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Abstract. In this paper, we revise the core EP inverse of a square matrix in-
troduced by Prasad and Mohana in [12], Core EP inverse, Linear and Multilinear
Algebra 62(3) (2014), 792–802. Firstly, we give a new representation and a new
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1. Introduction and background. Let Cm×n be the set of m × n complex
matrices. For A ∈ Cm×n, the symbols A∗, A−1, rk(A), N (A), andR(A) will denote
the conjugate transpose, the inverse (m = n), the rank, the kernel and the range
space of A, respectively. Moreover, In will refer to the n× n identity matrix.
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2 D.E. Ferreyra, F.E. Levis and N. Thome

Let A ∈ Cm×n. We recall that the unique matrix X ∈ Cn×m satisfying

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA

is called the Moore-Penrose inverse of A and is denoted by A†. A matrix X ∈ Cn×m

that satisfies the only equality AXA = A is called an inner inverse of A and is
denoted by A−; and a matrix X ∈ Cn×m that satisfies the only equality XAX = X
is called an outer inverse of A. The class of all inner inverses of A will be denoted
by A{1}.

For a given complex square matrix A, the index of A, denoted by Ind(A), is
the smallest nonnegative integer k such that R(Ak) = R(Ak+1). We observe that
the index of a nonsingular matrix A is 0, and by convention, the index of the null
matrix is 1. We also recall that the Drazin inverse of A ∈ Cn×n is the unique matrix
X ∈ Cn×n such that XAX = X, AX = XA, and Ak+1X = Ak, where k = Ind(A),
and is denoted by Ad. If A ∈ Cn×n satisfies Ind(A) ≤ 1, then the Drazin inverse of
A is called the group inverse of A and is denoted by A#.

In [2], Baksalary and Trenkler introduced a new generalized inverse in the fol-
lowing way for a given matrix A ∈ Cn×n. A matrix X ∈ Cn×n satisfying

AX = PA and R(X) ⊆ R(A),

is called the core inverse of A and is denoted by A#⃝, where PA is the orthogonal
projector onto the range of A, i.e., PA = AA†. Moreover, it was proved that A is
core invertible if and only if Ind(A) ≤ 1.

Three generalizations of the core inverse were recently introduced for n × n
complex matrices, namely core EP inverses, BT inverses, and DMP inverses. In
order to recall these concepts we assume that Ind(A) = k for a given matrix
A ∈ Cn×n. Firstly, the unique matrix X ∈ Cn×n such that

XAX = X and R(X) = R(X∗) = R(Ak), (1)

is called the core EP inverse of A and is denoted by A †⃝ [12]. Secondly, the concept
of BT inverse of A was introduced in [3] and originally referred as generalized core
inverse. In this case, the matrix

A⋄ := (APA)
† (2)

is called the BT inverse of A. Thirdly, another generalization of the core inverse
was given in [10]. The unique matrix X ∈ Cn×n satisfying

XAX = X, XA = AdA, and AkX = AkA†, (3)

is called the DMP inverse of A and is denoted by Ad,†. For some related results we
refer the reader to [5, 9, 11].

This paper is organized as follows. In Section 2, we give a new necessary and
sufficient condition for a matrix to be the core EP inverse, and we state some
properties of them. In Section 3, we establish a canonical form for the core EP
inverse by using the Hartwig-Spindelböck decomposition. Then, we derive some
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Revisiting the core EP inverse 3

properties of the core EP inverse by using this new representation. In Section 4, we
obtain a simultaneous unitarily triangularization of a pair of rectangular matrices
which extends the core EP decomposition from square to rectangular matrices. In
Section 5, we extend the notion of core EP inverse to rectangular matrices and we
study some properties of them.

2. Revisiting the core EP inverse. In [12], the following result was discussed
in the case of matrices over a field.

Lemma 2.1. ([12, Theorem 3.5]) For a given matrix A ∈ Cn×n with Ind(A) = k,
its core EP inverse A †⃝ always exists and it is unique. Further, the core EP inverse
is given by

A †⃝ = Ak
(
(A∗)kAk+1

)†
(A∗)k.

