ ϕ)}.

If T (α) |= α then by the Compactness Theorem for first-order logic we willobtain thatα(x) is equivalent
to a conjunction of translations of modal sequents. So let usshow thatT (α) |= α. Assume thatA |=
T (α)[a]. Let

T = {ST (ϕ) | A |= ST (ϕ)[a]} ∪ {¬ST (ϕ) | A |= ¬ST (ϕ)[a]}.
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We will prove thatT ∪ {α} is satisfiable. Assume that it is not, then, by the Compactness theorem for
first-order logic, there are finite subsets ofT

T0 = {ST (ϕ1), . . . , ST (ϕn)} andT1 = {¬ST (ψ1), . . . ,¬ST (ψm)}

such thatT0 ∪ T1 ∪ {α} is unsatisfiable. Then

α |= ¬ST (ϕ1 ∧ . . . ∧ ϕn) ∨ ST (ψ1 ∨ . . . ∨ ψm).

Clearlyβ = ¬ST (ϕ1 ∧ . . .∧ϕn)∨ST (ψ1 ∨ . . .∨ψm) is the translation of the sequent{ϕ1, . . . , ϕn} ⊢
ψ1 ∨ . . . ∨ ψm and so belongs toT (α). HenceA |= β[a]. ThereforeA 6|= ST (ϕ1 ∧ . . . ∧ ϕn)[a] or
A |= ST (ψ1 ∨ . . . ∨ ψm)[a], which is absurd. We conclude thatT ∪ {α} is satisfiable. So, letB be a
structure andb ∈ B such thatB |= T ∪{α}[b]. It follows thata andb are modally equivalent. Therefore
by the p-Bisimulation Theorem there is a setI and an ultrafilterU over I and ultrapowersAI/U and
B

I/U such thatfa/U andfb/U are p-bisimilar. SinceB |= α[b], BI/U |= α[fb/U ]. Therefore, by the
hypothesis,AI/U |= α[fa/U ]. Hence,A |= α[a], concluding the proof. ⊓⊔

In [12] the following characterization of the first-order formulas that are equivalent to the standard
translation of a negation-free modal formula is given. It isinteresting to compare it with the preceding
theorem.

A first-order formulaα(x), in at most one free variablex, is said to bepreserved by up-simulations
iff for any two modelsM1 andM2 and any two objectsa ∈ X1 and b ∈ X2 such that there is an
up-simulationB→ such that(a, b) ∈ B→ it holds thatM1 |= α[a] impliesM2 |= α[b].

Theorem 5.3. (Kurtonina, de Rijke)
A first-order formulaα(x) is equivalent to the standard translation of a negation-free modal formula iff
it is preserved by up-simulations.

Now we present some results on the modal definability of classes of pointed models. Apointed
modelis a structure of the form(M, w) wherew belongs to the domain ofM. We say that a classM of
pointed models isdefinable by a set of negation-free modal sequentsif there is a setΓ of positive modal
sequents such thatM = {(M, w) | M |=w Γ ⊢ ϕ for all Γ ⊢ ϕ ∈ Γ}.

Theorem 5.4. Let M be a class of pointed models. ThenM is definable by a set of negation-free modal
sequents iffM is closed under p-bisimulations and ultraproducts and its complement is closed under
ultrapowers.

Proof:
The implication from left to right is routine. To prove the other implication let

T = {Γ ⊢ ϕ | for all (M, w) ∈ M,M |=w Γ ⊢ ϕ}.

We claim thatT definesM. ClearlyM is included in the class of pointed models defined byT , so assume
that(M, w) |= T in order to see that(M, w) ∈ M. Consider the following two sets

Σ1 = {ϕ | M |=w ϕ} and Σ2 = {ϕ | M 2w ϕ}.
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For each finite∆ ⊆ Σ1 × Σ2 let

∆1 = dom(∆) = {ϕ | ∃ψ (ϕ,ψ) ∈ ∆} and∆2 = ran(∆) = {ϕ | ∃ψ (ψ,ϕ) ∈ ∆}.

Then there is(N , v) ∈ M such that(N , v) |=
∧

∆1 and(N , v) 6|=
∨

∆2, because on the contrary the
sequent∆1 ⊢

∨

∆2 would belong toT and this is not possible. LetI = Pf (Σ1×Σ2) the set of all finite
subsets ofΣ1 × Σ2 and choose for eachi ∈ I a model(Ni, vi) ∈ M such that

(Ni, vi) |=
∧

i1 and(Ni, vi) 2
∨

i2.

