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H I G H L I G H T S
� Radiant fields in dense, size–distributed, particulate suspensions were modeled.

� A probabilistic approach for computing the characteristic photon extinction length was developed.
� Monte Carlo simulations were used to validate the model.
� The proposed model correctly predicts radiation fields up to 30%v/v of particles.
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a b s t r a c t

Radiant field distribution is an important modeling issue in many systems of practical interest, such as
photo-bioreactors for algae growth and heterogeneous photo-catalytic reactors for water detoxification.

In this work, a simple radiant field model suitable for dispersed systems showing particle size dis-
tributions, is proposed for both dilute and dense two-phase systems. Its main features are: (i) only
physical, independently assessable parameters are involved and (ii) its simplicity allows a closed form
solution, which makes it suitable for inclusion in a complete photo-reactor model, where also kinetic and
fluid dynamic sub-models play a role. A similar model can be derived by making use of concepts
developed in the realm of stereology. The resulting equation is similar, yet not identical, to that obtained
with the probabilistic approach, due to the fact that in stereology the front plane, or the focus plane, may
well cut through particles, a circumstance excluded both in the probabilistic model and in actual pho-
toreactors.

The two models are compared with pseudo-experimental data obtained by means of Monte Carlo
simulations, and the probabilistic model is found to give rise to the best agreement.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As far as radiation transfer is concerned, particle-fluid disper-
sions belong to the class of scattering-absorbing media. The need
to model radiation intensity distribution in such media occurs
in a number of important applications, including autotrophic
microalgae growth (Molina Grima et al., 1999; Yun and Park,
2001; Li et al., 2003; Heinrich et al., 2013), hydrogen production
by photosynthetic bacteria (Katsuda et al., 2000), as well as
usciglio),
iali@unipa.it (F. Scargiali),
heterogeneous photo-catalytic reactors for water and air pur-
ification (Cassano and Alfano, 2000; Li Puma et al., 2004; Brucato
et al., 2006; Otalvaro-Marin et al., 2014), hence processes aimed at
addressing significant energetic and environmental problems.

Clearly reliable tools for the design and development of photo-
bioreactors and heterogeneous photo-catalytic reactors are
required in order to successfully bring these processes to the
industrial stage. Mathematical modeling of the radiant field in
photoreactors has been the subject of a number of studies (Kat-
suda et al., 2000; Li et al., 2003; Su et al., 2003; Brucato et al.,
2006; Palma et al., 2010; Motegh et al., 2013). The ability to model
the radiant field in a photo-reactor is of paramount importance
also to obtain reliable intrinsic kinetic data from experiments
(Davydov et al., 1999).
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In general, when chemical effects are involved, radiation field
modeling is a very complex task, especially because the reactants'
concentration field may strongly influence the radiation field
(Brucato and Rizzuti, 1997a). However, in heterogeneous photo-
catalytic reactors as well as in algae photo-bioreactors, discrete
particles absorb and scatter light independently of reactants or
substrates that are often transparent to the radiation wavelengths
involved in the activation of photo-catalyst (or chloroplasts). In
these cases, the radiation field, being independent from the par-
ticle concentration field, can be computed in advance.

Moreover, the interactions between the radiant source and the
dispersed particles, that can both scatter and absorb photons,
make radiant field modeling a very complicated task. A solution of
the Radiation Transfer Equation (RTE) would be required, but
analytical solutions are possible only in very simple cases (Cassano
et al., 1995; Cassano and Alfano, 2000; Brucato et al., 2006).

Hence, the following alternative approaches have been pro-
posed to obtain approximate solutions of the RTE: (i) numerical
solution based either on discrete ordinate method (Santarelli,
1985; Brandi et al., 1996; Romero et al., 1997; Brandi et al., 1999,
2000) or Monte Carlo method (Spadoni et al., 1978; Pasquali et al.,
1996; Heinrich et al., 2012); (ii) analytical solution of simplified
radiant field models (Brucato et al., 2006; Brucato and Rizzuti,
1997a, 1997b; Li Puma and Brucato, 2007) which, though
approximate, give a quick physical idea of the process key para-
meters, which is what is really useful for equipment design and
optimization.

