q-Fourier Transform and its InversionProblem

A. Plastino \& M. C. Rocca

Milan Journal of Mathematics

Issued by the Seminario Matematico e Fisico di Milano

ISSN 1424-9286
Volume 80
Number 1

Milan J. Math. (2012) 80:243-249
DOI 10.1007/s00032-012-0179-6

Your article is protected by copyright and all rights are held exclusively by Springer Basel AG. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

q-Fourier Transform and its Inversion-Problem

A. Plastino and M.C. Rocca

Abstract

Tsallis' q-Fourier transform is not generally one-to-one. It is shown here that, if we eliminate the requirement that q be fixed, and let it instead "float", a simple extension of the F_{q}-definition, this procedure restores the one-to-one character. Mathematics Subject Classification (2010). Primary 60F05; Secondary 60E05, 60E10, 82Cxx.

Keywords. q-Fourier transform, generalization, one to one character, statistical mechanics, nonextensive statistical mechanics.

1. Introduction

Nonextensive statistical mechanics (NEXT) [1, 2, 3], a current generalization of the BoltzmannGibbs (BG) one, is actively studied in diverse areas of Science. NEXT is based on a nonadditive (though extensive [4]) entropic information measure characterized by the real index q (with $q=1$ recovering the standard BG entropy). It has been applied to variegated systems such as cold atoms in dissipative optical lattices [5], dusty plasmas [6], trapped ions [7], spinglasses [8], turbulence in the heliosheath [9], self-organized criticality [10], high-energy experiments at LHC/CMS/CERN [11] and RHIC/PHENIX/Brookhaven [12], low-dimensional dissipative maps [13], finance [14], galaxies [15], Fokker-Planck equation's applications [16], etc.

NEXT can be advantageously expressed via q-generalizations of standard mathematical concepts (the logarithm and exponential functions, addition and multiplication, Fourier transform (FT) and the Central Limit Theorem (CLT) [17, 22, 25]). The q-Fourier transform F_{q} exhibits the nice property of transforming q-Gaussians into q-Gaussians [17]. Recently, plane waves, and the representation of the Dirac delta into plane waves have been also generalized [18, 19, 20, 21].

A serious problem afflicts F_{q}. It is not generally one-to-one. A detailed example is discussed below. In this work we show that by recourse to a rather simple but efficient stratagem that consists in

- eliminating the requirement that q be fixed and instead
- let it"float",
one restores the one-to-one character.

2. Generalizing the q -Fourier transform

We define, following [17], a q-Fourier transform of $f(x) \in L^{1}(\mathbb{R}), f(x) \geq 0$ as

$$
\begin{align*}
F(k, q)= & {[H(q-1)-H(q-2)] } \\
& \times \int_{-\infty}^{\infty} f(x)\left\{1+i(1-q) k x[f(x)]^{(q-1)}\right\}^{\frac{1}{1-q}} d x \tag{2.1}
\end{align*}
$$

where $H(x)$ is the Heaviside step function.
The only difference between this definition and that given in [17] is that q is not fixed and varies within the interval $[1,2)$. Herein lies the hard-core of our presentation. This simple change of perspective makes it is easy to find the inversion-formula for (2.1) by recourse to the inverse Fourier transform

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\lim _{\epsilon \rightarrow 0^{+}} \int_{1}^{2} F(k, q) \delta(q-1-\epsilon) d q\right] e^{-i k x} d k . \tag{2.2}
\end{equation*}
$$

As a consequence, we see that this q-Fourier transform is one-to-one, unlike what happens in $[23],[24]$. The link between Eqs. (2.1)- (2.2) is discussed in more detail in the illustrative example presented below (next Section).

3. Example

As an illustration we discuss the example given by Hilhorst in Ref. ([22]). Let $f(x)$ be

$$
f(x)=\left\{\begin{array}{l}
\left(\frac{\lambda}{x}\right)^{\beta} ; x \in[a, b] ; 0<a<b ; \lambda>0 \tag{3.1}\\
0 ; x \text { outside }[\mathrm{a}, \mathrm{~b}] .
\end{array}\right.
$$

The corresponding q-Fourier transform is

$$
\begin{equation*}
F(k, q)=\lambda^{\beta} \int_{a}^{b} x^{-\beta}\left\{1+i(1-q) k \lambda^{\beta(q-1)} x^{1-\beta(q-1)}\right\}^{\frac{1}{1-q}} d x \tag{3.2}
\end{equation*}
$$

Effecting the change of variables

$$
y=x^{1-\beta(q-1)}
$$

we have for (3.2)

$$
\begin{align*}
F(k, q)= & {[H(q-1)-H(q-2)] } \\
& \times \frac{\lambda^{\beta}}{1-\beta(q-1)} \int_{a^{1-\beta(q-1)}}^{b^{1-\beta(q-1)}} y^{\frac{\beta(q-2)}{1-\beta(q-1)}}\left\{1+i(1-q) k \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y \tag{3.3}
\end{align*}
$$