According to Theorem 2.2 in [13], every matrix A ∈ Cn×n of index k can be
represented in the form

A = (A)1 + (A)2, (A)1 := U

[
T S
0 0

]
U∗, (A)2 := U

[
0 0
0 N

]
U∗, (4)

where T is nonsingular with rk(T ) = rk(Ak), N is nilpotent of index k, and U is
unitary. The representation of A given in (4) satisfies Ind((A)1) ≤ 1, ((A)2)

k = 0
and (A)∗1(A)2 = (A)2(A)1 = 0 [13, Theorem 2.1]. Moreover, it is unique [13,
Theorem 2.4] and is called the core EP decomposition of A.

Lemma 2.2. ([13, Theorem 3.2]) Let A ∈ Cn×n be written as in (4) such that

Ind(A) = k. Then A †⃝ = (A)
#⃝
1 . Furthermore,

A †⃝ = U

[
T−1 0
0 0

]
U∗. (5)

The lemma below gives a characterization of the core EP inverse which is in-
cluded in Lemma 3.3 given in [12].

Lemma 2.3. Let A,X ∈ Cn×n be such that Ind(A) = k. Then X is the core EP
of A if and only if X satisfies the conditions:

XAk+1 = Ak, XAX = X, (AX)∗ = AX, and R(X) ⊆ R(Ak).

Remark 2.4. According to [12, Lemma 3.3], we observe that Lemma 2.3 remains
valid whether the equation XAk+1 = Ak is replaced by XAk+2 = Ak+1, since
R(Ak) = R(Ak+1) when Ind(A) = k.

In the following lemma we compute the projector PAℓ from the expression of A
given in (4).

Lemma 2.5. Let A ∈ Cn×n be written as in (4) such that Ind(A) = k. Then, for
each integer ℓ ≥ k,

PAℓ = U

[
Irk(Ak) 0

0 0

]
U∗. (6)
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4 D.E. Ferreyra, F.E. Levis and N. Thome

Proof. If we write A as in (4) then

Aℓ = U

[
T ℓ T̃
0 N ℓ

]
U∗ = U

[
T ℓ T̃
0 0

]
U∗,

where T̃ =
∑ℓ

j=0 T
jSN ℓ−j . On the other hand, since for ℓ ≥ k,

rk

([
T ℓ T̃

] [ (T ℓ)∗

T̃ ∗

])
= rk

([
T ℓ T̃

])
= rk(T ) = rk(Ak) = rk(Aℓ),

we have that T ℓ(T ℓ)∗ + T̃ T̃ ∗ is nonsingular. Therefore, by [8, Lemma 1] we get

(Aℓ)† = U

[
(T ℓ)∗[T ℓ(T ℓ)∗ + T̃ T̃ ∗]−1 0

(T̃ )∗[T ℓ(T ℓ)∗ + T̃ T̃ ∗]−1 0

]
U∗.

Now,

PAℓ = Aℓ(Aℓ)† = U

[
Irk(Ak) 0

0 0

]
U∗. 2

Next, we get a simple necessary and sufficient condition for A to be the core
EP inverse. Before that, we present a lemma of uniqueness.

Lemma 2.6. Let A ∈ Cn×n be such that Ind(A) = k. If there exists X ∈ Cn×n

such that
AX = PAk and R(X) ⊆ R(Ak), (7)

then it is unique.

Proof. Assume that X1 and X2 satisfy (7), that is AX1 = AX2 = Ak(Ak)†,
R(X1) ⊆ R(Ak), and R(X2) ⊆ R(Ak). Since A(X1 − X2) = 0, we obtain
R(X1−X2) ⊆ N (A) ⊆ N (Ak). We also get that R(X1−X2) ⊆ R(Ak). Therefore,
R(X1−X2) ⊆ N (Ak)∩R(Ak) = {0} because A has index k. Thus, X1 = X2. 2

Theorem 2.7. Let A,X ∈ Cn×n be such that Ind(A) = k. Then X is the core EP
of A if and only if X satisfies (7). In this case, we have A †⃝ = X = (APAk)†.

Proof. Let A be written as in the form (4). Suppose that X is the core EP inverse
of A. Lemma 2.2 implies that

X = U

[
T−1 0
0 0

]
U∗. (8)

Consequently, Lemma 2.5 yields

AX = U

[
Irk(Ak) 0

0 0

]
U∗ = PAk .