In all of the aforementioned models, only dilute particle sus-
pensions were considered. The case of highly concentrated single-
sized particle suspensions was afforded by means of a probabilistic
approach in a previous publication (Brucato et al., 1997). In the
present work, the same approach is further developed by
extending it to the case of concentrated suspensions of particles
with size distributions. The resulting model is validated by com-
parison with pseudo-experimental data obtained via a Monte
Carlo approach as well as with similar equations obtained in the
realm of stereology (Overby and Johnson, 2005).
2. Probabilistic model

In previous investigations (Brucato and Rizzuti, 1997a, 1997b;
Brucato et al., 2006), a modeling approach based on particle
shielding considerations led to a simplified (closed form) model
which was also experimentally validated. The present model is
practically based on the same set of assumptions, apart for the
assumption of single sized particles, which is removed. Hence the
basic assumptions of the model are the following:

� plane (slab) photo-reactor;
� particles are large enough in order for geometric optics to

hold true;
� particles are randomly dispersed;
� an homogeneous, transparent fluid is considered (it does no

absorb or scatter any radiation);
� there is no emission by the heterogeneous system;
� uniform, orthogonal irradiation of the front wall of the reactor is

considered;
� photons can only move in a uni-directional forward direction;
� any particle cross sectional area ap;i is much smaller than pho-

toreactor front wall area, so that the condition ap;i⪡A is
always true.

It is worth reminding that the so-called Zero Reflectance Model
(ZRM) was validated by means of experimental data (Brucato and
Rizzuti, 1997a): so the assumptions here adopted, especially those
regarding the optical properties of both fluid and particles can be
considered valid. Clearly, in industrial systems, as well as in more
complex system geometries, the photon absorption and scattering
due to the fluid, back- and lateral- scattering phenomena (and so
on) have to be considered (Brucato et al., 2006), but their effect is
out of the scope of the present investigation.

Let us first consider the case in which any photon-particle
interaction results in photon absorption by the particle itself, i.e. a
case akin to the ZRM introduced by Brucato and Rizzuti (1997a).

A control volume having size V ¼ AL is considered, where the A
surface coincides with the reactor front wall and L is reactor thick-
ness. For each of the Np particles within the control volume, let us
now consider the generic πi plane (parallel to the reactor wall)
intercepting the relevant i-th particle at its maximum cross section,
as shown in Fig. 1. At any given instant, all these planes can be
numbered starting from the front wall of the reactor towards the rear
wall. Therefore, plane π1 is the plane pertaining to the first closest
particle to reactor wall, plane π2 to the second closest particle and so
on, up to the πNp-th plane, pertaining to the particle closest to the
rear reactor wall.

Let us now consider a photon entering from the front wall.
Under the following assumption:

� Each particle-photon interaction always results into photon
absorption (Zero Reflectance Model assumption).

The probability P1 for the photon to survive to the first plane
can be expressed as:

P1 ¼ 1�ap;1
A

� �
ð1Þ

where ap;1 is the cross sectional area of the first particle.

2.1. Dilute dispersions

If the suspension is sufficiently dilute, the second plane is
sufficiently spaced from the first in order for the relevant particle
be able to freely occupy all positions in the plane. The probability
P2 can be computed exactly as for P1:

P2 ¼ 1�ap;2
A

� �
ð2Þ

Hence, the following assumption is added to the assumptions
set:

� A suspension can be considered dilute when each particle can
freely occupy the whole relevant plane πi without being affected
by the presence of particles in previous planes πi-1, πi-2, etc., or
subsequent planes πiþ1, πiþ2, etc.

In case of dilute suspensions, Eq. (2) holds true for all particles
and the probability that the photon would have to survive all the
Np planes is simply given by the product of the probabilities the
photon has to survive each plane. Notably, this compound prob-
ability coincides with the probability that the photon exits the
photoreactor from the rear wall, i.e. with the fraction of photons
reaching the distance L:

G
G0

¼ ∏
Np

i ¼ 1
Pi ¼ ∏

Np

i ¼ 1
1�ap;i

A

� �
ð3Þ

By taking the logarithm of both sides of Eq. (3), and remem-
bering that lnð1þxÞ � x for 0ox⪡1:

ln
G
G0

¼
XNp

ln 1�ap;i
A

� �
� �

XNp ap;i
A

¼ �1
A

XNp

ap;i ð4Þ



Fig. 1. System scheme in case of dilute suspension.
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Some manipulation is needed in order to write Eq. (4) in a form
in which only assessable parameters appear. At first, one may
write the overall particle volume contained within the control
volume as a function of particle volume fraction, or as the sum of
individual particle volumes:

ϕAL¼
XNp

αd3p;i
� �

¼ α
XNp

d3p;i ð5Þ

where ϕ is the particle volume fraction and α is the proportion-
ality factor between particle volume and particle size cubed, here
assumed as a constant for all particles, regardless of their size.
Clearly, the value of the α factor depends on particle shape. Also,
the sum of projected areas can be written as:

XNp

ap;i ¼
XNp

βd2p;i ¼ β
XNp

d2p;i ð6Þ

By substituting into Eq. (4) both Eq. (6) and the A term as
obtained from Eq. (5), the following equality is obtained:

ln
G
G0

¼ �β
P

d2p;iϕL

α
P

d3p;i
¼ � L

λ0
ð7Þ

where

λ0 ¼ ðα=βÞd32
ϕ

ð8Þ

which practically coincides with the similar equation obtained,
with a rather different modeling approach, by Brucato and Rizzuti
(1997a) in the case of single-sized particles. The only difference
being that the Sauter mean diameter d32 is employed in place the
particle diameter for single sized particles. Notably, the experi-
mental validation of the Zero Reflectance Model provided by Bru-
cato and Rizzuti (1997a) may be regarded as a cross-validation of
the present approach as well.

2.2. Dense dispersions

With the present probabilistic approach it is possible to remove
the hypothesis of dilute suspension. The case of concentrated
suspension differs from that of dilute suspension as it cannot be
assumed anymore that the distance between two subsequent
planes πi and πiþ1 is large enough for the iþ1-th particle to
occupy any of the positions on the πiþ1 plane. This is apparent
from Fig. 2. If the distance between two subsequent plane i-th and
ðiþ1Þ-th is smaller the sum of i-th and ðiþ1Þ-th particle radii,
hence some of the positions in the ðiþ1Þ-th plane cannot be
occupied by the relevant particle because of the presence of the i-
th particle (Brucato et al., 1997).

This steric inhibition affects the probability of photon inter-
ception. Let us consider two subsequent planes πi-1 and πi, and
assume that they are so close that they practically coincide. If a
photon has already survived to the ði�1Þ-th plane, it cannot lie on
the cross section of ði�1Þ-th particle, otherwise it would have not
survived to that plane. Therefore it certainly crosses the i-th plane
elsewhere. It is clear that for this photon the probability of sur-
viving to i-th plane is given by:

Pi ¼ 1� api
ψ iA

� �
ð9Þ

where the ψi is the fractional area of plane πi available for the i-th
particle to be placed. Notably, if two planes almost coincident are
considered, the area inhibited to the i-th particle is a circle having
radius equal to the sum of particle diameters ðri�1þriÞ. If the
particles have the same size, such inhibited area is equal to 4ap;i�1.
Hence, the available area for the i-th particles can be written as:

ψ i ¼
A�ap;i�1

A
¼ 1�4ap;i�1

A
ð10Þ

If the two planes are close but not coincident, the steric inhi-
bition is less pronounced, and the freedom of the i-th particle to
occupy positions on its plane is greater than in the above case, so
that only a fraction of 4ap;i�1 has to be subtracted from the whole
area A, see Fig. 2 for a visual example. Hence, it seems reasonable
to generalize Eqs. (9) and (10) introducing a factor χ whose values
range from 0 (planes spacing larger than half the sum of particle
diameters, so that no steric interaction may occur) to 4 (in case of
planes almost coincident and equally sized particles). Notably, the
upper limit also depends on the sizes of the particles, so it can not



Fig. 2. Possible steric hindrance effects in case of concentrated suspensions.
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be regarded as a general upper bounding limit.

