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We study the performance of direct solvers on linear systems of equations resulting from isogeometric
analysis. The problem of choice is the canonical Laplace equation in three dimensions. From this study
we conclude that for a fixed number of unknowns and polynomial degree of approximation, a higher
degree of continuity k drastically increases the CPU time and RAM needed to solve the problem when
using a direct solver. This paper presents numerical results detailing the phenomenon as well as a theo-
retical analysis that explains the underlying cause.
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1. Introduction

Isogeometric analysis has received a lot of attention in recent
years, beginning with the seminal work of Hughes et al. [1]. This
work was originally motivated by the desire to find a method for
solving partial differential equations (PDE’s) which would simplify,
if not eliminate, the problem of converting geometric discretiza-
tions in the engineering design process. Tangential to the benefits
of geometry/analysis unification, the method is also well suited for
solving nonlinear and higher-order PDE’s due to its higher-order
continuity.

A wide variety of application areas have taken advantage of the
strengths of isogeometric analysis. These applications include the
modeling and simulation of structural vibrations, fluid–structure
interaction, patient-specific arterial blood flow, complex fluid flow
and turbulence, shape and topology optimization, phase field mod-
els via the Cahn–Hilliard equation, cavitation, deformation in the
incompressible limit, and shell analysis [2–17]. In addition, a book
[18] on the subject carefully details how to solve such problems,
including the motivating philosophy which has driven this re-
search effort. Many of these applications benefit from a more con-
tinuous basis. Due to this increased interest in isogeometric
ll rights reserved.
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analysis in both engineering and scientific applications, it is impor-
tant to fully understand the consequences of the use of a more con-
tinuous basis.

A quantification of the cost of a method is to compare a measure
of accuracy with the number of degrees of freedom (cf. [19,20]).
While this is an important link to establish and meaningful to dem-
onstrate convergence, the approach neglects the cost of computing
each degree of freedom by implicitly assuming that the cost is
equivalent for different discretizations. The relationship between
accuracy and computational cost is a composition of functions rep-
resenting the relationship of the cost of solving the linear system
ðCÞ to the degrees of freedom ðN Þ of a discretization, and the rela-
tionship of the degrees of freedom to the accuracy of this discret-
ization ðEÞ, as shown in Fig. 1. Thus, if g : C ! N and f : N ! E,
then f � g : C ! E is a true measure of accuracy versus computa-
tional costs.

The relationship of error to degrees of freedom (f) is particular
to each problem and depends on the parameters of the partial dif-
ferential equation and/or the geometry of the domain. However,
the relationship of computational cost to the degrees of freedom
for B-splines discretizations (g) when using direct solvers has not
yet been established, and depends solely on the structure of the
resulting linear system. This structure is fully determined by the
support and interaction of the basis functions, that is the connec-
tivity of the system.

http://dx.doi.org/10.1016/j.cma.2011.11.002
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Fig. 1. The efficiency of a method relates to the number of degrees of freedom ðN Þ
needed for a given accuracy ðEÞ and the solution cost ðCÞ for those degrees of
freedom.
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The main contribution of this work is to present a theoretical
and numerical analysis of the relationship between the number
of degrees of freedom of higher-order continuous B-spline spaces
and the solution time of the linear system when using direct solv-
ers. We chose direct solvers for four reasons. First, while imple-
mentations of direct solvers vary, the underlying algorithm is
still LU factorization and therefore, the trends shown in this paper
apply to the best existing direct solvers. Second, direct solvers are
important for problems with multiple right-hand sides, such as
goal-oriented adaptivity or inverse problems. Third, direct solvers
are used in stiff problems where iterative solvers do not converge
or are computationally more expensive. Last, direct solvers consti-
tute the main building block of many preconditioners used within
iterative solvers and as such, direct solvers are a logical first step to
understand the behavior of iterative solvers on systems generated
by isogeometric analysis.