According to Lemma 2.3, we have that R(X) ⊆ R(Ak) holds.
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Revisiting the core EP inverse 5

In order to establish the sufficiency, by Lemma 2.6 we have that the matrix X
in (8) is the unique matrix that satisfies (7). Now, Lemma 2.2 implies that X is
the core EP inverse of A. Finally, from (4) and (6) it follows that

APAk = U

[
T 0
0 0

]
U∗,

and, hence, (APAk)† = X by [4, p. 49]. 2

From [2, Theorem 1] it is known that A#⃝ belong to A{1}. It is of interest to
inquire whether A †⃝ belongs to A{1} as well.

Theorem 2.8. Let A ∈ Cn×n. The following conditions are equivalent.

(i) A †⃝ ∈ A{1}.

(ii) Ind(A) ≤ 1.

(iii) A⋄ ∈ A{1}.

Moreover, in this case, A †⃝ = A⋄ = A#⃝.

Proof. Suppose A has the form (4). From Theorem 2.7 we have A †⃝ ∈ A{1} if
and only if A = AA †⃝A = PAkA. This condition is equivalent to

U

[
T S
0 N

]
U∗ = U

[
Irk(Ak) 0

0 0

] [
T S
0 N

]
U∗,

by Lemma 2.5. Thus, we arrive at A †⃝ ∈ A{1} if and only if N = 0, i.e., A = (A)1
holds. This shows that (i) and (ii) are equivalent. The equivalence between (ii)
and (iii) was proved in [3, Theorem 2].

If Ind(A) ≤ 1, by Lemma 2.5, Theorem 2.7 and [2, Theorem 1 (iii)] we obtain

A = U

[
T S
0 0

]
U∗ and A⋄ = (APA)

† = U

[
T−1 0
0 0

]
U∗ = A †⃝ = A#⃝.

2

However, the equality A †⃝ = A⋄ does not imply that Ind(A) ≤ 1 holds, as the
following example shows. If we take

A =


1 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

we have that

A
†⃝ = A⋄ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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6 D.E. Ferreyra, F.E. Levis and N. Thome

but Ind(A) = 2.

We recall that a square complex matrix A is said to be EP if A and its con-
jugate transpose A∗ have the same range. Theorem 1 in [2] also asserts that
(A#⃝)#⃝ = APA and A#⃝ is necessarily EP. In the following result we show that
these statements remain valid when the superscript #⃝ is replaced with †⃝.

Theorem 2.9. Let A ∈ Cn×n be such that Ind(A) = k. The following statements
hold:

(i) A †⃝ is EP.

(ii) A(A †⃝)2 = A †⃝.

(iii) (A †⃝) †⃝ = APAk .

(iv) APAk is EP.

Proof. Clearly (i) follows from definition of the core EP inverse. On other hand,
by (4)-(7) it is easy to check that the conditions (ii)-(iv) are valid. 2

Remark 2.10. A similar result to Theorem 2.9 can be found in [3] for BT inverses.

3. A canonical form for core EP inverses. In this section we give a canon-
ical form for the core EP inverse of a square matrix A by using the Hartwig-
Spindelböck decomposition [7, Corollary 6]. For any matrix A ∈ Cn×n of rank
r > 0 the Hartwig-Spindelböck decomposition is given by

A = U

[
ΣK ΣL
0 0

]
U∗, (9)

where U ∈ Cn×n is unitary, Σ = diag(σ1Ir1 , σ2Ir2 · · · , σtIrt) is a diagonal matrix,
the diagonal entries σi being singular values of A, σ1 > σ2 > · · · > σt > 0,
r1 + r2 + · · ·+ rt = r and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy KK∗ + LL∗ = Ir.

Now, we can derive the core EP inverse of A of index k for which we need the
following result that is a particular case of Corollary given in [6, p. 365].

Corollary 3.1. Let A ∈ Cm×n. If AQ is a product of matrices for which there
exists a matrix Q′ such that AQQ′ = A then AQ(AQ)∗ + Im −AA† is nonsingular
and

(AQ)† = (AQ)∗[AQ(AQ)∗ + Im −AA†]−1.

Theorem 3.2. Let A ∈ Cn×n be written as in (9). Then

A †⃝ = U

[
(ΣK) †⃝ 0

0 0

]
U∗. (10)
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Revisiting the core EP inverse 7

Proof. By Theorem 2.7 we have A †⃝ = (APAk)† = (AAk(Ak)†)†. If we suppose
that A is written as in (9) then

Ak = U

[
(ΣK)k (ΣK)k−1ΣL

0 0

]
U∗.

