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Abstract In recent years, graphics processingunits (GPUs)
have emerged as a powerful architecture for solving a broad
spectrum of applications in very short periods of time. How-
ever, most existing GPU optimization approaches do not
exploit the full power available in a CPU–GPU platform.
They have a tendency to leave one of them partially unused
(usually the CPU) and fail to establish an accurate exchange
of information that could help solve the target problem effi-
ciently. Thus, better performance is expected from devising
a hybrid CPU–GPU parallel algorithm that combines the
highly parallel stream processing power of GPUs with the
higher power of multi-core architectures.We have developed
a hybrid methodology to efficiently solve optimization prob-
lems. We use a hybrid CPU–GPU architecture, to benefit
from running it, in parallel, on both the CPU and the GPU.
Our experiments over a heterogeneous set of combinatorial
optimization problems with increasing dimensionality show
a time gain of up to 365× in our proposal, while demonstrat-
ing high numerical accuracy. This work is intended to open
up a new line of research that matches both architectures with
new algorithms and cooperation techniques.
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1 Introduction

Metaheuristics are widely acknowledged as essential tools
for solving, within a reasonable time frame, optimization
problems that are often NP-hard (Garey and Johnson 1979),
time-consuming and complex (Alba et al. 2009). However,
the limits of what may be solved in a “reasonable” time
frame can be different, at least considered excessive, for the
growing needs of research and industry alike. Therefore, par-
allelism appears to be a natural way to not only reduce the
search time, but also to improve the quality of the solutions
provided.

In recent years, graphics processing units (GPUs) have
emerged as a powerful platform for massively parallel
computing, achieving high performance on long-running
scientific applications (Owens et al. 2007). Thus, several
researchers have presented ideas to modify existing opti-
mization algorithms running on CPUs for the new GPU
architecture: genetic algorithms (Cavuoti et al. 2013), cellu-
lar genetic algorithms (Vidal and Alba 2010), particle swarm
optimization (Rabinovich et al. 2012) and others (Langdon
2010; Maitre et al. 2012).

However, most of the existing GPU optimization algo-
rithms still fail to take full advantage of the available
CPU–GPU simultaneous, collaborative computing power.
Moreover, inmuchwork theCPU is simply left as a controller
and its computing power is wasted. In general, when running
a GPU application in a heterogeneous CPU–GPU system
to solve large-scale complex problems, only one thread is
assigned to a CPU core to control the GPU. The rest of CPU
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cores are in idle state, while the GPU performs the optimiza-
tion of many computing tasks. This wastes a large amount of
available CPU resources. Therefore, developing an effective
method to make full use of all the available computational
resources of both CPUs and GPUs has become extremely
relevant and has recently drawn the attention of many appli-
cation developers. Some approaches (Daga et al. 2011; Yu
et al. 2011; Agulleiro et al. 2012; Cardellini et al. 2014) have
been developed to simultaneously use both multi-core CPUs
and GPUs to perform a specific task, instead of the CPU-
only or GPU-only alternatives. Several approaches have also
elaborated on the concept of hybridization to take advantage
of both the algorithmic design and hardware available plat-
forms (Chamberlain et al. 2008). In this way, the design of
efficient hybrid CPU–GPU optimization algorithms encom-
passes many challenges with both software and hardware
issues.

The key challenge that arises when working with hybrid
systems is how to assign the most suitable optimization
processes to CPUs and GPUs. Thus, each approach has to
maximize the utilization of all the computational resources
without losing the computational power that each archi-
tecture provides and enhance the capacity of resolution of
high complexity problems. However, to the best of our
knowledge, very few implementations (Luong et al. 2010;
Pospichal et al. 2010; Krömer et al. 2011; Coelho et al.
2012) follow the cooperation model between CPUs and
GPUs to solve a diverse group of complex optimization prob-
lems where parallelism can be exploited in a transparent
way.

We propose a novel hybrid CPU–GPU implementation in
a heterogeneous system that is able to provide a robust and
cooperative behavior based on two complementary optimiza-
tion algorithms. We implement our proposal on multi-core
CPUs plus a GPU using OpenMP (OpenMP Architecture
Review Board 2008) and CUDA (NVIDIA Corporation
2012), respectively. We call the resulting algorithm HySyS
(hybrid systolic search). The principal objective is to make
HySySboth numerically effective (in terms of the final fitness
value obtained) and parallel efficient (short execution times).
We combine two optimization techniques, each one running
in a CPU and a GPU platform, respectively. The solutions of
the CPU technique are used to replace—to improve—some
of the solutions in the GPU algorithm. Each optimization
technique has been selected, considering its performance and
suitability for the hardware architecture where it will work.
We combine these two algorithms into oneCPU–GPUhybrid
algorithm for optimization.

The algorithmic component ofHySyS that runs in theCPU
is a micro-genetic algorithm [µGA (Goldberg 1989)] which
can use explicit strategies to improve the generated solutions
not only for search intensification but also for search diver-
sification, thereby avoiding getting stuck in local optima.

The µGA incorporates a set of genetic operators that mod-
ify a small population that is used to give a set of solutions
capable of providing information on the search in the GPU
component of HySyS. This GPU component is a systolic
neighborhood search (SNS) (Vidal andAlba 2012). SNScon-
siders theGPU as a container of structured optimization units
that search in the problem space by passing data between
adjacent computing cell units (in our case each cell unit is a
GPU-thread).

Previous works (Vidal and Alba 2012; Pedemonte et al.
2012, 2014a, b; Vidal et al. 2014) have already introduced a
first approximation of the SNS approach, which has proven
to be effective in several optimization problems. However,
none of them are targeted to engineering a hybrid GPU-
CPU parallel algorithm (the main processes are executed on
GPU). Indeed, in (Vidal and Alba 2012; Vidal et al. 2014),
the SNS algorithm (the GPU component of HySyS) is pre-
sented and evaluated. Theworkof Pedemonte et al. (2014a, b)
elaborates on the systolic genetic search (SGS). It is also an
algorithm that follows the systolic paradigm, but one that
develops a more complex flow of solutions (both vertically
and horizontally) which allows a recombination operator to
be included within the cells. That is, none of the published
approaches above use hybridization with other techniques
nor are they targeted to profit from two different hardware
architectures.

The potential of HySyS is that it is able to maintain the
diversity in SNS, using a CPU algorithm with strong inten-
sification capabilities (using evolutionary operators). It does
so by transferring solutions between the CPU and the GPU,
thus reducing the chance of getting stuckprematurely.HySyS
has also been designed to avoid communication bottlenecks
(between the two sides of the CPU–GPU platform), which
may degrade the performance of the algorithm.

To evaluate the behavior and performance of HySyS, we
use a test suite composed of instances from three NP-hard
problems: namely the massively multimodal deceptive prob-
lem (MMDP), the sum set problem (SSP), and the maximum
cut problem (MAXCUT). We have compared our proposal
to both a CPU version of random search as a sanity check
test, and the standalone components of HySyS: µGA and
SNS.

The comparison has been carried out on the basis of: (1)
an exhaustive experimental evaluation has been undertaken
plus a statistical analysis of the results to provide the reader
with insights into both the search capabilities of the HySyS
algorithm and its parallel performance when deployed a
CPU–GPU cooperative model, (2) the computational effort,
to evaluate the time gains of HySyS in relation to the other
techniques, andfinally (3) a scalability analysis, investigating
the effects of an increasing problem size on the two features
above.

The main contributions of this work are:
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– Wepropose a novelCPU–GPUcooperative hybrid imple-
mentation to efficiently solve a set of combinatorial
optimization problems in a heterogeneous parallel com-
puting system.