For each(ϕ,ψ) ∈ Σ1 × Σ2 consider the set̂(ϕ,ψ) = {i ∈ I | (ϕ,ψ) ∈ i}. Then the set{(̂ϕ,ψ) |
(ϕ,ψ) ∈ Σ1 × Σ2} has the finite intersection property, so letU be an ultrafilter overI that includes
that set. Consider the ultraproductΠi∈I(Ni, vi)/U . It is the pointed model(Πi∈INi/U , f/U) where
f is the function defined byf(i) = vi, for eachi ∈ I. Then(Πi∈INi/U , f/U) |= Σ1 and for each
ψ ∈ Σ2, (Πi∈INi/U , f/U) 2 ψ. Sow andf/U are modally equivalent. Hence, by the P-Bisimulation
Theorem there are p-bisimilar ultrapowers, say((Πi∈I(Ni/U)

J/U ′, gf/U/U
′) and (MJ/U ′, gw/U

′).
SinceM is closed under ultraproducts((Πi∈I(Ni/U)

J/U ′, gf/U/U
′) ∈ M, and since it is closed under

p-bisimulations(MJ/U ′, gw/U
′) ∈ M. Therefore, as the complement ofM is closed under ultrapowers,

we obtain that(M, w) ∈ M, as desired. ⊓⊔

Theorem 5.5. Let M be a class of pointed models. ThenM is definable by a finite set of negation-free
modal sequents iffM is closed under p-bisimulations and ultraproducts and its complement is closed
under ultraproducts.

Proof:
From Theorem 5.4we have thatM is definable by a set of sequents, sayΓ, and since the complement of
M is clearly closed under p-bisimulations, it also follows that it is definable by a set of sequents, say∆.
ThenΓ ∪∆ is unsatisfiable on pointed models. By a standard ultraproduct argument one can show that
Γ∪∆ must have an unsatisfiable finite subset. LetΓ0 ⊆ Γ and∆0 ⊆ ∆ be finite and such thatΓ0∪∆0

is unsatisfiable. If(M, w) |= Γ0 then must belong toM. Therefore the finite set of sequentsΓ0 defines
M. ⊓⊔

In [12] the definability of pointed classes of models by negation-free modal formulas is studied. We
state the results in order to be compared with the preceding ones.

Theorem 5.6. (Kurtonina, de Rijke)
LetM be a class of pointed models.

(i) M is definable by a set of negation-free modal formulas iffM is closed under up-simulations and
ultraproducts and its complement is closed under ultrapowers.

(ii) M is definable by a negation-free modal formula iffM is closed under up-simulations and ultra-
products and its complement is closed under ultraproducts.

From the previous theorems we can obtain separation theorems in the standard way.

Theorem 5.7. LetK andL be two disjoint classes of pointed models.
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(i) If K is closed under p-bisimulations and ultrapowers andL is closed under p-bisimulations and
ultrapowers, then there exists a class of pointed modelsM that is definable by a set of negation-
free modal sequents and such thatK ⊆ M andL ∩M = ∅.

(ii) If K is closed under p-bisimulations and ultrapowers andL is closed under p-bisimulations and
ultraproducts, then there exists a class of pointed modelsM that is definable by a finite set of
negation-free modal sequents and such thatK ⊆ M andL ∩M = ∅.

Proof:
(i) Let K andL be disjoint classes of pointed models both closed under p-bisimulations and the first one
closed under ultraproducts and the second one closed under ultrapowers. Consider the classes

K
′ = {(M, w) | ∃(N , v) ∈ K,M, w ≈p N , v}

L
′ = {(M, w) | ∃(N , v) ∈ L,M, w ≈p N , v}.

Then,K′∩L
′ = ∅. On the contrary there will be two pointed models(N1, v1) ∈ K and(N2, v2) ∈ L such

thatN1, v1 ≈p N2, v2. Then by Theorem 5.1 these models have p-bisimilar ultrapowers and therefore
K ∩ L 6= ∅, which is against the assumption.

It is easy to see that the complement ofK
′ is closed under p-bisimulations and ultrapowers. Therefore,

by Theorem 5.4,K′ is definable by a set of negation-free modal sequents. SoK
′ is the desired classM.