Specifically, we will use MUMPS [21,22] (in-core) for most of
the numerical results. At the time of this writing, MUMPS is consid-
ered to be among the fastest direct solvers for solving in core [23–
25]. The software is freely available for academic use as well as in-
cluded in larger scientific libraries such as PETSc [26,27]. In addi-
tion to MUMPS, we will also use the solver PARDISO [28,29] to
show that our results are independent of the particular implemen-
tation of the direct solver we employ. Moreover, we will also con-
sider different ordering algorithms (including METIS [30] and AMD
[31]) to illustrate that the main trends are also independent of the
selected ordering, provided that this ordering algorithm is compet-
itive. While this work chooses to focus on isogeometric methods,
the results apply to a broader class of hpk-finite elements, such
as those proposed by Liu et al. [32–36].

2. Time and memory estimates

In this section, we compute estimates for the number of floating
point operations (FLOPS) and memory required to solve the system
of linear equations resulting from finite element discretizations
using a direct multi-frontal solver. We assume the number of
FLOPS will measure the execution time of the solver, given their
strong correlation. While this analysis is particular to systems gen-
erated from finite element spaces of three spatial dimensions, the
same analysis can be applied to lower spatial dimension systems
as well as those generated by other problems. First, we analyze
the time and memory cost of performing the Schur complement,
which is the main building block in the construction of a multi-
frontal solver.

2.1. The Schur complement

Let a dense matrix A be decomposed into four blocks as:

A ¼
B C

D E

� �
: ð1Þ
The Schur complement method consists of performing partial LU
factorization of the square submatrix B to obtain:

A ¼
I 0

DB�1 I

� �
�

B 0
0 E� DB�1C

� �
� I B�1C

0 I

" #
; ð2Þ

where I is the identity matrix. The term E � DB�1C is known as the
Schur complement.

In order to estimate the FLOPS and memory required to perform
the above partial LU factorization, we denote the dimension of the
square matrix B by q. We denote the number of columns in C and
rows in D as r, where r is assumed constant. Then, we have:

FLOPS ¼ O q3 þ q2r þ qr2
� �

¼ O q3 þ qr2
� �

;

Memory ¼ O q2 þ qr
� �

:
ð3Þ

The FLOPS estimate is obtained by counting the operations needed
to find the LU factors of B, Oðq3Þ. To this we add the FLOPS required
to perform r back-substitutions to form B�1C;Oðrq2Þ. Finally, we add
the cost of matrix multiplication of D to B�1C;Oðqr2Þ. The memory
estimate is obtained by adding the memory needed to store the
LU factors of the matrix B;Oðq2Þ, to that required to store B�1C
and DB�1;OðrqÞ.

In the above memory estimate, we are only concerned with the
space required to store L and U, since it is well-known that the cost
of storing original matrix A is always smaller than or equal to the
memory required to store factors L and U. In particular, we have
not included the memory required to store the Schur complement,
since this is replaced in the next steps of LU factorization by addi-
tional Schur complement operations.

The Schur complement method is used to eliminate fully
assembled degrees of freedom at each level of the elimination pro-
cess. This local matrix computation needs to be reordered such
that all contributions from fully assembled basis functions are
placed into the submatrix B. Contributions from basis functions
which interact with functions with other non-local contributions
are assembled into E, and interactions between the two subgroups
into matrices C and D.

2.2. The multi-frontal solver

The analysis will continue by considering two limiting cases
that represent minimum and maximum continuity. The first is that
of C0 B-splines and the second is Cp�1 B-splines, where p refers to
the polynomial order of the B-splines used. In this section we will
extend the analysis to include the performance of the multi-frontal
solver algorithm.

We divide our computational domain in Nc clusters of elements.
For the C0 case, each cluster is simply an element, while for Cp�1,
each cluster is a set of p + 1 consecutive elements in each dimen-
sion. We assume for simplicity that the number of clusters in our
computational domain is (23)s = 8s, where s is a positive integer
which represents the number of levels of the multi-frontal algo-
rithm. Notice that even if this assumption is not verified, the final
result still holds true provided that the number of degrees of free-
dom is sufficiently large.