It follows that

(Ak)† = U

[
(ΣK)k (ΣK)k−1ΣL

0 0

]†
U∗ (11)

and applying [8, Lemma 1] to (11) we obtain

(Ak)† = U

[
P ∗R† 0
Q∗R† 0

]
U∗,

where R = PP ∗ +QQ∗, P = (ΣK)k and Q = (ΣK)k−1ΣL. This implies that

PAk = Ak(Ak)† = U

[
RR† 0
0 0

]
U∗. (12)

Now, we calculate R as follows

R =
[
P Q

] [
P Q

]∗
=

[
(ΣK)k (ΣK)k−1ΣL

] [ K∗(ΣK)k−1Σ)∗

L∗((ΣK)k−1Σ)∗

]
= (ΣK)k−1Σ

[
K L

] [ K∗

L∗

]
((ΣK)k−1Σ)∗

= (ΣK)k−1Σ((ΣK)k−1Σ)∗.

(13)

On the other hand, we know that B† = B∗(BB∗)† for any complex matrix B. In
consequence, from (13) we get

RR† = (ΣK)k−1Σ
(
(ΣK)k−1Σ

)†
.

If we set M = (ΣK)k−1, by using Corollary 3.1 with Q = Σ and Q′ = Σ−1 we have

RR† = MΣ(MΣ)∗[MΣ(MΣ)∗ + Ir −MM†]−1. (14)

Since M = MM†M and MM† is a projector, then

MΣ(MΣ)∗ =MM†MΣ(MΣ)∗+MM†−(MM†)2 =MM†[MΣ(MΣ)∗+Ir−MM†].

Hence, from (14) we obtain

RR† = MM† = (ΣK)k−1
(
(ΣK)k−1

)†
. (15)

Now, (12) and (15) imply

PAk = U

[
(ΣK)k−1

(
(ΣK)k−1

)†
0

0 0

]
U∗.
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8 D.E. Ferreyra, F.E. Levis and N. Thome

So, by [4, p. 49] and [8, Lemma 1] it follows that

A †⃝ = (APAk)† =

[
U

[
ΣK ΣL
0 0

] [
(ΣK)k−1

(
(ΣK)k−1

)†
0

0 0

]
U∗

]†
.

= U

[
ΣK(ΣK)k−1

(
(ΣK)k−1

)†
0

0 0

]†
U∗.

= U

[ (
ΣK(ΣK)k−1

(
(ΣK)k−1

)†)†
0

0 0

]
U∗.

It is well known [10, Lemma 2.8] that the matrix ΣK has index k − 1. In conse-
quence, by Theorem 2.7 we get

(ΣK) †⃝ = (ΣKP(ΣK)k−1)† =
(
ΣK(ΣK)k−1

(
(ΣK)k−1

)†)†
.

Hence, (10) holds. 2

From [3, Lemma 2] and [10, Theorem 2.5], if A has the form in (9), we have

A⋄ = U

[
(ΣK)† 0

0 0

]
U∗ and Ad,† = U

[
(ΣK)d 0

0 0

]
U∗, (16)

respectively. Now, we can state the following consequences.

Corollary 3.3. Let A ∈ Cn×n be written as in (9). Then the following state-
ments are equivalent:

(i) A †⃝ = A⋄.

(ii) Ad,† = A⋄.

(iii) ΣK is EP.

Moreover, in this case, Ind(A) ≤ 2.

Proof. From (10) and (16), it is clear that (i) and (ii) are equivalent to (ΣK) †⃝ =
(ΣK)† and (ΣK)d = (ΣK)†, respectively. By item (i) of Theorem 2.9, the former
of these conditions is equivalent to the assertion (ΣK)† is EP, which is equiva-
lent to the fact that ΣK is EP. On the other hand, from [4, Theorem 4, p. 157]
(ΣK)d = (ΣK)† if only if ΣK is EP. Finally, that Ind(A) ≤ 2 is a necessary con-
dition in this case follows from (iii) and [10, Lemma 2.8]. 2

Corollary 3.4. Let A ∈ Cn×n be written as in (9). Then A †⃝ = Ad,† if and only
if (ΣK) †⃝ = (ΣK)d.

We notice that, in general, core EP, BT, and DMP inverses are all different
each other as the following example shows.
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Revisiting the core EP inverse 9

Example 3.5. We consider the matrix

A =

 1 1 −1
1 0 2
2 1 1

 .