– We show how two complementary optimization algo-
rithms can be engineered to use the best mechanisms on
each architecture to create a cooperative model that can
be used in commodity machines.

– We have conducted a series of experiments to com-
pare the performance of the CPU–GPU cooperative
implementation against the optimized CPU-only imple-
mentation and the GPU-only implementation providing
experimental results that show the effectiveness of the
proposed model.

The rest of this paper is structured as follows: Sect. 2
reviews of the literature on hybrid optimization over het-
erogeneous architectures. Section 3 explains in detail the
proposed algorithm and its components. The implementa-
tion details are presented in Sect. 4. Section 5 is divided into
two parts: the first includes the test suite used, the parame-
ter settings of the algorithms and, the statistical tests used.
The second presents the experimental results and analyzes
the values obtained. Finally, Sect. 6 presents the main con-
clusions of the work done and future lines of research.

2 Related work

The combination of components from different algorithms is
currently one of the most successful trends in optimization,
and it is one, well-known way of hybridization (Davis 1991;
Cotta and Troya 1998; Talbi 2002).

The main motivation has been to engineer enhanced algo-
rithms that exploit and combine the advantages of the pure
individual strategies. In particular, combinations of local
search (LS), simulated annealing (SA), evolutionary algo-
rithms (EAs) and others have provided very powerful search
algorithms that are considered to be hybrid metaheuristics
(Sinha and Goldberg 2003). We want, however, to use the
term hybrid to refer to not only the combination of different
pieces of software, but also the involvement of a heteroge-
neous computing platform (e.g., one using CPUs and GPUs
trying to profit from their own individual strong points). In
our case, the GPU can easily handle massively parallel tasks
by profiting from its extremely large number of cores, while
the CPU has been especially designed for non-data-parallel
tasks, such as the initializations, starting routines, data trans-
fers, and final result management. Effectively combining
these two fairly different computing platforms into one single
algorithm is the goal of the work shown here. But this is chal-
lenging because of the different features each one has and,
especially, because the communication between theCPU and

the GPU is highly time consuming in comparison with their
actual processing speed. This entire context can lead to a
poor utilization of the CPU itself, restrict the creativity of the
designer when looking for new algorithms, and might waste
a lot of time in transferring data.

There are, however, several related papers, that have
already been published in the literature that deserve further
analysis so as to demonstrate in a clearer way the contri-
butions of the work presented here. Earlier approaches with
a combined use of devices started using a model in which
the CPU managed the whole sequential search process and
the GPU was dedicated to executing a time-consuming task
(usually the evaluation of the quality of solutions for an opti-
mization problem). Once the computing tasks on the GPU
had been performed, the information was transferred back
to the CPU to continue with the algorithm (Robilliard et al.
2008; Maitre et al. 2009; Pospichal et al. 2010; Krömer et al.
2011). A recent approach has been presented by Tsutsui
and Fujimoto (2011), using a multiple GPU architecture that
implements an ant colony optimization (ACO) with the CPU
as a mere controller. They propose a parallel ACO to solve
quadratic assignment problems (QAPs) by combining Tabu
Search (TS) with ACO on GPU. This approach obtained a
maximum acceleration of 21×.

As the time for transferring information between the CPU
and GPU is very long and the function evaluation has to be
carried out many times during the execution, the computing
time in the GPU was not enough to permit such communica-
tion times. The next evolution of the CPU–GPU algorithms
was to deploy all the search procedures on the GPU, keeping
the CPU merely as a simple controller. In Munawar et al.
(2009), the authors introduced a contribution that incorpo-
rated a local search (LS) into an EA (a GA), using the GPU
as main processor. The communication between them was
therefore performedwithin the GPU. This approach obtained
a maximum speedup of 25× over the selected MAXSAT
instances. Research along the same lines was presented by
Coelho et al. (2012), where they introduced a distribution of
LS tasks between CPU and GPU for the unrelated parallel
machine scheduling problem with sequence dependent setup
times (UPMSPST). The speedup ranged from 10× to 27×.

Similarly, a novel approach was introduced by Luong
et al. (2010). They presented interesting guidelines relating
to the distribution of the search process between the CPU
and the GPU, minimizing the data transfer between them.
The algorithmic proposal indicates that the CPU manages
the whole hybrid evolutionary process and lets the GPU be
used as a coprocessor dedicated to intensive calculations.
The hybridization model used in their work included an EA
and an LS. This approach obtained a maximum speedup of
14×. The proposal certainly made clear that hybridization is
a powerful way to achieve high computational efficiency in
both architectures. In (Luong et al. 2013), the authors used
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the GPU to solve a variety of problems using the GPU to
evaluate an LS per GPU, while the CPU was used to control
the algorithm (a hybrid algorithm with multiple GPUs). The
algorithms report a speedup of up to 50× for the instances
used with respect to the sequential version.

While our goal is to work with hybrid metaheuristics, the
implementation of techniques in a cooperative architecture of
CPU–GPU is spreading to other scientific applications, such
as algebra problems (Wang et al. 2014) and sparse matrix-
vector multiplication (Yang et al. 2015). They have designed
a class of heterogeneous algorithms to maximize the degree
of parallelism, to minimize the communication volume, and
to accommodate the heterogeneity betweenCPUs andGPUs.
These algorithms have wide adaptability for different types
of problem instances.

After analyzing all these contributions, it seems clear
that very few approaches use CPU–GPU as a tandem to
numerically search along the problem space. The few par-
tial approaches related to using both devices have reported
very good results. All thismakes it clear that combinedCPU–
GPU is worthy of further investigation, which we do here,
by adding a new recent idea: that of systolic computing on
GPUs.

From the published material, it can be seen that the con-
tribution of this paper refers to the combination of two
algorithms (namely, µGA and SNS). They have been care-
fully selected to create a hybridization on a CPU–GPU
computing platform that effectively performs both numer-
ically and in parallel. This unification results in a hopefully
efficient and innovative way of hybridizing over heteroge-
neous hardware.

3 HySyS

This section describes of our CPU–GPU cooperative opti-
mization technique called HySyS, which can make full use
of all the available computational resources of both CPUs
and GPUs. After briefly presenting the working principles
of the main technique, both algorithmic components (SNS
and µGA) are detailed and the pattern of explorations of the
search space carried out by each method is explained. The
final design of the proposal with a detailed explanation of the
entire process is given afterwards.

Hybrid systolic search is aimed at exploring the paral-
lelization in a hybridCPU–GPUcomputing architecture. The
main idea is as follows: CPU thread 1 executes the µGA,
while CPU thread 2 is dedicated to communicating with the
GPU and managing the execution of the SNS algorithm on
the GPU side. The typical flow of this CPU–GPU comput-
ing method is shown in Fig. 1. Briefly, a dedicated CPU
thread firstly starts the data transfer operation and then, the
input data are allocated into the GPU to be copied to the

global memory. After the data transfer operation has been
completed, CPU thread 2 invokes the CUDA kernel and all
GPU threads run the Systolic Search defined in parallel. The
purpose of this first step of HySyS, that initializes the search
on the GPU, is to avoid wasting computational time. Then,
CPU thread 1 is launched in parallel with the systolic search
with aµGA.When theµGA finishes, a series of routines has
generated a set of new solutions. They are inserted into the
population of the Systolic Search. We use the CPU solutions
to look for an overall quality improvement of the systolic
population and to help in the search for the optimal value of
a problem. With this approach, we seek an improvement in
the space of solutions of the SNS algorithm. From the µGA
we try to use the genetic operators because their complexity
and behavior are not suitable for implementation on a GPU.
In the context of µGA, we try to use their genetic operators
on a CPU due to their behavior and because the complexity
of some operations makes them unsuitable for their use on a
GPU.