The idea of the multi-frontal solver is to eliminate the interior
(fully assembled) unknowns of each cluster, then join 8 neighbor-
ing clusters into one to produce 8s�1 new clusters of elements. Sub-
sequently the interior unknowns of each new cluster are
eliminated and the remaining degrees of freedom which are not
fully assembled are aggregated into new clusters. This procedure
is continued recursively by joining again 8 clusters into one. The
algorithm is given in Algorithm 1.



Table 1
Number of interior (q) and interacting (r) unknowns at each step of the multi-frontal
solver.

q(0) r(0) q(i), i – 0 r(i), i – 0

C0 Oðp3Þ Oðp2Þ Oð22ip2Þ Oð22ip2Þ
Cp�1 Oð1Þ Oðp3Þ Oð22ip3Þ Oð22ip3Þ
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Algorithm 1: Multi-frontal algorithm

1: for i = 0 to s � 1 do
2: Nc = Nc(i) = (8)s�i

3: if i = 0 then
4: Define Nc(0) clusters
5: else
6: Join the old Nc(i � 1) clusters
7: Eliminate interior degrees of freedom
8: Define Nc(i) new clusters
9: end if

10: end for

The FLOPS and memory required by Algorithm 1 can be ex-
pressed as:

Xs�1

i¼0

NcðiÞSðiÞ; ð4Þ

where S(i) is the cost (either FLOPS or memory) of performing each
Schur complement at the ith level. Using the notation of the previ-
ous subsection on the Schur complement, we define q = q(i) as the
number of interior unknowns of each cluster at the ith step, and
r = r(i) as the number of interacting (not fully assembled at this le-
vel) unknowns at the ith step.

For C0 finite elements of polynomial order p, there are (p � 1)3 de-
grees of freedom which may be eliminated at the i = 0 level of the
multi-frontal algorithm. They can be eliminated in terms of the
Oð6p2Þ degrees of freedom corresponding to basis functions which
have support on the element boundaries. That is, qð0Þ ¼ Oðp3Þ and
rð0Þ ¼ Oðp2Þ. This initial step is known as static condensation. After
the initial elimination of bubbles, the agglomeration and elimina-
tion proceeds in a recursive fashion. At the next level, the 12 interior
faces of the newly assembled cluster of 8 elements are eliminated in
terms of the remaining 24 exterior faces. Since each face contributes
Oðp2Þ degrees of freedom, qð1Þ ¼ Oð12p2Þ and rð1Þ ¼ Oð24p2Þ. From
the initial 8s element mesh, 8s�1 clusters will be assembled. For level
i, where i – 0, we can write the number of degrees of freedom which
we can eliminate as qðiÞ ¼ Oð3� 22ip2Þ and those that remain as
rðiÞ ¼ Oð6� 22ip2Þ. Here, the advantage of the multi-frontal algo-
rithm can be seen when applied to C0 finite elements: roughly a third
of the degrees of freedom at each level of the algorithm may be elim-
inated. To make further analysis simpler, we drop constants and
take:

qðiÞ ¼ rðiÞ ¼ Oð22ip2Þ;

since for large p and s these estimates are adequate.
As the continuity k of the basis is increased, two effects are seen.

First, there are fewer functions fully assembled on each cluster and
therefore, less to statically condense in terms of the boundary de-
grees of freedom. Second, there are more basis functions with sup-
port on element interfaces because more basis functions have
support across these interfaces. This means that as continuity in-
creases, the multi-frontal algorithm loses its advantage. For sim-
plicity we will describe the estimates for spaces with maximum
continuity, k = p � 1.

For Cp�1 B-spline spaces, we begin with level i = 0 of the multi-
frontal algorithm by assembling p + 1 elements in each direction.
The local matrix of size (2p + 1)3 is computed and a single degree
of freedom is fully assembled. This means that a single degree of
freedom, q(0) = 1, may be expressed in terms of the remaining,
rð0Þ ¼ Oð8p3Þ. This grouping of p + 1 elements in each direction be-
comes a cluster on level i = 0.