It is easy to check that Ind(A) = 2,

A †⃝ =

 0 0 0
0 1

4
1
4

0 1
4

1
4

 , A⋄ =

 0 1
7

1
7

0 1
28

1
28

0 5
28

5
28

 , and Ad,† =

 0 0 0
1
3

1
12

5
12

1
3

1
12

5
12

 .

Corollary 3.6. Let A ∈ Cn×n be written as in (9) and A †⃝ expressed as in (10).
Then

(i)
(
A †⃝)†

= U

[ (
(ΣK) †⃝)†

0
0 0

]
U∗;

(ii)
(
A †⃝)#

= U

[ (
(ΣK) †⃝)#

0
0 0

]
U∗;

(iii)
(
A †⃝) †⃝

= U

[ (
(ΣK) †⃝) †⃝

0
0 0

]
U∗.

Proof. (i) It is a direct application of Theorem 3.2.
(ii) By item (i) of Theorem 2.9, A †⃝ and (ΣK) †⃝ are EP matrices. According to [4,

Theorem 4, p. 157] we have
(
A †⃝)#

=
(
A †⃝)†

and ((ΣK) †⃝)# = ((ΣK) †⃝)†. So,
(ii) follows from (i).
(iii) From (10) and (i) it is straightforward to obtain

A †⃝A †⃝(A †⃝)† = U

[
(ΣK) †⃝(ΣK) †⃝((ΣK) †⃝)† 0

0 0

]
U∗.

Since A †⃝ and (ΣK) †⃝ are EP then both matrices have its index at most 1. There-
fore, by Theorem 2.7 and [8, Lemma 1] we have

(A †⃝) †⃝ = (A †⃝A †⃝(A †⃝)†)†

= U

[
((ΣK) †⃝(ΣK) †⃝((ΣK) †⃝)†)† 0

0 0

]
U∗

= U

[
((ΣK) †⃝) †⃝ 0

0 0

]
U∗. 2

Theorem 3.7. Let A ∈ Cn×n be such that Ind(A) = k. Then:

(i) AA †⃝ is the orthogonal projector onto the column space of Ak,
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10 D.E. Ferreyra, F.E. Levis and N. Thome

(ii) A †⃝A is the oblique projector onto the column space of Ak along the null
space of (Ak+1)∗A.

Proof. (i) By Theorem 2.7 we obtain AA †⃝ = PAk = Ak
(
Ak

)†
which is clearly

an orthogonal projector onto R(Ak) (see [1, p. 2814]).
(ii) Since by definition A †⃝ is an outer inverse of A, A †⃝A is idempotent, thus
A †⃝A is an oblique projector. Moreover, from R(A †⃝) = R(Ak) it follows that
R(A †⃝A) = R(A †⃝) = R(Ak). On the other hand, we are going to prove that
N (A †⃝A) = N

(
(Ak+1)∗A

)
holds. In fact, if x ∈ N (A †⃝A) = N ((APAk)†A) then

Ax ∈ N ((APAk)†) = N ((APAk)∗). Thus,

N (A †⃝A) ⊆ N ((APAk)∗A) ⊆ N
(
(Ak)∗(APAk)∗A

)
= N

(
(APAkAk)∗A

)
= N

(
(Ak+1)∗A

)
,

where the last equality is a consequence of PAk is an orthogonal projector onto
R(Ak). Conversely, by Lemma 2.5 we have

N
(
(Ak+1)∗A

)
⊆ N

(
((Ak+1)†)∗(Ak+1)∗A

)
= N ((PAk+1)∗A) = N (PAkA) . (17)

From Theorem 2.7, AA †⃝ = PAk . So, from (17) it follows that

N
(
(Ak+1)∗A

)
⊆ N (AA †⃝A) ⊆ N (A †⃝AA †⃝A) = N (A †⃝A),

where the last equality is due to the fact that A †⃝ is an outer inverse. 2

The next result is a counterpart of [2, Theorem 3] for core EP inverses.

Theorem 3.8. Let A ∈ Cn×n. Then the following statements are equivalent:

(i) A is EP.

(ii) (A †⃝) †⃝ = A.

(iii) (A †⃝)† = A.

(iv) (A†) †⃝ = A.

(v) APA = A.

Moreover, in this case, AA †⃝ = A †⃝A and (A †⃝)† = (A†) †⃝.