In the following subsections we explain the algorithms
that comprise our approach and finish with a more detailed
explanation of HySyS operation.

3.1 Systolic neighborhood search (SNS)

Systolic neighborhood search has its roots in systolic com-
putation (Kung 1979) which shows a realistic model of
computation that captures the concept of pipelining, paral-
lelism, and interconnected structures. There is an exciting
set of concepts that can be translated into optimization if
one sees systolic computation from a high level and broad
point of view. Systolic computation works on a large array
of connected data processing units called cells. These cells
can be small processing elements, hardware elements (soft-
ware elements in our case, GPU threads), where each of
them performs the same task, calculating simple functions
like multiplications, additions, or other such low-level oper-
ations. The purpose of this architecture is to keep a constant
flow of data throughout the entire network after an initial data
input and, as a consequence, it produces an elaborated (opti-
mized in our case) output. This concept was used to create a
new class of algorithms in GPU broadly known as the sys-
tolic neighborhood search (SNS) (Vidal et al. 2014). The new
concept of algorithms has also been inspired by the idea of
animal heart working principles from the point of view of
circulating blood in the animal’s body.

The main approach of SNS is to define a mesh where the
solution flows in a toroidal mesh. Taking into account the
systolic philosophy, SNS presents a model based on inter-
connected cells, threads in our case. Each one is capable
of performing a small modification in all solutions using
the same optimization operator method. The crux of this
approach is to ensure that once a solution (data item) is
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Fig. 1 Hybrid systolic search

brought out from the memory it can be used effectively at
each cell it passes while being “pumped” from cell to cell
along the rows of the mesh. Being able to use each input
solution a number of times (and thus achieving high computa-
tion throughput with only modest memory bandwidth) is just
one of the many advantages of the systolic approach (Kung
and Leiserson 1978). Similarly, advantages such as modular
extensibility, data flow simply and constantly, elimination of
global broadcasting, and fast response time structure (Kung
1984, 2003), represent substantial advantages over more
complicated ones in design and implementation.

The operations of the SNS are presented in Algorithm 1.
The algorithm starts by defining the size of a mesh M of
size m × n, where m is the number of rows and n is the
number of columns. These two values depend on the size
s of the problem instance to be solved. Value s is used to
define these two variables for two reasons. Firstly, we define
a perturbation pattern where each row and column has an
important role. The row indicates the number of perturbations
to be performed on each element of the vector solution. The
column in the mesh indicates the starting position at which
SNSproceeds to create perturbations. Indeed,withn columns

we can perform changes on each element of a solution. The
row in the mesh indicates the size of the neighborhood, i.e.,
how many elements undergo changes. Secondly, as the aim
of SNS is to perform controlled perturbations on solutions
when they flow through the mesh, the cell position is used
to define a simple modification pattern that they all follow.
SNS generatesm×n solutions assigned initially to each cell
in M at position (x, y). Each solution is generated randomly
and is then evaluated. Values x and y contain the coordinates
of a solution inside the mesh.

Then, some operations are carried out to improve the
quality of the solution currently located in each cell. Subse-
quently, with a synchronous movement a solution can move
to the next cell where SNS can make several modifications
to the incoming solution with the aim of improving it.

Algorithm 2 presents the operations performed by each
cell in SNS. It starts by creating a copy sol ′(x,y) of the origi-
nal sol(x,y) (line 2). Then, sol ′(x,y) undergoes a perturbation
process that depends on the parameters x and y, i.e., its loca-
tion in M (line 3). Parameter x defines the number of values
to be changed in the vector solution, while parameter y indi-
cates the left position in the array where changes start (line
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Algorithm 1 Pseudocode of a Canonical SNS
1: Define m and n depending on the instance size s
2: Define mesh M of size m × n
3: for all position (x, y) in M do
4: Create sol(x,y) randomly
5: Evaluate sol(x,y)
6: end for
7: while (not stop_criterion) do
8: for all sol(x,y) located in M do
9: Cell computation(sol(x,y)) //Algorithm 2
10: end for
11: end while
12: getBest(M)

Algorithm 2 Cell computation procedure
1: for all sol(x,y) located in M in parallel do
2: sol ′(x,y) ← copy(sol(x,y)))
3: Update the vector solution from position y to position (y + x)
4: partial_evaluation(sol ′(x,y))
5: if sol ′(x,y) better than sol(x,y) then
6: sol(x,y) ← sol ′(x,y)
7: end if
8: while all actions are not complete (lines 2-7) in all the cells do

wait
9: Move sol(x,y) to the contiguous cell in the mesh
10: end for

3). Once all the changes have been made, and as the total
re-evaluation of sol ′i could be very time consuming, we have
used a partial function evaluation, thus re-evaluating only the
changed section in the vector solution copy (line 4). Finally,
if sol ′(x,y) is better than sol(x,y), the latter is replaced by the
former; otherwise, the original solution remains unchanged
(lines 5–7). When all the cells of the mesh have performed
the changes on their respective solutions, SNS synchronously
moves all solutions in each cell to the next one in the row
(lines 8–9).

A variant of the previous canonical approach is used in
here: SNSexp. This variant has demonstrated a stable behav-
ior in a wide variety of sizes of instances (Vidal et al. 2014).
By reducing the number of rows we can generate a larger
flow of solutions, reducing the number of evaluations. How-
ever, we cannot use the same mechanism as in the canonical
SNS of incremental changes in the solutions per line, so we
need to define two things: the number of rows and howmany
components are changed in each line. The first factor is com-
puted by using the problem size: SNSexp will have log2 s
rows. Second, SNSexp indicates the number of elements to
perturb using the result of exponentiation with number two
as the base and the row number as the exponent. This result
is used as the reference in the changes per row. With this
approach, the number of values to be changed increases in
multiples of two until reaching the total number of elements
in a solution.

3.2 A micro-genetic algorithm (µGA)

In our quest for an algorithm to run in the CPU we first list
the requirements that it should meet so as to be used inside
the hybrid framework of this approach:

– It must be a fast/light algorithm, capable of interacting
with the GPU several times during the systolic comput-
ing.

– Accurate, in computing the optimum or a quasi-optimum
solution.

– Flexible enough, to plug into the best operators known
for optimization problem solving in the literature.

With these requirements in mind, one algorithm seems
particularly suitable: a micro-Genetic Algorithm (µGA).
The “micro” term (µ) refers to a “small population” GA
that operates with the same genetic operators as standard
GAs. Therefore, as the population size increases GAs find
better solutions. However, larger population sizes require
more computational time to find the optimal solution.
To avoid these problems, Krishnakumar proposed micro-
Genetic Algorithm (µGA) (Krishnakumar 1989), based on
the theoretical work by Goldberg (1989).

TheµGAuses a relatively smaller population size than the
sequential genetic algorithm, resulting in less computational
time. By virtue of the small populations, convergence can be
achieved faster and less memory is required to store the pop-
ulation. Moreover,µGA uses elitism to prevent extinction of
the best solution in the next generation. Different approaches
using µGAs have demonstrated their effectiveness in differ-
ent fields finding optimal (or very near-optimal) solutions in
landscapes with multiple local optima (Pu et al. 2010; Kim
et al. 2013; Batres 2013; Kahn and Tangorra 2013).

The µGA process starts by creating a randomly small
population (named P) formed by pi solutions with i =
{1, 2, . . . , g}. Then, µGA chooses the parents with a selec-
tion operator, which undergoes evolution (crossover, muta-
tion) afterwards. Finally, the offspring is evaluated. These
steps are repeated until an auxiliary population (calledaux P)
is filled with the newly generated tentative solutions. We
call all these aforementioned steps to fill aux P the “µGA
cycle”. Once aux P has been completed, µGA replaces P
with aux P . This process is shown in Algorithm 3.