As we merge clusters, as in the C0 case, we eliminate the interior
degrees of freedom in terms of the exterior ones. At each elimina-
tion level i, the order of magnitude of the number of exterior de-
grees of freedom, r(i), may be estimated simply, as they are those
which have support on the cluster interface. The order of magni-
tude of the number of degrees of freedom that remain to be elim-
inated, q(i), are those without support on the cluster interface
which have not been eliminated in any previous level.

For example, at level i = 1, we have approximately
(2 � 2 � 1)3p3 = 33p3 degrees of freedom. We eliminate q(1) = p3 de-
grees of freedom in terms of r(1) = (33 � 1)p3. At level i = 2, we have
approximately (2 � (2 � 2 � 1) � 1)3p3 = 53p3 degrees of freedom,
with q(2) = (33 � 23)p3 and r(2) = (53 � 33)p3. Similarly at level
i = 3, we estimate the total number of degrees of freedom in the
cluster as (2 � (2 � (2 � 2 � 1) � 1))3p3 = 93p3, with q(3) =
(73 � 2333)p3 and r(3) = (93 � 73)p3. Generalizing to the ith level,
the approximate number of degrees of freedom in the cluster is:

2iþ1 �
Xi�1

k¼0

2k

 !3

p3 ¼ O 2iþ1 � 2i
� �3

p3
� 	

¼ O ð2iÞ3p3
� �

:

Thus the number of degrees of freedom to eliminate is:

qðiÞ ¼ ð2i � 1Þ3 � ð2i � 2Þ3
� �

p3;

and the number of interface degrees of freedom is approximately:

rðiÞ ¼ ð2i þ 1Þ3 � ð2i � 1Þ3
� �

p3:

We simplify the estimation by retaining only the leading orders and
dropping constants to obtain:

qðiÞ ¼ rðiÞ ¼ Oðð22iÞp3Þ:

These estimates for the number of degrees of freedom which are
fully assembled, q(i), and the number of remaining degrees of free-
dom, r(i), per level i of the multi-frontal process are summarized in
Table 1. This table shows that for C0 B-spline spaces, the number of
degrees of freedom that remain at all levels, r(i), is proportional to
p2. As the continuity increases to k = p � 1, this factor grows to p3.
That is, as the continuity of the basis grows the cost of elimination
grows with the polynomial order.

2.3. FLOPS and memory estimates

Let N be the total number of unknowns in the original system. We
use the results from Table 1 with the FLOPS and memory estimates
in Eq. (3) to develop Table 2. This table describes the cost in FLOPS
and memory of each level of the multi-frontal algorithm. We then
compute full estimates for the entire linear system solution process.

Estimates for C0 B-splines:

FLOPS ¼ 8sp9 þ
Xs�1

i¼1

8ðs�iÞ26ip6 ¼ O 8sp9 þ 26sp6
� �

¼ O N3
c p9 þ N6

c p6
� �

¼ O Np6 þ N2
� �

;

Memory ¼ 8sp6 þ
Xs�1

i¼1

8ðs�iÞ24ip4 ¼ O 8sp6 þ 24sp4
� �

¼ O N3
c p6 þ N4

c p4
� �

¼ O Np3 þ N4=3
� �

: ð5Þ



Fig. 2. Boundary conditions for the model problem used in numerical tests.

Table 3
Sample data and adjustments for N = 100,000 degrees of freedom of C0 B-splines.

p n Time (s) Memory (Mb)
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Estimates for Cp�1 B-splines:

FLOPS ¼ 8sp6 þ
Xs�1

i¼1

8ðs�iÞ26ip9 ¼ O 8sp6 þ 26sp9
� �

¼ O N3
c p6 þ N6

c p9
� �

¼ O N2p3
� �

;

Memory ¼ 8sp4 þ
Xs�1

i¼1

8ðs�iÞ24ip6 ¼ O 8sp4 þ 24sp6
� �

¼ O N4
c p6

� �
¼ O N4=3p2

� �
:

ð6Þ

It is interesting to note that for C0 B-spline spaces the number of
FLOPS is independent of p if the number of unknowns N is large en-
ough (i.e. N > Oðp6Þ). This is a bound which is achieved in practical
simulations. The number of FLOPS of the Cp�1 method is p3 times
more expensive than the C0 for large N. The amount of memory re-
quired by the Cp�1 B-spline spaces is p2 times more expensive than
that required by the C0 spaces.