Proof. By comparing (9) and Corollary 3.6 (iii), condition (ii) is satisfied if and
only if ΣL = 0 and ((ΣK) †⃝) †⃝ = ΣK. Since Σ is nonsingular, the former condition
is equivalent to L = 0. In consequence, from KK∗ + LL∗ = Ir, it then follows
that K is nonsingular and so ΣK is nonsingular as well. Therefore, the condition
((ΣK) †⃝) †⃝ = ΣK is always satisfied because (ΣK) †⃝ = (ΣK)−1. Summarizing
this reasoning, condition (ii) is equivalent to L = 0 which holds if and only if A is
EP by [2, Lemma 1 (v)].

The equivalence between (i) and (iii) follows similarly by using Corollary 3.6
(i).
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Revisiting the core EP inverse 11

On the other hand, we observe that (iv) is equivalent to ((A†) †⃝)† = A† which
is equivalent to the fact that A† is EP due to the equivalence between (i) and (iii).
Since A is EP if and only if A† is EP, it follows that (iv) is equivalent to (i).

The equivalence between (i) and (v) follows from [2, Theorem 3].
Finally, since A is EP then Ind(A) ≤ 1 and so A †⃝ = A#⃝ by Theorem 2.8.

Hence, the last assertions follow from [2, Theorem 3]. 2

Moreover, in [2, Theorem 3] the following equivalences were proved for matrices
having at most index 1:

A is EP ⇐⇒ AA#⃝ = A#⃝A ⇐⇒ (A#⃝)† = (A†)#⃝.

Nevertheless, none of these equivalences remains valid when the superscript #⃝ is
replaced by †⃝ as we can check with the matrix

A =

 1 −1 0
1 −1 0
0 0 1


and its core EP inverse

A †⃝ =

 0 0 0
0 0 0
0 0 1

 .

In this case, Ind(A) = 2.

4. A weighted core EP decomposition. In this section we give a new de-
composition called weighted core EP decomposition extending the core EP decom-
position from square to rectangular matrices.

Let W ∈ Cn×m be a fixed nonzero matrix and A,B ∈ Cm×n. We define the W -
product of A and B by A⋆B = AWB, and we denote theW -product of A with itself
ℓ times by A⋆ℓ. It is well known that if ∥A∥W = ∥A∥∥W∥ then (Cm×n, ⋆ , ∥ · ∥W )
is a Banach algebra and

A⋆ℓ = (AW )ℓ−1A = A(WA)ℓ−1, ℓ ∈ N, (18)

where ∥ · ∥ denotes any (fixed but arbitrary) matrix norm on Cm×n.
Next, we establish a simultaneous unitarily upper-triangularization of a pair of

rectangular matrices. We remark that this representation has no restrictions to be
applied more than W ̸= 0.

Theorem 4.1. Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, and
k = max{Ind(AW ), Ind(WA)}. Then there exist two unitary matrices U ∈ Cm×m,
V ∈ Cn×n, two nonsingular matrices A1,W1 ∈ Ct×t, and two matrices A2 ∈
C(m−t)×(n−t) and W2 ∈ C(n−t)×(m−t) such that A2W2 and W2A2 are nilpotent of
indices Ind(AW ) and Ind(WA), respectively, with

A = U

[
A1 A12

0 A2

]
V ∗ and W = V

[
W1 W12

0 W2

]
U∗. (19)
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12 D.E. Ferreyra, F.E. Levis and N. Thome

Proof. Note that AW and WA have the same nonzero eigenvalues (counting
algebraic multiplicities). Hence, the complex Schur’s decomposition ensures that
the square matrices AW and WA can be expressed as

AW = U

[
C D
0 N

]
U∗, WA = V

[
E F
0 S

]
V ∗, (20)

with C,E ∈ Ct×t upper-triangular nonsingular matrices, and N ∈ C(m−t)×(m−t),
S ∈ C(n−t)×(n−t) upper-triangular with zeros on the main diagonal of both matri-
ces. Consider the following partitions of A and W

A = U

[
A1 A12

A21 A2

]
V ∗, W = V

[
W1 W12

W21 W2

]
U∗,

according to the size of blocks in AW and WA. As Nk = 0, it is easy to check that