To better control the intensification capabilities ofµGA, a
local search procedure has been included to locally improve
the solutions found. In our case, we have used aHill climbing
search (HC) (Russell and Norvig 2003). HC is an iterative
search that works by starting with an initial arbitrary solution
to a problem, then it attempts to aiding a computationally
faster and more accurate solution by making local changes
incrementally until either the solution is found or the heuristic
gets stuck in a local optimum. If the change produces a better
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Algorithm 3 Pseudocode of the Canonical μGA.
1: Generate population P of size g
2: Evaluate population P
3: while (not stop_criterion) do
4: i = 1
5: while i <= g do
6: parents ←selectParents(P)
7: childi ← crossover(parents)
8: of f springi ← mutation(childi )
9: childi ← f(childi ) {evaluation of new child}
10: childi ← HC(childi )
11: aux Pi ← store(childi )
12: i = i + 1
13: end while
14: replacement(P ,aux P)
15: end while
16: findBetter(P);

solution, an incremental change is made to the new solution,
and the process is repeated until no further improvements can
be found.

3.3 Detailed outline of HySyS

In this subsection, we describe our proposal namedHySyS in
more detail. Algorithm 4 shows the distribution task scheme.
We can observe the following three steps:

– Set all the variables and determine the number of required
CPU threads and GPU threads, respectively, according to
the previously defined variables. Additionally, we create
and evaluate the population for each component on the
CPU and the GPU respectively, according to the algo-
rithmic scheme determined.

– Execute each process taking into account the platform
used. For the case of the CPU, a µGA cycle is executed
and for the GPU we run a SNSexp approach.

– Once aµGA cycle has finished, we stop all the processes
and replace some tentative solutions from M with P .
Finally, HySyS restarts the whole process back to run the
µGA cycle and continues the SNSexp process.

In the beginning of the evolutionary process, HySyS starts
with the initialization on the host and device sides. During
the initialization phase, we first set parameters for both com-
ponents µGA and SNSexp (lines 1–3). Then, we launch the
µGA process for creating and evaluating P (lines 4–6). Also,
the kernel is launched in the device side creating and evalu-
ating the population in the mesh M (lines 7–9).

In the host side we start evolving a small population com-
posed of five tentative solutions, P = {p1, . . . , p5}. First,
p1 and p2 undergo HC (local search). Each newly generated
individual is allocated aux P1 and aux P2. Then, p3 and p4
are crossed over and two offsprings are generated. The best
child replaces aux P3 and the other one undergoes mutation.

Algorithm 4 Pseudocode of a Canonical HySyS
Require: m, n, s, g, M �= ∅, P �= ∅
1: global_ f lag ← f alse
2: Setup creation and evaluation kernel config.:(grid1, threads1)
3: Setup systolic search kernel config.:(grid2, threads2)
4: if (cpu_thread_id = 1) then
5: CreatePopulation(P, g, s)
6: EvaluatePopulation(P, g, s)
7: else if (cpu_thread_id = 2) then
8: call kernel_creation(M,m, n, s,grid1,threads1)
9: call kernel_evaluation(M,m, n, s,grid1,threads1)
10: end if
11: {Start evolution process}
12: while not complete the stopping criterion do
13: {This part control the CPU component}
14: if (cpu_thread_id = 1) then
15: while (not complete aux P) do
16: run μGA cycle
17: end while
18: save best of P in aux P
19: global_ f lag ← true {This part control the GPU component}
20: else if (cpu_thread_id = 2) then
21: while (global_ f lag �= true) do
22: call kernel_systolic_search(M,m, n, s,grid2,threads2)
23: end while
24: end if
25: {Movement of solutions between components}
26: if (cpu_thread_id = 3 and global_ f lag = true) then
27: replace u solutions in M using as basis P
28: global_ f lag ← f alse
29: end if
30: end while
31: getBest(M).

The goal is to introduce as much new genetic material as
possible (diversification). Finally, in aux P5 the best solution
of P is stored to preserve the best solution in the last iteration
(line 16). This process is explained in Algorithm 3.

While µGA is running on CPU, HySyS proceeds to
evolve m × n solutions for SNSexp on the GPU (line 22 of
Alg. 4), which takes them all and starts the cell computa-
tions and the solution flow as shown in Algorithm 1. SNSexp

is executed without any interruption until a µGA cycle is
completed. At this point, HySyS replaces u solutions in M ,
with the solutions coming from P , the population of µGA.
The replacement is performed if the copy (random solution
selected from P) is better than the previous one (randomsolu-
tion selected from M), otherwise the old solution remains
intact. The value for the parameter u is usually greater than
the size of P , i.e., u > 5. The value of u must be carefully
chosen because a high value (i.e., u = m × n) could gener-
ate considerable bias in the SNSexp population. Once it has
been done, HySyS re-launches both µGA and SNSexp. We
can see a general model of the proposal algorithm in Fig. 1.
This figure presents the three steps mentioned above in this
section. It can be seen that processes are executed on the host
and the device side.
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A clear consequence of the movement of solutions
between CPU and GPU is the necessity of copying struc-
tures to the GPU. This movement, in return, has the benefit
of eliminating the necessity to make an efficient algorithm
on GPU with the main characteristics of µGA (that implies
divergence). We try to create a balanced workload between
the two architectures (CPU and GPU). Our approach aims
to improve the quality of solutions without increasing the
cost in terms of execution time and provides better and more
robust solutions using collaborativemethods that fully utilize
modern, heterogeneous PC architectures.

4 Implementation details

In this section, we focus on the low-level implementation
details. These features actually have a deep impact on the
performance of HySyS, as the algorithm for GPUs must be
fine-tuned to profit from the massive parallelism of the card.
Threemain issues are discussed: random number generation,
memory deployment, and thread control of the HySyS com-
ponents.

The performance of any stochastic algorithm, such as an
evolutionary algorithm, highly depends on the quality of its
random numbers generation. During the execution, SNSexp

generates the initial solutions randomly. To avoid transfer-
ring any data between CPU andGPU, SNSexp passes a global
seed as a parameter on to the kernel only once at the begin-
ning, which is then used by each GPU local thread. The
local seed is used to generate random numbers with a fast
Mersenne Twister version kernel provided within the CUDA
SDK. A GPU version of the Mersenne Twister generator
(Podlozhnyuk 2007; Howes and Thomas 2009) is used in
some PSO implementations (Rabinovich et al. 2012; Ding
and Tan 2014). For more information about GPU-based ran-
dom numbers generators see (Couturier and Guyeux 2013).

To avoid the continuous communication between the CPU
and the GPU, HySyS uses the global memory of the GPU
device to store the entire population of the SNSexp algo-
rithm. The size of the problems addressed usually prevents
the algorithm from using the shared memory of the SMPs.
All the optimization problems considered as the testbed
can use a binary string representation. This has allowed
us to use bit-level operations so as to save memory space,
thereby addressing very large problem instances, which can
be allocated within the GPU in one batch of communica-
tion.

Regarding thread management on HySyS, we use open
multi-processing (OpenMP) (OpenMP Architecture Review
Board 2008). OpenMP has established itself as an important
method and language extension for programming shared-
memory parallel computers. There are several advantages
to OpenMP as a programming paradigm for GPGPUs:

– OpenMP is efficient at expressing loop-level parallelism
in applications, which is an ideal target for utilizing
GPU’s highly parallel computing units to accelerate data-
parallel computations.

– Incremental parallelization of applications, which is one
of OpenMP’s features, can add the same benefit to
GPGPU programming.