3. Model problem

The problem used for our study is the Laplace equation in three
dimensions on the unit cube (Fig. 2), subject to a zero Dirichlet
condition on the bottom surface, a unit Dirichlet condition on the
top surface, and free (zero) Neumann conditions elsewhere. For-
mally, we solve:

�r � ðruÞ ¼ 0 on X;

u ¼ 0 on CD0;

u ¼ 1 on CD1;

ðruÞ � n ¼ 0 on CN;

8>>><
>>>:

ð7Þ

where X = [0,1]3, CD0 = (:, :,0), CD1 = (:, :,1), and
CN = (0, :, :) [ (1, :, :) [ (:,0, :) [ (:,1, :). While this is a simple scalar
problem, the emphasis here is on the structure of the linear system
resulting from the Galerkin approximation of the variational form.
As long as the system is not singular, the specific values in the sys-
tem do not influence the time and memory used by the direct sol-
ver. Thus, the results described in this paper are also applicable to
more complex equations, provided the dimensionality of the system
unknowns is taken into account in the extension of these estimates
to vector-valued problems.

3.1. Discretization

We use unmapped B-splines to solve the PDE in the parametric
unit cube domain. While the rational version of the basis is more
general (non-uniform rational B-splines or NURBS [37,38]) and
mapped geometries are a critical component to isogeometric anal-
ysis [1], neither change the structure of the matrix resulting from
the Galerkin weak form, and so results for B-splines apply to these
extended cases as well.

We compute solutions to the model problem on B-splines dis-
cretizations which vary in polynomial degree p = 1,2, . . . ,8 and con-
tinuity k = 0,1, . . . ,p � 1 yet with almost constant overall number of
degrees of freedom. We choose three different numbers of degrees
of freedom to analyze: 10,000, 30,000, and 100,000. The compari-
son is of the same spirit as in [19], where different numbers of uni-
Table 2
FLOPS and memory estimates at each step of the multi-frontal solver.

FLOPS Memory FLOPS Memory
S(0) S(0) S(i), i – 0 S(i), i – 0

C0 Oðp9Þ Oðp6Þ Oð26ip6Þ Oð24ip6Þ
Cp�1 Oðp6Þ Oðp3Þ Oð26ip9Þ Oð24ip6Þ
formly refined elements are used to attain a comparable number of
degrees of freedom for different levels of continuity.

For each scenario, we record the actual number of degrees of
freedom along with the solution time and memory. The actual
number of degrees of freedom will not be always equal to the tar-
get number since it is not always possible to build a three dimen-
sional grid that contains a specific number of degrees of freedom.
For those cases, we selected a discretization with a number of de-
grees of freedom as close as possible to the target and then ad-
justed the solution time and memory in a post-processing step,
described in detail below. We maintain the number of elements
in each coordinate direction as uniform as possible. If the target
number of degrees of freedom is N, and the actual number of de-
grees of freedom is n, then we employ the following approxima-
tions to adjust the time, t, and memory, M:

tðNÞ ¼ tðnÞ N
n

� 	2

; ð8Þ

MðNÞ ¼ MðnÞ N
n

� 	
: ð9Þ

Table 3 presents sample data with adjustments. The above ‘‘correc-
tion formulas’’ are obtained by approximating the time of direct
solvers on sparse matrices by O(N2) and the memory by O(N) given
that the bandwidth of each matrix are comparable. In addition, note
that generally n does not vary from N more than 5%. However in a
few cases the difference rose to as much as 15%. The amount of
adjustment is minimized and does not influence the trends.