ψ i ¼
A�χ i�1ap;i�1

A
¼ 1�1

A
χ i�1βd

2
p;i�1

� �
ð11Þ

In addition, it is possible that more than one particle interacts
with the placement of the i-th particle. Strictly speaking, all par-
ticles lying on planes closer to the front reactor wall should be
considered. However, this can be simplified if one considers that
the factor χ rapidly becomes nil when relevant plane has a dis-
tance larger than half the sum of the i-th and j-th particle dia-
meters. Keeping in mind the meaning of the χ parameter, it is
necessary to define an appropriate average value to be used in
practical calculations. One may assume that the number Ni of
particles to be considered as potentially giving steric inhibition to
the placement of the i-th particle equals the number of particles
statistically present in the volume comprised between plane πi
and a plane placed at a distance dp;av in front of it. Hence, a more
general form of Eq. (11) may be written in order to account for the
steric inhibition given by the above discussed Ni particles.

ψ i ¼ 1�β
A

XNi

j ¼ 1

χ i� jd
2
p;i� j ð12Þ

where the Ni number of particles potentially producing steric
inhibition effects on i-th particle are, on average, those contained
within a control volume of area A and thickness dp;av along photon
path. The volume of particles within the above defined volume can
be expressed as a function of particle concentration, or as the sum
of particle volumes, hence:

ϕA dp;av ¼
XNi

j ¼ 1

αd3p;i� j ð13Þ

Eq. (13) may be rewritten as:

A¼
α
PNi

j ¼ 1 d
3
p;i� j

ϕ dp;av
ð14Þ

By defining an average value for the χav;i such that:

XNi

j ¼ 1

χ i� jd
2
p;i� j ¼ χav;i

XNi

j ¼ 1

d2p;i� j ð15Þ
and substituting Eqs. (14) and (15) into Eq. (12), one obtains:

ψ i ¼ 1� βϕdp;av
α
PNi

j ¼ 1 d
3
p;i� j

χav;i

XNi

j ¼ 1

d2p;i� j ¼ 1�dp;avχav;i
βϕ
αd32

¼ 1�χav;idp;av
λ0

ð16Þ

The result shown in Eq. (16) may be used in combination with
Eq. (9) to estimate the survival probability of a photon and
therefore the extinction length λPr obtained with the present
probabilistic approach:

ln
G
G0

¼
XNp

ln 1� ap;i
ψ iA

� �
� �1

A

XNp ap;i
ψ i

¼ �β
A

XNp d2p;i
1�χav;idp;av=λ0

¼ � 1
1�χav;idp;av=λ0

β
A

XNp

d2p;i ð17Þ

where the χav;i is the only parameter to be determined, while all
other quantities are simple-to-determine properties of the sus-
pension. The relevant average value χav can be in principle be
derived from simulations, or in simple cases, it could be deter-
mined theoretically by means of geometric considerations. Again,
Eq. (5) can be used to express A as a function of suspension
properties, finally leading to the following equation formally
identical to Lambert-Beer equation:

ln
G
G0

¼ � L
λPr

ð18Þ

where the corrected value of the extinction length λ is calculated
as:

λPr ¼ λ0 1�χavdp;av
λ0

� �
ð19Þ

For the case of dilute suspensions, ϕ⪡1 hence λ0⪢d32 and
λ0⪢dp;av; in this case, considering that χavo1, Eq. (19) provides
λ� λ0 as expected. Notably, an increase of volume fraction
decreases both factors in Eq. (19), giving rise to λPr values pro-
gressively smaller than λ0.
3. Stereological model

Similar results can be also obtained by using a completely
different approach. When micrographs are taken in consideration,
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i.e. 2D representations of 3D objects whose properties such as
volumetric fraction and average size are of interest, stereology is
the discipline that studies the methods to assess 3D properties
from the available 2D data. In addition, when the image depth of
field L is comparable or larger than the characteristic sizes of the
objects of interest, the problem of accounting for the apparent
objects overlap in 2D images of the system has to be considered.

One of the most important properties to unfold from 2D images
is the volume fraction of objects ϕ within a control volume of size
A� L, knowing only the fractional image area occupied by the
projected objects in a 2D image A0

A. Notably, this quantity is akin to
the cross sectional area occupied by particles in a photoreactor, i.e.:

A0
A ¼ 1� G

G0
ð20Þ

In case of zero-thickness material slices (L¼0), it can be shown
that a simple relation exists between 2D and 3D properties
(Delesse condition):

A0
A ¼ϕ ð21Þ
However, this is not the case in many microscopy techniques,

and has no practical relevance when applied to photoreactor
application. When increasing the depth of field L, more objects
enter within the image, increasing the apparent object density of
the image. This phenomenon, also known as overprojection leads
to a second confounding effect, since different individual objects
may occupy the same location in the projected image, hence
obscuring each other (Overby and Johnson, 2005).