In this way, OpenMP has allowed us to have a clean and
efficient management of the resources by using one CPU
thread to handle the computation of the SNSexp algorithm
and its resources in GPU, and another CPU thread to manage
the µGA computation (as can be seen in Fig. 1).

Additional information of the paper such as the details of
the CUDA kernels and the datasets employed are available
for downloading at http://www.uaco.unpa.edu.ar/pjvidal/

5 Experimentation

This section comprises the experimentation performed to
assess the efficiency of HySyS: the testbed, the methodol-
ogy, and, finally, the analysis of the obtained results.

5.1 Test suite

To analyze the behavior and performance of the algorithms,
this section describes the three benchmark problems selected
and the features of the instances used.

– Massively Multimodal deceptive problem (MMDP): is a
problem that has been specifically designed to be dif-
ficult for an EA (Goldberg et al. 1992). The MMDP
problem is composed of k subproblems (subpi , where
i = {1, 2, . . . , k}), each one has 6 bits that can take the
values 0 or 1. Thus, the degree ofmultimodality is defined
by k. In relation to the subproblems, each one contributes
to the overall fitness according to the value resulting from
the sum of the 6 bits (accordingly the number of ones
present is the result of each one). Table 1 shows the pos-
sible values that the sum of each subproblem can take
(from 0 to 6). This is known as unitation (number of ones
in the solution, regardless of their position). Unitation

Table 1 Unitation values 0 1.000000

1 0.000000

2 0.360384

3 1.640576

4 1.360384

5 0.000000

6 1.000000
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Fig. 2 Basic deceptive bipolar function (si ) for MMDP

functions (represented in our case by unitation(subpi ))
are also important because they allow the study of the
behavior of optimization algorithms in the presence of
multiple local and global optima. It is easy to see (plot
on Fig. 2) that these subproblems have two global max-
ima and a deceptive attractor in the middle point. The
objective function to be maximized is shown in Eq. 1.
We here use considerably larger instances with k =
{20, 30, 40} subproblems.

f (−→x ) =
k∑

i=1

(unitation(subpi )) (1)

– Subset sum problem (SSP): is a special class of binary
knapsack problem which interests both theoreticians and
practitioners. This problem has several interesting appli-
cations (Dietrich and Escudero 1993; Chakravarty et al.
2000; Thomas et al. 2009). In the formal definition of the
SSP we are given a set W = {w1, w2, w3, . . . , wn} of
n integers and a large integer C . We would like to find
a vector solution x = (x1, x2, . . . , xn) where xi ε {0, 1},
such that:

f (x) =
n∑

i=1

wi xi ≤ C with i = 1, 2, . . . , n (2)

We used the same coding and objective function as sug-
gested by Khuri et al. (1994). To guarantee that all
infeasible solutions yield larger (worse) objective func-
tion values than the feasible ones, the following function
was used as a fitness function:

f (x) = w ∗ (C − P(x)) + (1 − w) ∗ P(x) (3)

where w = 1 when the vector solution is feasible (C −
x ≥ 0), and w = 0 when x is infeasible.

We created our problem instances in a similar way to
themethod used byKhuri et al. (1994). The size of vector
W was set to {1000, 5000, 10,000} and the elements in
W were created randomly with a uniform distribution
from the interval [0, 104] to obtain a large variance. Three

problem instances were generated (called SSP_i where i
is the index of the size of the test suite of W ).

– Maximum cut problem (MAXCUT): The MAXCUT
problem is just one of the many NP-hard graph the-
ory problems which have attracted a great number of
researchers over the years.
The problem looks for a partition of the set of vertices
(V ) of a weighted graph Gw = (V, E). In this case,
Gw = (V, E) stands for a weighted undirected graph,
and wi j ≥ 0 is the weight of edge ei j ε E . The result
of the division is two disjoint subsets V0 and V1 where
the sum of the weights of the edges with one endpoint
in V0 and the other in V1 is maximized. To encode the
problemwe use a binary string (x1, x2, . . . , xn) of length
n where each position corresponds to a vertex. If xi = 0
then vertex i is in V0; otherwise, it is in V1. The function
to be maximized (Khuri et al. 1994) is:

f (−→x ) =
n−1∑

i=1

n∑

j=i+1

wi j [xi (1 − x j ) + x j (1 − xi )] (4)

Note that wi j contributes to the sum only if nodes i and
j are in different partitions. While one can generate dif-
ferent random graph instances to test the algorithm, here
we have used three cases tested in the literature (Khuri
et al. 1994) with a size of 20 and 100 elements (called
20_01, 20_09, and 100). In addition, we have selected
one instance called G11 with an instance size of 800.

5.2 Methodology

This section describes themethodology adopted in the exper-
iments carried out in the course of this work.

First, we introduce the motivation for selecting each one
of the algorithms to be compared with our HySyS algorithm.
Then, we validate our results. Finally, a description of the
hardware used in the tests is included.

Nowadays, the comparison between different algorithms
in any study is mandatory. We have done so here, by exam-
ining the obtained results by a random search (RS) on CPU,
µGA on CPU, and SNSexp on GPU; then, we have provided
numerical evidence of the highly competitive results of our
proposal. RS is used as a way to provide a sanity check with
respect to the results of HySyS, just to test if our algorithmic
proposal is more intelligent than a pure random sampling.

Likewise, µGA and SNSexp are used because they are
the algorithmic components of HySyS and we want to test
whether the emergent behavior of hybridization outperforms
the parts separately. Moreover, we consider µGA as a classi-
cal advanced intelligent search thatwill serve to contextualize

1 http://www.optsicom.es/maxcut/.
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HySyS results in optimization. The main features of the
above mentioned algorithms are the following:

– Random search: RS initializes a solution solx randomly
and evaluates it. Then, until a termination criterion ismet,
RS repeats the process of creating and evaluating a new
solution soly . If soly is better than solx , solx is replaced
with soly ; otherwise, solx is left unchanged.

– micro-genetic algorithm (µGA): The µGA is described
in Sect. 3.

– Exponential systolic neighborhood search (SNSexp): The
SNSexp algorithm is presented in Sect. 3.

Our work aims at providing experimental findings on
the performance and robustness of HySyS, showing that it
is especially worthy of future study and use. Apart from
comparing our proposal to three canonical algorithms from
the literature, the conducted experimentation has also been
designed to show the scalability capabilities (a key issue
seldom reported in the literature) of this hybrid CPU–GPU
algorithm.

We have carried out a thorough statistical procedure to
provide the results with confidence. Firstly, we performed 30
independent runs for every problem instance in the test suite.
Then, a Kolmogorov–Smirnov test was performed to check
whether the values of the results follow a normal (Gaussian)
distribution or not. If the distribution was normal, then we
applied the Levene test to check the homogeneity of the vari-
ances. If samples had equal variances (positive Levene test),
an ANOVA test was done; otherwise, a Welch test was per-
formed. For non-Gaussian distributions, the non-parametric
Kruskal-Wallis test was used to compare the medians of the
algorithms. Here we have always considered a confidence
level of 95 % in the statistical tests. This means we can guar-
antee that the differences between the compared algorithms
are significant or not with 95 % probability and the observed
algorithmic differences are unlikely to have occurred by
chance with 95 % probability.

The experiments were run on a host with a CPU Intel (R)
i7 CPU 920, with a total physical memory of 8192 MB. The
operating system was Ubuntu Lucid 12.10. In the case of the
GPU, we had two GPU models to prove the performance
behavior for HySyS. Details of each model are presented in
Table 2. The HySyS approach tested in each GPU model is
called HySyS_n650 and HySyS_n780, respectively. They
are composed by the name of the algorithm followed by an n
(from the card manufacturer NVIDIA) and the card model.