Now, (3.3) can be rewritten in the useful form

$$
\begin{align*}
F(k, q)= & {[H(q-1)-H(q-2)] } \\
& \times\left\{\left\{H(q-1)-H\left[q-\left(1+\frac{1}{\beta}\right)\right]\right\}\right. \\
& \times \frac{\lambda^{\beta}}{1-\beta(q-1)} \int_{a^{1-\beta(q-1)}}^{b^{1-\beta(q-1)}} y^{-\frac{\beta(2-q)}{1-\beta(q-1)}}\left\{1+i(1-q) k \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y \\
& +\left\{H\left[q-\left(1+\frac{1}{\beta}\right)\right]-H(q-2)\right\} \\
& \left.\times \frac{\lambda^{\beta}}{\beta(q-1)-1} \int_{b^{1-\beta(q-1)}}^{a^{1-\beta(q-1)}} y^{\frac{\beta(q-2)}{1-\beta(q-1)}}\left\{1+i(1-q) k \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y\right\} . \tag{3.4}
\end{align*}
$$

Taking into account that the involved integrals are defined in a finite interval, we can cast (3.4) as

$$
\begin{align*}
& F(k, q) \\
& =[H(q-1)-H(q-2)] \times\left\{\left\{H(q-1)-H\left[q-\left(1+\frac{1}{\beta}\right)\right]\right\}\right. \\
& \times \frac{\lambda^{\beta}}{1-\beta(q-1)} \lim _{\epsilon \rightarrow 0^{+}} \int_{a^{1-\beta(q-1)}}^{b^{1-\beta(q-1)}} y^{-\frac{\beta(2-q)}{1-\beta(q-1)}}\left\{1+i(1-q)(k+i \epsilon) \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y \\
& +\left\{H\left[q-\left(1+\frac{1}{\beta}\right)\right]-H(q-2)\right\} \\
& \left.\times \frac{\lambda^{\beta}}{\beta(q-1)-1} \lim _{\epsilon \rightarrow 0^{+}}^{a^{1-\beta(q-1)}} \int_{b^{1-\beta(q-1)}} y^{\frac{\beta(q-2)}{1-\beta(q-1)}}\left\{1+i(1-q)(k+i \epsilon) \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y\right\} \tag{3.5}
\end{align*}
$$

We now use results of the Integral's table [26] to evaluate (3.5) and get

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0^{+}} \int_{a^{1-\beta(q-1)}}^{\infty} y^{-\frac{\beta(2-q)}{1-\beta(q-1)}}\left\{1+i(1-q)(k+i \epsilon) \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y \\
& =\frac{(q-1)[1-\beta(q-1)] a^{\frac{q-2}{q-1}}}{(2-q)\left[(1-q) i(k+i 0) \lambda^{\beta}\right]^{\frac{1}{q-1}}} \\
& \quad \times F\left(\frac{1}{q-1}, \frac{2-q}{(q-1)[1-\beta(q-1)]}, \frac{1}{q-1}+\frac{\beta(2-q)}{1-\beta(q-1)}\right. \\
& \left.\quad-\frac{1}{(1-q) i(k+i 0) \lambda^{\beta(q-1)} a^{1-\beta(q-1)}}\right) \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{a^{1-\beta(q-1)}} y^{\frac{\beta(2-q)}{\beta(q-1)-1}}\left\{1+i(1-q)(k+i \epsilon) \lambda^{\beta(q-1)} y\right\}^{\frac{1}{1-q}} d y \\
& =\frac{[\beta(q-1)-1] a^{1-\beta}}{\beta-1} \\
& \times F\left(\frac{1}{q-1}, \frac{\beta-1}{\beta(q-1)-1}, \frac{\beta q-2}{\beta(q-1)-1} ;(q-1) i(k+i 0) \lambda^{\beta(q-1)} a^{1-\beta(q-1)}\right) \tag{3.7}
\end{align*}
$$

where $F(a, b, c ; z)$ is the hypergeometric function. Thus we obtain for $F(k, q)$