The stereological approach to the depth of field problem is
based on the formulation of a suitable differential equation to
describe the change in projected area as a function of depth of field
thickness. The only assumptions for this equation to be valid is
that the structures under investigation are randomly distributed,
and that in their respect, the plane is randomly placed and
oriented. No assumption is made about the shape of the structure
under investigation, or its volume fraction. The final result pro-
posed by Overby and Johnson (2005), rewritten according to
present paper concepts and nomenclature, is:

A0
A ¼ 1� 1�ϕ

� �
exp � SvL

4ð1�ϕÞ

� 	

G
G0

¼ 1�ϕ
� �

exp � SvL
4ð1�ϕÞ

� 	

ln
G
G0

¼ ln 1�ϕ
� �� SvL

4ð1�ϕÞ
ln

G
G0

¼ ln 1�ϕ
� �� L

λSt
ð22Þ

where

λSt ¼
4ð1�ϕÞ

Sv
ð23Þ

Further details on the derivation of this equation were not
reported here for the sake of brevity, but the interested reader can
find the derivation in Overby and Johnson (2005). The extinction
length λSt is a function of particle volume fraction ϕ and specific
interfacial area Sv (the interfacial area between the particles and
the fluid per unit volume of the suspension), whose value can be
inferred once the particle volume fraction and the relevant d32 are
known. In the case of spherical particles, it is well known that:

Sv ¼ 6ϕ
d32

ð24Þ

By substituting of Eq. (24) into Eq. (23), the following result is
obtained

λSt ¼ ð2=3Þ1�ϕ
ϕ

d32 ð25Þ
Notably, different functional dependencies are found, both in
the light extinction expression (compare Eqs. (18) and (22)) and in
the extinction length (Eqs. (19) and (25)). For the sake of com-
parison, in the case of spherical particles (α¼ π=6, β¼ π=4) the
following extinction length expressions are obtained from the
dilute, probabilistic (assuming dp;av � d32) and stereological mod-
els respectively:

λ0 ¼ ð2=3Þd32
ϕ

ð26Þ

λPr ¼ ð2=3Þd32
ϕ

1�χavϕ
� � ð27Þ

λSt ¼ ð2=3Þd32
ϕ

1�ϕ
� � ð28Þ
4. Monte Carlo simulation

The Monte Carlo approach (Hammersley and Handscomb,
1983) was used to set up simulations aimed at the validation of the
proposed model. Pseudo-experimental photon transmission data
were obtained for systems having different particle concentrations
and particle size distributions (PSD). The pseudo-experimental
information on photon extinction so obtained can be compared
with relevant values calculated by Eqs. (18) and (22).

Three different PSDs were investigated: single-sized particles,
normally distributed particles and exponentially distributed par-
ticles. For comparison purposes, all distributions had the same d10,
but quite different shapes and Sauter diameters, as it can be
appreciated in Fig. 3.

For each distribution, several particles concentration values
were simulated, ranging from dilute suspensions ðϕ¼ 0:005Þ to
concentrated ones ðϕ¼ 0:30Þ. For each concentration, different
reactor thicknesses were investigated ðL=d10 ¼ 5�60Þ.

In practice, a realistic particle sample (larger than Np ¼ 104

particles) obeying a given distribution was preliminarily created
by means of simple pseudo-random number generators. All par-
ticles were then placed within a control volume of fixed cross
sectional area A¼ l� l and width L. The L value represents the
width of the photo-reactor under investigation. For each value of
the L depth and the ϕ values that has to be simulated, the A value



108

106

104

102

100

G
/G
0

φ = 0.005
φ = 0.01
φ = 0.05
φ = 0.10
φ = 0.15
φ = 0.20
φ = 0.30

A. Busciglio et al. / Chemical Engineering Science 142 (2016) 79–8884
must satisfy the following equality:

L � A � ϕ¼
X
Np

Vp;i ¼
X
Np

πd3p;i
6

ð29Þ

In all cases, it is ensured that the relevant l values are large with
respect to the mean particle size to make wall effects negligible. A
suitable algorithm was then used to avoid particles overlap (Bus-
ciglio et al., 2010).