5.3 Parameterization

As usual, stopping criterion is necessary so as to ensure an
adequate termination condition for an evolutionary process
(Aytug and Koehler 2000; Greenhalgh and Marshall 2000;

Table 2 Parameter settings for the GPU models used

Characteristic GeForce
GTX 650

GeForceGTX
780 Ti

CUDA cores 384 2880

Memory size 1024 MB 3072 MB

CUDA version used 5.0 6.0

Graphic card version 331.20 331.20

Oliveto et al. 2007). We have chosen a stop condition to
guarantee a similar exploration of the search space for all
the problem instance sizes. Thus, the function evaluation
reflects the time complexity of the algorithms. We have esti-
mated an upper bound for the number of evaluations required
to ensure convergence taking into account previous work
related to the problems (Dorronsoro et al. 2004; Wang 2004;
Martí et al. 2009; Kochenberger et al. 2013). We have exam-
ined HySyS efficiency with a maximum number of objective
function evaluations (up to 600,000 evaluations) to investi-
gate algorithmic behavior and time complexity. To evaluate
algorithmic performance directly, we have kept the effort
constant and compared the quality of the obtained results.
We have selected a sufficiently large, but not excessive, num-
ber of evaluations to monitor the behavior and evolution up
to large instances. Evaluations’ control occurs by counting
the evaluations performed in each component controlled by a
particular CPU thread. Specifically, the GPU kernel is man-
aged by a thread in the CPU, as can be seen in Fig. 1, that
controls the number of SNS iterations. Each SNS kernel per-
forms one single iteration of the algorithm; in this way this
thread knows the total number of evaluations that have been
performed, and can be stopped at any moment. Therefore,
when HySyS detects that the stop condition has almost been
reached (i.e., 600,000 evals) these actions are triggered: the
µGA thread is stopped; its number of function evaluations
is summed up; the number of evaluations that have not yet
been performed is passed on to the SNS kernel, which only
performs this number of evaluations.

As our approach uses two components with several dif-
ferences in the number of evaluations performed by cycle,
HySyS separately calculates the evaluations performed by
each component and a third CPU thread is responsible for
checking whether it has reached the stop condition.

The rest of the µGA parameters included in Table 3 have
been reached through several preliminary pilot tests. We first
design an analysis using a simplified design with three dis-
crete values for every parameter (small,medium, high) taking
into account the existing literature (Kahn and Tangorra 2013;
Batres 2013) on µGAs.

Hybrid systolic search introduces a few additional para-
meters: those related to the search configuration, and those
associatedwith theGPUparallelization. On the one hand, the
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Table 3 Parameter settings for µGA

Parameter Value

Population size 5

Max. iters. for HC 50

Crossover Two point crossover (DPX)

pc 1.0

pm 1/instance size

u 15 %

experiments have allowed us to set the percentage of solu-
tions replaced in SNSexp, u, to 15 %. This value is based on
tests previously performed to adjust this parameter. On the
other hand, the configuration of the GPU kernels uses a sta-
tic size; 512 threads per block. The number of blocks varies
depending on the instance size. If this size is greater than 512,
the number of blocks is computed as round(s/512) where s
is the instance size.

5.4 Results

In this section, we provide a detailed study of the results
for the problems presented above. For further analysis of
the outcome of using our approach regarding the other algo-
rithms, we present different evaluations, focusing on both the
numerical and the real-time performances. Then, a scalability
analysis of the HySyS is presented.

5.4.1 Numerical analysis

The quality of the solutions reached by the algorithms is
examined in this section. The first three tables include the
average fitness values and the hit rate (percentage of suc-
cessful runs that obtain the best known optimum value) for
the different instances of the three benchmarking optimiza-
tion problems.

With respect to the MMDP problem, Table 4 shows the
average fitness and hit rate obtained results over 30 inde-
pendent runs. The subindex on each MMDP instance gives

the number of subproblems used (defined by the k value). It
can be clearly seen that both HySyS models obtain the best
(highest) values for all the instances considered, the differ-
ences with respect to the other algorithms becoming greater
as the problem size grows. Indeed, our proposal hits the opti-
mum value in all these instances at least once. The second
best algorithm for this instance group isµGA, where the best
fitness is found at least once. In the case of RSCPU, the results
are the worst ones with respect to the other algorithms. These
results indicate that the HySyS approach can perform a more
intelligent exploration of the search space than a pure random
search.

Having evaluated the performance of HySyS against each
technique separately, HySyS is always above 95 % of the
optimum solution. The results obtained clearly indicate that
HySyS can explore the search space better than each tech-
nique acting separately, thus showing a promising emergent
behavior.

Table 5 displays the results for SSP instances averaged
over 30 independent runs. For this group of instances the
name of each one consists of the name problem and a num-
ber from 1 to 3. The first conclusion that can be drawn
from Table 5 is that almost all algorithms found the best
known solution at least once (except for RSCPU, for instance
SSP_3). Concretely, accurate solutions have been computed
by HySyS, which obtains 100 % hit rate for all the instances.
However, for the SSP problem, it is worth noting that SNSexp

reaches 100 % numerical accuracy for SSP_1 and SNS_2.
The µGA is the third in performance as regards its effective-
ness. As can be seen in Table 5, HySyS finds the optimum
value in all the runs for all the instance sizes (Avg. columns).
On the other hand, the other algorithms gradually get worse
(higher) solutions as the instance size increases. In conclu-
sion, for the SSP instances the HySyS algorithm obtains
competitive results and has overcome all the other algorithms
in our comparison. In the case of RSCPU and µGACPU, there
is a statistical difference with respect to the quality of the
solutions found.

Table 6 shows the average fitness values for the MAX-
CUT instances. In this case, the results are also clear. HySyS
proves to be the best algorithm out of all those involved in

Table 4 Average fitness and hit
rates for MMDP instances over
30 independent runs

Algorithms MMDP_20 MMDP_30 MMDP_40

Avg. Hit rate Avg. Hit rate Avg. Hit rate

RSCPU 13.399 0.00 % 18.552 0.00 % 23.756 0.00 %

µGACPU 18.810 23.33 % 28.279 13.33 % 28.968 0.00 %

SNSexp 16.348 0.00 % 23.915 0.00 % 26.143 0.00 %

HySyS_n650 19.619 90.67 % 29.221 40.00 % 36.803 6.67 %

HySyS_n780 19.601 86.67 % 29.368 56.67 % 36.719 6.67 %

Optimum 20.000 30.000 40.000

The globally best result for each column appear in boldface
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Table 5 Average fitness and hit
rates for SSP instances over 30
independent runs

Algorithms SSP_1 SSP_2 SSP_3

Avg. % Hits Avg. % Hits Avg. % Hits

RSCPU 2384738.0 26.67 12006252.0 6.67 14961670.0 0.00

µGACPU 2664167.0 90.00 12193134.0 13.34 23982636.0 36.67

SNSexp 2684659.0 100.00 12481273.0 100.00 24812667.0 60.00

HySyS_n650 2684659.0 100.00 12481273.0 100.00 24872631.0 100.00

HySyS_n780 2684659.0 100.00 12481273.0 100.00 24872631.0 100.00

Optimum 2684659.0 12481273.0 24872631.0

The globally best result for each column appear in boldface

Table 6 Average fitness and hit rates for MAXCUT instances in 30 independent runs

Algorithms MAXCUT instance names

20_01 20_09 100 G1

Avg. % Hits Avg. % Hits Avg. % Hits Avg. % Hits

RSCPU 9.119800 6.67 55.678740 0.00 571.366 0.00 13619.733 0.00

µGACPU 10.110205 26.67 55.918000 0.00 807.150 0.00 16894.000 0.00

SNSexp 10.119812 100.00 56.499010 60.00 957.266 0.00 15716.016 0.00

HySyS_n650 10.119812 100.00 55.992004 83.33 1075.483 73.33 17887.968 0.00

HySyS_n780 10.119812 100.00 56.115299 90.00 1075.101 70.00 17814.563 0.00

Optimum 10.119812 56.740064 1077.000 19176.000

The globally best result for each column appear in boldface
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Fig. 3 Hit rates reached by all the algorithms

this comparison as it finds the best (the highest) average fit-
ness values in the four instances considered. In the context
of this work, HySyS has been able to obtain higher quality
solutions by combining both techniques (µGA and SNSexp),
rather than using each one separately. The two approaches
using different GPU card models obtain the best optimum in
all the executions.