$$
\begin{align*}
F(k, q)= & {[H(q-1)-H(q-2)] \times\left\{\left\{H(q-1)-H\left[q-\left(1+\frac{1}{\beta}\right)\right]\right\}\right.} \\
& \times \frac{(q-1) \lambda^{\beta}}{(2-q)\left[(1-q) i(k+i 0) \lambda^{\beta}\right]^{\frac{1}{q-1}}} \\
& \times\left\{a ^ { \frac { q - 2 } { q - 1 } } F \left(\frac{1}{q-1}, \frac{2-q}{(q-1)[1-\beta(q-1)]}, \frac{1}{q-1}+\frac{\beta(2-q)}{1-\beta(q-1)} ;\right.\right. \\
& \left.\frac{1}{(q-1) i(k+i 0) \lambda^{\beta(q-1)} a^{1-\beta(q-1)}}\right) \\
& -b^{\frac{q-2}{q-1}} F\left(\frac{1}{q-1}, \frac{2-q}{(q-1)[1-\beta(q-1)]}, \frac{1}{q-1}+\frac{\beta(2-q)}{1-\beta(q-1)} ;\right. \\
& \left.\left.(q-1) i(k+i 0) \lambda^{\beta(q-1)} b^{1-\beta(q-1)}\right)\right\} \\
& +\left\{H\left[q-\left(1+\frac{1}{\beta}\right)\right]-H(q-2)\right\} \frac{\lambda^{\beta}}{\beta-1} \\
& \times\left\{a ^ { 1 - \beta } F \left(\frac{1}{q-1}, \frac{\beta-1}{\beta(q-1)-1}, \frac{\beta q-2}{\beta(q-1)-1} ;\right.\right. \\
& \left.(q-1) i(k+i 0) \lambda^{\beta(q-1)} a^{1-\beta(q-1)}\right) \\
& -b^{1-\beta} F\left(\frac{1}{q-1}, \frac{\beta-1}{\beta(q-1)-1}, \frac{\beta q-2}{\beta(q-1)-1} ;\right. \\
& \left.\left.\left.(q-1) i(k+i 0) \lambda^{\beta(q-1)} b^{1-\beta(q-1)}\right)\right\}\right\} . \tag{3.8}
\end{align*}
$$

As we can see from (3.8), $F(k, q)$ depends on a and b, and, as consequence, is one-to-one, as shown in Section 2.

However, and this is the crucial issue, if we fix q and select $\beta=1 /(q-1)(3.8)$ simplifies and adopts the appearance

$$
\begin{align*}
F(k, q)= & \lambda^{\frac{1}{q-1}} \frac{q-1}{2-q}[H(q-1)-H(q-2)] \\
& \times\left[a^{\frac{q-2}{q-1}} F\left(\frac{1}{q-1}, \frac{2-q}{q-1}, \frac{2-q}{q-1} ;(q-1) i(k+i 0) \lambda\right)\right. \\
& \left.-b^{\frac{q-2}{q-1}} F\left(\frac{1}{q-1}, \frac{2-q}{q-1}, \frac{2-q}{q-1} ;(q-1) i(k+i 0) \lambda\right)\right] . \tag{3.9}
\end{align*}
$$

With the help of the result given in [27] for

$$
F(-a, b, b,-z)=(1+z)^{a}
$$

we obtain for (3.9):

$$
\begin{equation*}
F(k, q)=\lambda^{\frac{1}{q-1}} \frac{q-1}{2-q}[H(q-1)-H(q-2)]\left(a^{\frac{q-2}{q-1}}-b^{\frac{q-2}{q-1}}\right)[1+(1-q) i k \lambda]^{\frac{1}{1-q}} \tag{3.10}
\end{equation*}
$$

Using now the expression for λ of [22], i.e.,

$$
\lambda=\left[\left(\frac{q-1}{2-q}\right)\left(a^{\frac{q-2}{q-1}}-b^{\frac{q-2}{q-1}}\right)\right]^{1-q}
$$

we have, finally,

$$
\begin{equation*}
F(k, q)=[H(q-1)-H(q-2)][1+(1-q) i k \lambda]^{\frac{1}{1-q}} \tag{3.11}
\end{equation*}
$$

which is the result given by Hilhorst in [22], that is independent of the values adopted by a, b. Such independence is evidence that $F(k, q)$ is not one-to-one. All infinite $F(k, q, a, b)$ associated to each possible pair a, b coalesce now in a infinitely degenerate solution $F(k, q)$. As a conclusion we can say that for fixed q the q-Fourier transform is NOT one-to-one for fixed q. On the contrary, as we have shown in section 2 , when q is NOT fixed, the q-Fourier transform is indeed one-to-one.

Conclusions

In the present communication we have discussed the NOT one-to-one nature of the q-Fourier transform F_{q}. We have shown that, if we eliminate the requirement that q be fixed and let it "float" instead, such simple extension of the F_{q}-definition restores the desired one-to-one character.

Acknowledments. The authors thank Prof. C. Tsallis for having called our attention to the present problem.