In Fig. 4, three examples of virtual boxes filled with normally
distributed particles are shown for the cases of 1%, 10% and 25%
particle volume fractions respectively.

For each virtual box created, an array of 62,500 photons were
launched along the z direction. The central portion of the front box
was used for the photon injection in order to avoid wall effect on
the transmittance calculation. The ratio between the number of
photons not intercepting any particle and the initial photon
number was therefore computed, being equal to G=G0. This
simulation was repeated for at least 100 different virtual boxes for
any given L value (that is a grand total of at least 6:25 � 106 photons
launched for any simulation), in order to achieve statistical
reliability.
0 10 20 30 40 50
1010

L/d10

Eqn 18
Eqn 22

Fig. 5. Photon extinction as a function of system depth L in case of normal PSD.
5. Results

For each PSD analyzed, different particle volume fractions were
analyzed, in order to assess the effect of particle concentration ϕ
Fig. 4. Virtual box (L¼ 25) with normally distributed particles placed within, d10 ¼
on radiant field. In Fig. 5, the simulated values of extinction ratio
are reported as a function of traveled distance L in the case of
normally distributed particles (d10 ¼ 1, d32 ¼ 1:164). Results
obtained in simulations ran with different particle concentration
values (ranging from ϕ¼ 0:005 to ϕ¼ 0:30) are reported.
1, at different particle volume fraction. (a) ϕ¼ 0:01. (b) ϕ¼ 0:1. (c) ϕ¼ 0:25.
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Notably, the reported simulated data confirm that light
extinction closely follows a Lambert–Beer law, with exponen-
tial extinction coefficient depending on particle concentration.
This is in agreement with both Eqs. (18) and (22), whose pre-
dictions are also reported in Fig. 5 as red dashed lines and blue
solid lines respectively.

One of the main differences between Eqs. (18) and (22) can
be immediately noted from Fig. 5: in fact, Eq. (22) predicts G=G0

values smaller than unity at L¼ 0, while Eq. (18), closer in its
form to the original Lambert–Beer law, gives G=G0 ¼ 1 at L¼ 0.
This difference comes out because in stereology calculations,
particles are allowed to be cut by the planes limiting the
observed volume (i.e. the planes at z¼ 0 and z¼ L). Hence, in a
hypothetical zero-thickness slab, particles cross-section will be
present, giving rise to the relevant light obscuration and G=G0

values smaller than unity. However, in photo-reactors appli-
cations, this is not allowed, and Eq. (22) can be considered for
comparison purposes only at L values larger than average
particle diameter. Nevertheless, stereological model predic-
tions show a fairly good agreement with simulated data.

The predictions obtained by the statistical model here pro-
posed are also reported in Fig. 5. In all cases investigated, an χav
¼ 0:95 value was used, obtaining excellent data agreement at all
particle concentrations analyzed. This value, found by fitting the
simulated data on extinction length, was also found to remain the
same when different PSD are considered, see Fig. 7. Moreover, its
value is in line with physical expectations, as discussed earlier.

In order to better grasp how the main physical parameters
affect the radiation field, in Fig. 6 the dependence of the extinction
length (as computed by the different models presented here) on
particle concentration is shown. On the same figure, the simulated
data on the extinction length are reported (λsim). These values
were obtained by simple linear regression of the simulated ln ðG=
G0Þ vs L data reported for instance in Fig. 5.

The analysis of the λsim values highlights that:

� Exact match is found between λsim and λ0 in case of diluted
suspensions (ϕ-0), confirming that the extension of previous
models (Brucato and Rizzuti, 1997a) to the case of polydispersed
particles is substantially correct. This observation also gives a
further indirect validation of the proposed probabilistic
approach. In fact, the equation proposed by Brucato and Riz-
zuti (1997a) for prediction of λ0 value in case of single-sized
particles was experimentally validated. The extension of that
model equation to polydispersed PSD is therefore validated.
Moreover, the substantial correctness of some of the assump-
tions at the basis of the present model is confirmed, such as
those regarding the photon absorption and scattering by the
fluid, the validity of geometric optics, absence of emission by
the heterogeneous system.

� As particle concentration is increased, smaller values of the
extinction length are found with respect to the value computed
by means of the diluted model (λ0).