To illustrate the effectiveness of our approach more
clearly, Fig. 3 contains the hit rates of all the algorithms for
all tested instances (i.e., taking into account the instances for
the three problems). The figure shows a clear fact: HySyS is
able to find the optimal solution in 9 out of 10 instances used,
and in the remaining instances it obtains the best (highest) hit
rates. The rest of the algorithms reach the optimal solution
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Fig. 4 Average fitness value through the evolution process with HySyS in the three MMDP instances. aMMDP_20, bMMDP_30, cMMDP_40
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Fig. 5 Average fitness value through the evolution process with HySyS in the three SSP instances. a SSP_1, b SSP_2, c SSP_3

only for the SSP instances, the first MAXCUT instance, and
the two first MMDP instances.

As a final remark on the numerical performance ofHySyS,
we would like to point out that the hybrid cooperation of the
HySyS is able to generate accurate solutions and explore the
search space effectively so as to identify the region where
the optimal solution is located. The benefits of HySyS are
principally justified by two factors: (1) the long flow of solu-
tions within the SNSexp mesh, which allows the algorithm
to perform deep search intensification and (2) the injection
of high quality solutions from µGA within the mesh, which
prevents SNSexp from being stuck by increasing the diversity
with high quality and diverse solutions.

The charts in Figs. 4, 5 and 6 show the evolution for
a simple execution of the average fitness solutions during
the evolutionary process for the MMDP, SSP andMAXCUT
problems, respectively. For the x-axis each chart displays the
percentage of the number of completed evaluations, versus
the fitness value for each instance. There are three lines that

indicate the evolution of each algorithm. The solid line with
plus signs is the reference for HySyS, the dashed line with
circles denotes theµGA, and the dash-dot line with asterisks
is for SNSexp. The HySyS_n650 model is used as a reference
to create the plots.

For theMMDPproblem,we can see in Fig. 4a, b that in the
early evolution (from 0 to 40%) the fitness increases abruptly
in the first generations reaching the optimum value at 80 %
of the completed evaluations. The µGA component starts
out, having a superior quality fitness to the one presented
by SNSexp. However, continuous data exchanges between
components allow the SNSexp to acquire higher quality solu-
tions; therefore, the search can be refined through the pattern
of exploration and exploitation. In Fig. 4c we can see a sharp
increase in fitness value as in Fig. 4a, b, but subsequent stag-
nation occurs revealing no significant improvements. Once
70 % of evaluations have been completed, SNSexp values
have reachedµGA average fitness solutions and finally finds
the best optimum.
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Fig. 6 Average fitness value through the evolution process with HySyS in the three MAXCUT instances. a 20_09, b 100, c 800

Figure 5a–c shows the evolution of the components for the
three instances of the SSP problems. We can clearly see the
differences between the start and endof the process evolution.
At the start, the two components scale in a similar manner.
However, the µGA component improves gradually during
the first steps of the process but as the algorithm progresses,
either the solutions converge prematurely or get stuck at a
local optimum. Fig. 5c, which represents the fitness evolution
for the largest MMDP instance, the fitness scaling is similar
to the one in the other two figures. At first, the value of best
average fitness is obtained by the µGA, but as the process
continues, SNSexp reaches a value that is very close to the
optimal fitness.

As can be observed in Fig. 6a–c, the communications
between components allow SNSexp to reach the optimum
value in the first two figures. In fact, SNSexp can execute
a greater number of cycles (for the same number of visited
points in the search space) and in the last steps of the evolu-
tionprocess it has quality solutions from theCPUcomponent.
This scenario allows each new incoming solution to be mod-
ified extensively (higher exploitation) until it reaches a stage
that is very close to the optimal.

For the three groups of figures, we can say that, it can be
seen comparatively that HySyS improves solutions very fast
in the early evolution, taking advantage of the small group
of high quality solutions provided by µGA.

5.4.2 Execution time analysis

Table 7 presents the average time results measured in sec-
onds for the MMDP instances over 30 independent runs. It
shows that HySyS_n780 obtains the shortest times for all
the instances. HySyS_n650 does not fall very far behind
the HySyS_n780, especially in smaller instances. We find
that for the MMDP_20 instance the times are very similar

Table 7 Average time (in s) for MMDP instances in 30 independent
runs

Algorithms MMDP_20 MMDP_30 MMDP_40

RSCPU 3.639 5.281 6.966

µGACPU 0.305 0.431 0.556

SNSexp 0.078 0.272 0.783

HySyS_n650 0.055 0.056 0.065

HySyS_n780 0.042 0.047 0.059

The globally best result for each column appear in boldface

between SNSexp and the two HySyS models. Even if HySyS
includes the behaviors of µGA and SNSexp, the number of
performed steps and the execution time of the HySyS algo-
rithm is less than the amounts taken by each component
separately (i.e., µGA and SNSexp algorithms).

We can see that for small instances (few items), the exe-
cution times are similar. In larger instances it is clear that
both HySyS runtimes are lower than SNSexp. This is justi-
fied because the performance of µGA with HC consumes
part of the evaluations, finishing the HySyS run at almost the
same time as SNSexp. By considering the numerical perfor-
mance, it can be stated that HySyS exhibits the most robust
behavior, being able to reach or be close to the optimum in
the shortest execution time.

Now, we turn to analyzing the run times for the SSP
instances. Table 8 shows that the shortest times are obtained
by HySyS_n780 in all instances. In these kinds of problems,
we observe a clear difference in time between both HySyS
tests. The results reveal a faster performance for the newer
GPU architecture. Particularly, with the larger instances
SNSexp has a shorter computation time than µGA’s. Finally,
RSCPU has the longest performance times for each SSP
instance.
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Table 8 Average time (in s) for SSP instances in 30 independent runs

Algorithms SSP_1 SSP_2 SSP_3

RSCPU 25.942 129.756 262.525

µGACPU 1.773 7.808 15.336

SNSexp 0.177 3.409 11.292

HySyS_n650 0.085 2.766 9.868

HySyS_n780 0.071 2.133 6.966

The globally best result for each column appear in boldface

Table 9 Average time (in s) for MAXCUT instances in 30 independent
runs

Algorithms MAXCUT instance names

20_01 20_09 100 G1

RSCPU 2.781 2.838 51.916 3116.330

µGACPU 0.199 0.206 3.031 172.189

SNSexp 0.336 0.336 0.857 32.142

HySyS_n650 0.339 0.337 0.818 24.171

HySyS_n780 0.115 0.183 0.524 18.761

The globally best result for each column appear in boldface

The average execution times for 30 independent runs in
the MAXCUT instances are presented in Table 9. RSCPU
has the longest execution times compared to the rest of the
algorithms. We have observed in the two smaller instances
(20 items) that the µGA is executed in a shorter time, when
compared to the others. HySyS and SNSexp also have similar
execution times. As the instance size grows, HySyS has the
shortest execution times compared to the other algorithms.