(AW )kA = U

[
Ck D̂
0 Nk

] [
A1 A12

A21 A2

]
V ∗ = U

[
Ck D̂
0 0

] [
A1 A12

A21 A2

]
V ∗

= U

[
CkA1 + D̂A21 CkA12 + D̂A2

0 0

]
V ∗

(21)

for some matrix D̂. Similarly, we have

A(WA)k = U

[
A1E

k A1F̂

A21E
k A21F̂

]
V ∗

for some matrix F̂ . Since (AW )kA = A(WA)k by (18), we get A21E
k = 0, and so

A21 = 0. After a little algebra, we obtain

AW = U

[
A1W1 +A12W21 A1W12 +A12W2

A2W21 A2W2

]
U∗ = U

[
C D
0 N

]
U∗

and

WA = V

[
W1A1 W1A12 +W12A2

W21A1 W21A12 +W2A2

]
V ∗ = V

[
E F
0 S

]
V ∗.

Clearly A2W2 is nilpotent. Since W1A1 = E and E is nonsingular, we have that
A1 and W1 are both nonsingular. Furthermore, from W21A1 = 0 we get W21 = 0.
Finally, from W21A12 +W2A2 = S we obtain that W2A2 is nilpotent. 2

The expressions for A and W found in Theorem 4.1 will be called a weighted core
EP decomposition of the pair {A,W}.

Corollary 4.2. Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, and
k = max{Ind(AW ), Ind(WA)}. We consider a weighted core EP decomposition
of the pair {A,W} as in Theorem 4.1. It then results that
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Revisiting the core EP inverse 13

(i) (WA) †⃝ = (WA)
#⃝
1 = V

[
(W1A1)

−1 0
0 0

]
V ∗;

(ii) (AW ) †⃝ = (AW )
#⃝
1 = U

[
(A1W1)

−1 0
0 0

]
U∗.

Proof. We only prove part (i) since the proof of (ii) is analogous. From Theorem
4.1 we obtain

WA = V

[
W1A1 W1A12 +W12A2

0 W2A2

]
V ∗. (22)

So, a core EP decomposition of WA is given by WA = (WA)1+(WA)2, where

(WA)1 = V

[
W1A1 W1A12 +W12A2

0 0

]
V ∗, (WA)2 = V

[
0 0
0 W2A2

]
V ∗.

(23)
Now, by applying Lemma 2.2 we get

(WA) †⃝ = (WA)
#⃝
1 = V

[
(W1A1)

−1 0
0 0

]
V ∗. 2

5. Weighted core EP inverses. In this section, we introduce and study the
weighted core EP inverse for rectangular matrices, extending the concept of core
EP inverses.

Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, and k = max{Ind(AW ),
Ind(WA)}. By using the unitary matrices U and V found in Theorem 4.1 cor-
responding to the pair {A,W}, Lemma 2.5 allows us to consider the orthogonal
projectors given by

P(AW )k = U

[
Irk((AW )k) 0

0 0

]
U∗ and P(WA)k = V

[
Irk((WA)k) 0

0 0

]
V ∗.

(24)
Now, we consider the system given by

In ⋆ A ⋆ X = P(In⋆A⋆k), R(X) ⊆ R(A⋆k ⋆ Im). (25)

Theorem 5.1. If system (25) has a solution then it is unique.

Proof. Assume that X1 and X2 satisfy (25). As In⋆A
⋆k = (WA)k and A⋆k ⋆Im =

(AW )k we have

(a) WAWX1 = WAWX2 = P(WA)k ,

(b) R(X1) ⊆ R((AW )k) and R(X2) ⊆ R((AW )k).

From (a) we get WAW (X1−X2) = 0. In consequence, R(X1−X2) ⊆ N (WAW ) ⊆
N (AWAW ) ⊆ . . . ⊆ N ((AW )k).
On the other hand, according to (b) we obtain R(X1 −X2) ⊆ R((AW )k). So,

R(X1 −X2) ⊆ N ((AW )k) ∩R((AW )k) = {0},
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14 D.E. Ferreyra, F.E. Levis and N. Thome

because AW has index at most k. Thus, X1 = X2. 2

When the unique matrix of Theorem 5.1 exists, it will be denoted by A †⃝,W .
Now, we establish the existence and representation of the unique solution of the

system (25) by using a weighted core EP decomposition, which has been developed
for this purpose.

Theorem 5.2. The system (25) is always consistent and its unique solution is
given by

A †⃝,W = (In ⋆ A ⋆ P(A⋆k⋆Im))
† = U

[
(W1A1W1)

−1 0
0 0

]
V ∗.