Both proposed equations for estimating the extinction length
(Eqs. (18) and (22)) are taken into account and compared with
simulation data: as it can be seen, both model are able to catch the
main trend, but the probabilistic approach here proposed results
in a quite closer agreement (deviation from pseudo-experimental
data is within �0:99=þ1:8% for the probabilistic approach here
proposed and within �0:0=þ8:7% for the stereological approach
for normal particle size distribution).

Similar comments apply to the other simulations ran with
different particle size distributions, whose results are shown in
Fig. 7. Data are reported in terms of pseudo-experimental (λsim) or
calculated (λPr, λSt) values, normalized by the relevant value
computed by means of the dilute model λ0, in order to enhance
the differences between the models. The different ability of the
probabilistic (λPr, blue solid lines) and the stereological (λSt, red
dashed lines) models to reproduce the pseudo-experimental
extinction length data becomes apparent in this figure. As it can
be seen, only the probabilistic model is able to correctly simulate
the Monte Carlo generated pseudo-experimental data obtained.

The comparison of model predictions and simulated data gives
also a strong indication about the range of applicability of the
model for dilute systems (Eq. (8)). Such model gives rise to an
overestimation of the extinction length of less than 2.9% at
ϕ¼ 0:01, while the maximum discrepancy decrease to 1.9% at
ϕ¼ 0:005. One can therefore affirm that an error smaller than 2%
is surely obtained from Eq. (8), provided that the particles con-
centration do not exceed ϕ¼ 0:005. Notably, it is possible to relate
such values to the level of particles steric hinderance by using the
concept of mean separation between particles s. This value can be
computed by a simple equation (Underwood, 1970):

s ¼ 4
1�ϕ
Sv

ð30Þ

For spherical particles, the mean separation between particles
is a simple function of volume fraction and average particle dia-
meter d32:

s ¼ 2
3
1�ϕ
ϕ

ð31Þ

At ϕ¼ 0:005, the mean separation between particles is about
133d32. A convenient limit to consider the suspension as dilute (in
which steric hindrance effects are negligible) could be estimated
by imposing a mean particle separation of at least 150d32.

Notably, the good agreement observed between the probabil-
istic model, and the pseudo-experimental λsim values clearly fur-
ther confirms that the extinction length actually depends on par-
ticle d32. In all cases investigated, an equally good agreement is
obtained when the d32 value is adopted to account for particles
polidispersity: the adoption of any other average size would have
resulted into discrepancies with respect to the pseudo-
experimental data, at least for the cases here investigated. It is
however worth reminding that quite different PSD shapes were
adopted here, giving rise to a harsh test for the proposed model, so
confirming the effectiveness of the proposed model.
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Fig. 7. Dimensionless extinction length values obtained by simulations and relevant predictions for different particle size distributions. (a) Gaussian PSD. (b) Single-sized
particles. (c) Exponential PSD.
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6. Model extension to absorbing/scattering particles

The results so far obtained show that under the aforemen-
tioned hypotheses, that include the assumption that all photon/
particle interactions invariably result into photon absorption, it is
possible to estimate the light extinction length through simple
equations, even for dense systems showing a particle size dis-
tribution. It is worth mentioning here that, also for these systems,
the above quoted assumption may be removed still retaining the
simple closed form solution. This can be done, for instance, by
extending the previously developed six-flux model (SFM) for
dilute single-sized particle dispersions (Brucato et al., 2006) to the
present case. The above hypothesis is therefore substituted by the
following set of hypothesis:

� a photon hitting a particle is allowed to be scattered or absor-
bed, with a scattering probability (albedo) given by R;

� with respect to the incident radiation, scattering may only occur
only along the six directions of a Cartesian 3-dimensional system of
coordinates; the relevant scattering probabilities are pf pb and ps in
the forward, backward and side-ward directions respectively;
In this section the analytical solution previously obtained by
Brucato et al. (2006) is adapted to present paper results on the
probability of photon/particle interaction in dense size-distributed
systems. Notably, the SFM was shown to be quite accurate in
predicting photo-reactor radiant field features. The following
closed form equations are obtained for the forward (G), backward
(gb) sideway (gs) radiant fluxes:

G
G0

¼ 1
1�γ

exp � x
λcorr

� �
1�γexp � 2x

λcorr

� �� 	
ð32Þ

gb
G0

¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q
Rcorrð1�λÞ exp � x

λcorr

� �
�γ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q
Rcorrð1�λÞ exp

x
λcorr

� �
ð33Þ

gs ¼
Rps

1�R pf þpb�2ps
� � Gþgb

� � ð34Þ

where γ and Rcorr are two dimensionless parameters defined for
the SFM on the basis of system physical parameters, and λcorr is the
extinction length in the system under investigation.