To prove (ii) we argue as in (i), but now we obtain that bothK
′ andL

′ are definable by a set of
negation-free modal sequents. LetSeq(K′) andSeq(L′) be respectively the set of first-order translations
of the sequents true at each model ofK

′ and the set of first-order translations of the sequents true at
each model ofL′. Then the union of these two sets is unsatisfiable. By the Compactness Theorem for
first-order logic there is a finite subset∆ of this union which is unsatisfiable. Then the class defined
by the negation-free modal sequents whose first-order translation belongs to∆ ∩ Seq(K′) defines the
desired classM. ⊓⊔

From the theorem for standard modal logic analogous to the last separation theorem, a Craig interpo-
lation theorem can be proved. If we adapt the argument to the present setting we obtain the next theorem
where a sequentΓ ⊢ ϕ is said to be a consequence of a set of sequents∆, in symbols∆ |= Γ ⊢ ϕ, if
for every pointed model(M, w) where all the sequents in∆ are true atw it holds thatΓ ⊢ ϕ is also true
at w. The relation between this consequence relation between sequents and the consequence between
sequents that can be defined in terms of validity is the same asthe relation that exists at the level of
formulas between the local consequence relation and the global one.

Before stating and proving the theorem we have to notice thatthe theorems of this section can be
proved relativized to a negation-free modal language with set of variables any fixed subset of the setV ar
of propositional variables.

Theorem 5.8. If Γ1 ⊢ ϕ1 |= Γ2 ⊢ ϕ2 then there is a finite set of sequents∆ with propositional variables
among the set of common propositional variables inΓ1 ⊢ ϕ1 andΓ2 ⊢ ϕ2 such that for everyΓ ⊢ ϕ ∈ ∆,
Γ1 ⊢ ϕ1 |= Γ ⊢ ϕ and∆ |= Γ2 ⊢ ϕ2.

Proof:
Consider the classes of pointed models

Mod(Γ1 ⊢ ϕ1) = {(M, w) | Γ1 ⊢ ϕ1 is true atw in (M, w)}
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and
Mod(Γ2 ⊢ ϕ2) = {(M, w) | Γ2 ⊢ ϕ2 is false atw in (M, w)}.

Let V be the set of propositional variables common toΓ1 ⊢ ϕ1 andΓ2 ⊢ ϕ2. The class of theV-reducts
of the elements ofMod(Γ1 ⊢ ϕ1) and the class ofV-reducts of the elements ofMod(Γ2 ⊢ ϕ2) are closed
under ultraproducts and p-bisimulations. Moreover they are disjoint. Arguing as before there is a class
M of pointed-models of the appropriate typeV, definable by a finite set∆ of sequents in the variables in
P. This set∆ is the desired one. ⊓⊔

6. Final remarks

In [5] a different semantics for positive modal logic is introduced. In it frames are triples〈X,≤, R〉
where〈X,R〉 is a Kripke frame and≤ is a quasi-ordering ofX, that is, a reflexive and transitive relation
onW , such that≤ ◦ R ⊆ R ◦ ≤ and≤−1 ◦ R ⊆ R ◦ ≤−1. Models are pairs〈F , V 〉 whereF is
a frame andV is a valuation that for each propositional variablep, V (p) is an≤-increasing set. This
semantics is inherited from a suitable intuitionistic modal logic from whichSK+ is the positive fragment.
Reasons in favor of this semantics are given in [5] and [6]. The notions and results of this paper can be
transferred to the new semantics almost without change by dealing with the order in the obvious way.
The notions of positive m-saturated model,R-compact model, weaklyR-compact model, positive replete
model and weakly positive replete model, are defined exactly(the quasi-order has not to be considered
in the definition). Given a model〈X,≤, R, V 〉, the model of prime filters ofDV is defined as before and
its quasi-ordering is inclusion. The descriptive models are defined also in the same way but in addition
H must be an order isomorphism. When defining the ultrapowers the quasi-ordering has to be defined
in the natural way. Finally, in the definiton of positively generated submodel, the quasi-order of the
submodelN of M is the restriction of the quasi-ordering ofM to the universe ofN . Condition 4 in the
definition of positively generated submodel can be replacedby the following condition: ifx ∈ X and
xR′y, then there arey1, y2 ∈ X such thatxRy1, xRy2 andy1 ≤ y ≤ y2. This condition is not equivalent
to the original one but is more elegant and for it and the new models holds that a modelM1 is a positive
generated submodel of a modelM2 iff ≤1 is an up-simulation and its inverse a down-simulation. The
results hold also for this new notion of positively generated submodel.

We are grateful to the anonymous referees for their helpful suggestions that helped improve the
readability of the paper
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