References

[1] C. Tsallis, J. Stat. Phys. 52 (1988) 479.
[2] M. Gell-Mann, C. Tsallis (Eds.), Nonextensive Entropy Interdisciplinary Applications, Oxford University Press, New York, 2004; C. Tsallis, Introduction to Nonextensive Statistical Mechanics Approaching a Complex World, Springer, New York, 2009.
[3] A. R. Plastino, A. Plastino, Phys. Lett A 177 (1993) 177.
[4] C. Tsallis, M. Gell-Mann, Y. Sato, Proc. Natl. Acad. Sci. USA 102 (2005) 15377; F. Caruso, C. Tsallis, Phys. Rev. E 78 (2008) 021102.
[5] P. Douglas, S. Bergamini, F. Renzoni, Phys. Rev. Lett. 96 (2006) 110601; G.B. Bagci, U. Tirnakli, Chaos 19 (2009) 033113.
[6] B. Liu, J. Goree, Phys. Rev. Lett. 100 (2008) 055003.
[7] R.G. DeVoe, Phys. Rev. Lett. 102 (2009) 063001.
[8] R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P. Fouquet, Phys. Rev. Lett. 102 (2009) 097202.
[9] L.F. Burlaga, N.F. Ness, Astrophys. J. 703 (2009) 311.
[10] F. Caruso, A. Pluchino, V. Latora, S. Vinciguerra, A. Rapisarda, Phys. Rev. E 75 (2007) 055101(R); B. Bakar, U. Tirnakli, Phys. Rev. E 79 (2009) 040103(R); A. Celikoglu, U. Tirnakli, S.M.D. Queiros, Phys. Rev. E 82 (2010) 021124.
[11] V. Khachatryan, et al., CMS Collaboration, J. High Energy Phys. 1002 (2010) 041; V. Khachatryan, et al., CMS Collaboration, Phys. Rev. Lett. 105 (2010) 022002.
[12] Adare, et al., PHENIX Collaboration, Phys. Rev. D 83 (2011) 052004; M. Shao, L. Yi, Z.B. Tang, H.F. Chen, C. Li, Z.B. Xu, J. Phys. G 37 (8) (2010) 085104.
[13] M.L. Lyra, C. Tsallis, Phys. Rev. Lett. 80 (1998) 53; E.P. Borges, C. Tsallis, G.F.J. Ananos, P.M.C. de Oliveira, Phys. Rev. Lett. 89 (2002) 254103; G.F.J. Ananos, C. Tsallis, Phys. Rev. Lett. 93 (2004) 020601; U. Tirnakli, C. Beck, C. Tsallis, Phys. Rev. E 75 (2007) 040106(R); U. Tirnakli, C. Tsallis, C. Beck, Phys. Rev. E 79 (2009) 056209.
[14] L. Borland, Phys. Rev. Lett. 89 (2002) 098701.
[15] A. R. Plastino, A. Plastino, Phys. Lett A 174 (1993) 834.
[16] A. R. Plastino, A. Plastino, Physica A 222 (1995) 347.
[17] S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307; S. Umarov, C. Tsallis, M. Gell-Mann, S. Steinberg, J. Math. Phys. 51 (2010) 033502.
[18] M. Jauregui, C. Tsallis, J. Math. Phys. 51 (2010) 063304.
[19] A. Chevreuil, A. Plastino, C. Vignat, J. Math. Phys. 51 (2010) 093502.
[20] M. Mamode, J. Math. Phys. 51 (2010) 123509.
[21] A. Plastino and M.C.Rocca: J. Math. Phys 52, (2011) 103503.
[22] H.J.Hilhorst: J. Stat. Mech. (2010) P10023
[23] M.Jauregui and C.Tsallis: Phys. Lett. A 375, (2011) 2085.
[24] M.Jauregui, C.Tsallis and E.M.F. Curado: J. Stat. Mech. P10016 (2011).
[25] M. Jauregui, C, Tsallis, Phys. Lett. A 375 (2011) 2085.
[26] L. S. Gradshtein and I. M. Ryzhik : Table of Integrals, Series, and Products. Fourth edition, Academic Press (1965) 3.1941 and 3.1942 pages 284 and 285.
[27] M.Abramowitz and I.A.Stegun: Handbook of Mathematical Functions. National Bureau of Standards. Applied Mathematical Series 55 Tenth Printing (1972), 15.1.8 page 556.

A. Plastino
Instituto de Física (IFLP-CCT-Conicet)
Universidad Nacional de La Plata (UNLP)
C.C. 67 (1900)
La Plata
Argentina
e-mail: plastino@fisica.unlp.edu.ar angeloplastino@gmail.com
M.C. Rocca
Instituto de Física (IFLP-CCT-Conicet)
Universidad Nacional de La Plata (UNLP)
C.C. 67 (1900)
La Plata
Argentina
and
Departamento de Física
Fac. de Ciencias Exactas
Universidad Nacional de La Plata (UNLP)
La Plata
Argentina
e-mail: rocca@fisica.unlp.edu.ar
mariocarlosrocca@gmail.com

Received: February 10, 2012.