4. Numerical results

All computational experiments have been performed on a
workstation with two quad-core Xeon X5550 processors and
24 Gb of memory running Fedora 11. The model problem was
implemented using PETSc data structures. We interfaced to
MUMPS through PETSc, with the option to solve an asymmetric
Computed
t(n)

Adjusted
t(N)

Computed
M(n)

Adjusted
M(N)

1 99452 72.14 72.94 1087 1093
2 99405 85.93 86.96 1207 1214
3 97336 69.73 73.6 1077 1107
4 99225 75.09 76.27 1150 1159
5 97336 83.38 88.0 1239 1273
6 103243 116.16 108.98 1636 1585
7 92450 130.18 152.31 1766 1910



Fig. 3. Time and memory for 100,000 degrees of freedom systems along with estimates.

Fig. 4. Comparison of time and memory usage for different solvers and orderings for systems containing 30,000 degrees of freedom.
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system. Since PETSc does not have an interface to PARDISO, we ex-
tracted the matrix in compressed row storage (CRS) format from
PETSc and called the PARDISO solver directly.

For all numerical results, we relate the FLOPS estimates to the
computational time measured for the solution of the linear system.
The memory estimates we relate to the number of nonzero entries
in the LU factors. We report the memory required to store an inte-
ger and a double precision number for each nonzero entry. Note
that this is a conservative quantification of memory usage. In gen-
eral, solvers will require the use of additional memory. However,
we chose to report the memory required to store the LU factors
as it is most closely related to the estimates derived in Section 2.

4.1. Validation of the estimates

We used the data we obtained in the case of 100,000 degrees of
freedom for both C0 and Cp�1 spaces to determine constants for the
estimates given in Eqs. (5) and (6). These constants are calculated
by forming the normal equations and solving in the least square
sense, minimizing the square of the residuals. The results are plot-



Fig. 5. Solution time and memory for C0 B-spline spaces.
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ted in Fig. 3 and show good agreement between the theory and the
numerical results.

4.2. Insensitivity to solver or ordering

While in this paper we are principally showing results using
MUMPS as a solver and METIS to provide the optimal ordering to
the system, we would like to emphasize that the trends we report
here are independent of the solver and ordering algorithms. We
compute solutions to the model problem using MUMPS with ME-
TIS and AMD ordering as well as with PARDISO using METIS order-
ing. The results for 30,000 degrees of freedom for both C0 and Cp�1

spaces are shown in Fig. 4.
Note that results will vary with the ordering and/or solver

choice. In particular, the AMD ordering is not as competitive for
low p in the C0 results nor for high p is the Cp�1 results. However,
it is important to note that trends do not vary with the choice of
solver and ordering. A well-chosen ordering algorithm (such as
METIS or AMD) automatically produces a similar effect as static
condensation, leading to the performance results that conform to
the estimates given in our theoretical estimates. In other words,
while different solvers (implementations and orderings) yield dif-
ferent performance results and memory requirements, the base
trend described in this work prevails.

4.3. Discussion of results

First we consider the performance of direct solvers on systems
generated from C0 B-splines, which is a particular case that coin-
cides with traditional hp-finite element spaces [39]. Fig. 5 illus-
trates the increase in solution time and memory required as the
polynomial degree increases. These results are obtained using sol-
ver MUMPS 4.9.2 with METIS ordering.

An interesting trend is the initial constant solution time re-
quired to perform the factorization, particularly noticeable for
p = 1,2,3,4, and 5. This is due to the structure of the matrix. A par-
ticular element should have its non-shared degrees of freedom
statically condensed. This operation occurs on a small dense block
for all the blocks of the overall matrix. Then, the remaining reduced
problem (termed the skeleton problem) is solved. As the polyno-
mial order is increased, the size of these blocks increases but not
their number. Furthermore, if the number of unknowns N remains
constant as we increase p, then the cost of solving the skeleton
problem remains constant, which explains why the computational
cost is independent of p for moderately low p. Once N � p6, the
solution time and memory usage show a dependence as predicted
by our estimates.

Also note that as the linear system increases in size, the added
cost of p-refinements amortizes. Specifically, observe that in the
10,000 degrees of freedom case, the ratio of maximum to mini-
mum solver time is approximately 9 while in the 100,000 degrees
of freedom case, it is 2. All of these observations are consistent
with the performance of direct solvers on systems generated with
standard finite element technologies and with the theoretical esti-
mates given in Section 2.