Rcorr ¼ b=a ð35Þ
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a¼ 1�Rpf �
4R2p2s

1�R pf þpbþ2ps
� � ð36Þ

b¼ Rpbþ
4R2p2s

1�R pf þpbþ2ps
� � ð37Þ

γ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q exp � 2L
λcorr

� �
ð38Þ

λcorr ¼
λPr

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q ð39Þ

It is also possible to compute the transmitted (GL) and reflected
(gb;0) radiative fluxes as follows:

GL

G0
¼ 1
1�γ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q
0
B@

1
CAexp � L

λcorr

� �
ð40Þ

gb;0
G0

¼ 1
Rcorr

1�1þγ
1�γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q� �
ð41Þ

Finally, the Local Volumetric Rate of Photon Absorption (LVRPA),
that is necessary for the analysis and design of photocatalytic
reactors, can be also calculated on the basis of equations devel-
oped for the SFM:

LVRPA
G0

¼
Rcorr�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q� �
e� x=λcorr

Rλcorrð1�γÞ �
Rcorr�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2

corr

q� �
ex=λcorr

Rλcorrð1�γÞ ð42Þ
A0 fract
A react
ap;i area
d32 Saut
d10 Arith
dp parti
G forw
G0 radia
gb back
gs side�
L optic
Np num
pf ;b;s prob
R albed
Sv spec
s avera
x lengt
α Parti

β parti

λsim simu

λ0 extin

λPr extin

λSt extin

ϕ parti

ψ fract

χ parti
The average value of LVRPA within the reactor volume can be
computed as:

LVRPA ¼ G0�GL�gb;0
L

ð43Þ

As the SFM had already been validated for dilute systems bymeans
of Monte Carlo simulations, (Brucato et al., 2006), while the dense
size-dispersed model has been validated here, the above set of
equations may be regarded as being validated as well to treat radiant
field features in case of well mixed particle suspensions, provided that
model assumptions about particles and fluid properties hold true.
7. Conclusions

A very simple model was set-up for the prediction of radiant
field in heterogeneous systems. In this model, a suspension of
black particles in a perfectly transparent continuous phase is
considered. Particles are large enough to make classical optics
assumptions valid.

For these cases, the proposed model allows accurate estimation
of light extinction, being known the average particle concentration
and size.

The model was validated by means of Monte Carlo simulations,
as well as compared with literature correlations, showing a quite
good agreement with simulated data.

The main feature of the proposed model is its simplicity, that
allows one to get immediate grasp on the effect of physical,
assessable parameters on radiant field, even in the complex case of
concentrated suspensions.
Notation
ional image area occupied ð�Þ
or cross sectional area ðm2Þ
projected by i-th particle ðm2Þ
er mean diameter

P
d3p=

P
d2p mð Þ

metic mean diameter mð Þ
cle characteristic length ðmÞ
ard radiant flux ðeinstein s�1m�2Þ
nt flux at the reactor wall L¼ 0 ðeinstein s�1m�2Þ
ward radiant flux ðeinstein s�1m�2Þ
way radiant flux ðeinstein s�1m�2Þ

al path; reactor thickness ðmÞ
ber of particle within reactor ð#Þ
abilities ð#Þ
o ðintrinsic particle reflectanceÞ ð#Þ
ific interfacial area ðm�1Þ
ge particle separation ðmÞ
h of the reactor ðmÞ
cle volume=d3p ð�Þ
cle projected area=d2p ð�Þ
lated extinction length ðmÞ
ction length ðdiluted caseÞ ðmÞ
ction length ðprob: approachÞ ðmÞ
ction length ðstereologicalÞ ðmÞ
cle volume fraction ð�Þ
ional area not sterically inhibited by other particles position ð�Þ
cle fractional area inhibiting other particles position ð�Þ
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