Below, we show the run time for the processes of
HySyS_n650 and demonstrate the necessity to report mem-
ory transfer overhead costs for CPU–GPU performance
comparisons so as to understand the behavior of a CPU–
GPU algorithm better. We have selected the first GPUmodel
since the execution times between the two models are sim-
ilar and it is also interesting to evaluate the behavior of this
approach in commodity video graphics cards.

We have focused on three major operations: (1) The time
spent by the main CPU–GPU process of evolution. (2) The
measurement of transferred data (no solution) between the
two architectures. (3) Finally, the time taken to move solu-
tions between host and device. The first operation measures
the time that the two processes (i.e., SNSexp andµGA) apply
to operators over the solutions. The second operation is a
very important point because it allows us to know whether
HySyS_n650 is consuming toomuch timewhen the informa-
tion is transferred between CPU and GPU. It is well known
that the CPU–GPU communication of data can be a bottle-
neck in the performance of algorithms. The latter operation
is related to the total runtime that HySyS_n650 uses to move
solutions between host andGPUdevices. The control of these

times provides information about the behavior of the differ-
ent processes involved in the algorithm. It also allows us to
analyze whether or not there is a bottleneck or a significant
delay in the execution of some processes.

Figure 7 presents the percentage of time spent on each
relevant operation in our CPU–GPU implementation. The
figure shows (for each instance) the time percentage used
with respect to the total execution times for the three opera-
tions explained above.

As a first observation, in Fig. 7 we can appreciate the
high times related to the communication and data transfer.
This time is longer in those instances with a lower number of
elements. For example, theMMDP instances have the longest
time percentage, which decreases with the instance sizes. In
fact, for MMDP instances the time percentage ranges from
25 to 30 % of the total run time; for SSP instances, from 5
to 19 % and finally, it reaches 1 % for the largest MAXCUT
instance.

As a second observation, the time to exchange solutions in
most of the instances is less than 10 %; only for the MMDP
cases, does the algorithm reach a maximum of 13 %. These
values indicate that the exchange of solutions uses around
10 % of the total run time. These times can be explained by
taking into account that the number of iterations decreases as
the number of elements increases. So, the chance to transfer
solutions between devices is greatly reduced.

As a concluding remark regarding Fig. 7, we can state that
the advantage of a full distribution of tasks over the CPU and
GPU shows that the algorithm is still fast and effective even
though some time is lost in the data transfer operations. Data
transmission performed by the algorithmic model is efficient
with respect to the runtime.Moreover, this process is also less
time consuming, which can lead us to devise new variants
based on this methodology. As a result, we can conclude that
the time associated with the communication/transfer directly
affects the execution time in smaller instances but is negligi-
ble for the largest instances.

Figure 8 shows the acceleration values for MMDP
instances. We can see that in all cases the values are greater
than 1, which means that HySyS_n780 is faster than the
rest of the algorithms. Likewise, we have noticed that as
the instance size grows, so does the time gained, ranging
from 1× to 118×. The results for SSP instances are pre-
sented in Fig. 9. The runtime reduction ranges from 1× to
365×. These values suggest a good scalability of our algo-
rithm. Finally, Fig. 10 shows a surprising similarity between
HySyS_n780 and SNSexp, which do not exhibit any clear dif-
ferences. As the problem size grows, the time gained is better
with HySyS_n780. Finally, HySyS_n780 obtains a greater
time reduction against RS; this difference ranges from 8× to
129×. For the comparison of graphic accelerators in partic-
ular, the results are quite interesting. A GeForce GTX 650
with 384 cores showed nice execution times, falling not too
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far behind the GTX 780 with 2880 cores. The mid-end card
was even faster in all instances. This might be influenced by
a slightly larger scheduling overhead with the more complex
GPU. Of course, if we think about problems that increase in
size, GTX 780 could be used to full capacity and the speedup
would be significantly higher. However, the features of low-
end cards should be considered for scientific computing.

In summary, we can draw some interesting conclusions.
As expected, parallel implementation outperforms the serial
one in the largest instances. The time consumed by a CPU
algorithm does not increase exponentially as the instance
dimension rises. The high runtime reductions demonstrated
in this study for the largest instances are encouraging and
indicate the usefulness of practical hybrid applications on
CPU/GPU-based computing platforms for large size prob-
lems.Moreover, our approach has succeeded in solving large
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Fig. 9 Runtime reduction for SSP instances

academic problems in a shorter time with respect to other
algorithms. These experiments provide guidelines on how
to work with real problems (computationally demanding in
terms of time).

5.4.3 Scalability analysis

This section is dedicated exclusively to summarizing the scal-
ability behavior of the HySyS and its observed performance.
For this analysis, we have also taken into account the time
and numerical results explained above.

The first conclusion that can be easily drawn from the
results is that there is a better scalability of the HySyS
approach with respect to the execution time. Furthermore,
communication times are quite short compared to the run-
ning processes inmost of the cases (as can be noted in Fig. 7).
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Therefore, we can state that the numerical performance is not
penalized by the communication time. However, this may be
a direct effect of the number of steps that the algorithm exe-
cutes.

As for the numerical performance, HySyS presents really
accurate values when the instance sizes grow. Indeed, as the
instance size grows, it forces both µGA and SNSexp to face
major difficulties to hit the optimal solutions of the instances
(this is proved by the hit rates showed in Fig. 3). In the SSP
instance, we have observed that HySyS obtains a full hit
rate, while the rest of algorithms are always below. There-
fore, HySyS can work efficiently with very large problem
instances. This is further supported by the results of the other
two problem instances as HySyS finds the optimal value at
least once. Thus, our proposal is likely to provide a more
robust search under these experimental conditions.

6 Conclusions

In this paper, we have proposed a new hybrid parallel opti-
mization algorithm: the Hybrid Systolic Search algorithm,
its acronym being HySyS. This is just the first of many
other approaches that can be derived from using the same
methodology asHySyS.We have tried to adapt the concept of
hybrid metaheuristics exhibiting complementary behaviors,
to improve the effectiveness and robustness in an architecture
of CPU–GPU.

The main scientific contribution of the work presented
here is the novel hybrid model which exploits two com-
putational optimization methods with a specific focus on
each architecture. In addition, systolic computing on GPUs
is novel, and this work reinforces its potential. HySyS con-

stitutes an original model where it is possible to introduce
and reuse new optimization components designed for each
computing platform.

Our study has considered three different combinatorial
optimization problems commonly employed in the EA field.
The preliminary results of our experiments are very promis-
ing with respect to the effectiveness of the method that we
have developed.

On the one hand, the experimental results show that the
hybrid CPU–GPU cooperative implementation yields signif-
icant performance improvements by fully utilizing all the
available computational resources of both CPUs and GPUs.
The runtime reduction of the HySyS approach with respect
to other algorithm implementations is up to 118× for the
MMDP, 365× for the SSP and 166× for the MAXCUT.
The computational experience corroborates the effectiveness
of the parallel metaheuristics. These parallelizations provide
the basic advantages of the parallel procedures. On the other
hand, the µGA operators do matter as they do not need such
heavy computation, since they achieve an increase of either
the efficiency or the exploration.

When applied to a hybrid scheme, the first-improvement
strategy resulted in an effective use of the resources, reaching
the best knownfitness value in very short times andwith good
scalability behavior when solving high-dimension problem
instances.

As future work, we are now exploring this line of research
by introducing new optimization techniques in theCPU com-
ponent. The use and testing of other algorithms will uncover
evidence of HySyS versatility in allowing an easy integration
with additional components from the literature.
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