As the continuity order increases, the block structure of the ma-
trix abates due to the increasing overlap of basis functions. While it
is true that the maximum bandwidth does not increase as continu-
ity increases, the minimum bandwidth approaches the maximum
as continuity reaches its maximum order of p � 1. This leads to a
loss of the direct solver efficiency since less of each block, if any
at all, can be statically condensed. This increases the size of the



Fig. 6. Solution time and memory growth for 30,000 degrees of freedom of Ck B-spline spaces.

Fig. 7. A comparison of solution time for 30,000 degrees of freedom of C0 and Cp�1

B-spline spaces.
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skeleton problem and consumes orders of magnitude more time
and memory.

The numerical results support this conclusion, as shown in
Fig. 6. Each sub-figure shows the time and memory used by
MUMPS as a function of the continuity level for a constant polyno-
mial degree. It can be observed from this figure that their is a
strong correlation between increase in computational cost (in
terms of both time and memory) and increase in continuity. Addi-
tionally, the figure confirms that C0 and Cp�1 B-splines constitute
limiting cases of the performance of the solver algorithm.

4.4. The cost of k-refinements

As the reference literature concerning isogeometric analysis de-
scribes, the B-spline refinement space is richer than in standard fi-
nite elements, in particular the notion of k-refinement was
introduced. This refinement strategy combines notions of degree
elevation and knot insertion to refine spaces in such a way that
they are globally Cp�1 [1,18,37,38]. Typical p-refinements add
many degrees of freedom to the overall system, while k-refine-
ments add few yet benefit from the increased approximability pro-
vided by the higher polynomial order. While the economy is clear
in terms of degrees of freedom, this ignores the cost involved in
resolving the resultant linear systems.

To emphasize the importance of this issue, consider a space of
C0 linear B-splines containing 30,000 degrees of freedom. In the
numerical tests performed, the time required to solve the resulting
linear system is 5 s. Using the k-refinement methodology, we can
refine this space to be C1 quadratics. A conservative estimate for
the number of degrees of freedom is still 30,000. Note that the time
to solve this refined space is now 40 s. A further application of the
k-refinement procedure takes 120 s to solve, 24 times more than
the original. This increase in required resources is significant as
shown in the comparison of Fig. 7. Note that this increase in costs
completely ignores the increase in assembly cost due to
quadrature.

Fig. 8 is a compilation of all data recorded where the spaces are
always Cp�1. Thus each sub-figure represents a k-refinement as p is
increased. As the figure shows, the costs associated with using
these function spaces can be as much as 100 times more than their
C0 counterparts. The costs of solving the resulting system dwarfs
the enormous savings in degrees of freedom. This figure
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demonstrates an important truth about k-refinements and direct
solvers: all degrees of freedom are not alike.

This result suggests that the choice of refinement strategy is
more complex than a simple degree of freedom count–one must
include the cost of solving the linear systems. It may be that lower
continuity, hp-refinements are preferred because, while there are
many more degrees of freedom (or commensurate number of de-
grees of freedom but with reduced support), a direct solver may re-
solve the resulting linear systems more efficiently. This is,
however, a question which is particular to the specific problem
and beyond the scope of this paper.

5. Conclusions

Isogeometric analysis is an important and powerful analysis
tool in the solution of a wide variety of outstanding problems in
the scientific literature. This strength partially comes from the con-
tinuity of the basis, which may be trivially constructed for any spa-
tial dimension. However this advantage comes at a cost which is
not seen until looking in detail at the algorithms used to solve
the resulting linear systems. In this case, we have shown that di-
rect solvers require orders of magnitude more time and memory
as continuity increases.

Direct solvers have degraded performance on any method
where the support of the element basis functions extends across
element boundaries, such as in higher continuous NURBS spaces.
It is this feature which increases the average bandwidth of the ma-
trix and causes the local element contributions to overlap more.

The performance of iterative solvers on these linear systems is
an important extension to this work. Due to the fundamental algo-
rithmic differences in iterative solvers, it is unclear how the higher
continuity will affect the performance of this class of techniques.
This is an important question which we will address in a future
paper.
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