Proof. From decomposition (19) given in Theorem 4.1 for A and W we have that

X := (In ⋆ A ⋆ P(A⋆k⋆Im))
† =

(
WAWP(AW )k

)†
=

(
WAW

[
(AW )k

(
(AW )k

)†
])†

=

[
V

[
W1A1W1 W1A1W12 + (W1A12 +W12A2)W2

0 W2A2W2

] [
Irk((AW )k) 0

0 0

]
U∗

]†

=

[
V

[
W1A1W1 0

0 0

]
U∗

]†

= U

[
(W1A1W1)

−1 0
0 0

]
V ∗,

where the projector P(AW )k has been indicated in (24).
Now, we shall prove that the matrix X satisfies the system (25). In fact, by using
(24) we get

In ⋆ A ⋆ X = WAWX

= V

[
W1A1W1 W1A1W12 + (W1A12 +W12A2)W2

0 W2A2W2

] [
(W1A1W1)

−1 0
0 0

]
V ∗

= V

[
Irk((WA)k) 0

0 0

]
V ∗ = P(WA)k = P(In⋆A⋆k).

Moreover, Corollary 4.2 implies that X = (AW ) †⃝A(WA) †⃝. Let s = Ind(AW ).
Since k ≥ s, Lemma 2.3 implies that R(X) ⊆ R((AW ) †⃝) ⊆ R((AW )s) =
R((AW )k) = R(A⋆k ⋆ Im). Finally, Theorem 5.1 gives the uniqueness, that is,
A †⃝,W = X. 2

Definition 5.3. Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, and k =
max{Ind(AW ), Ind(WA)}. The unique matrix X ∈ Cm×n that satisfies system
(25) is called the weighted core EP inverse of A.

As we have demonstrated, this matrix is X = A †⃝,W .

Remark 5.4. When m = n and W = In, from the representation given in The-
orem 2.7, it is easy to verify that the weighted core EP inverse and the core EP
inverse are coincide.
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Revisiting the core EP inverse 15

The following result is an natural extension of Theorem 2.8.

Corollary 5.5. Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, and k =
max{Ind(AW ), Ind(WA)} written as in (19). Then A = A ⋆A †⃝,W ⋆ A if and only
if A2 = 0.

Proof. From the weighted core EP decomposition of the pair (A,W ) given in (19)
and Theorem 5.2, we have that

A ⋆ A
†⃝,W ⋆ A = AWA

†⃝,WWA

= U

[
A1W1 A1W12 +A12W2

0 A2W2

] [
(W1A1W1)

−1 0
0 0

] [
W1A1 W1A12 +W12A2

0 W2A2

]
V ∗

= U

[
A1 A12 +W−1

1 W12A2

0 0

]
V ∗,

whence we arrive at the conclusion that the condition A ⋆A †⃝,W ⋆ A = A is equiv-
alent to A2 = 0. 2

The following result can be easily derived from Corollary 4.2 and Theorem 5.2.

Corollary 5.6. Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, k =
max{Ind(AW ), Ind(WA)}; and consider the orthogonal projectors given in (24).
Then the following assertions are true:

(i) (AW ) †⃝ = A †⃝,W ⋆ P(AW )k .

(ii) (WA) †⃝ = P(WA)k ⋆ A †⃝,W .

(iii) A †⃝,W = (AW )
#⃝
1 A(WA)

#⃝
1 = (AW ) †⃝A(WA) †⃝.

The following characterization of the weighted core EP inverse is inspired in
Lemma 2.3 which establishes a characterization of the core EP inverse.

Theorem 5.7. Let W ∈ Cn×m be a nonzero matrix, A ∈ Cm×n, and k =
max{Ind(AW ), Ind(WA)}. Then X is the weighted core EP inverse of A if and
only if X satisfies the conditions:

X ⋆ A⋆(k+2) = A⋆(k+1), X ⋆ A ⋆ X = X, (In ⋆ A ⋆ X)∗ = In ⋆ A ⋆ X,

and R(X) ⊆ R(A⋆k ⋆ Im). (26)

Proof. Assume that X is the weighted core EP inverse of A, that is X = A †⃝,W .
We shall prove that the matrix A †⃝,W satisfies conditions (26). By definiton of the
weighted core EP inverse, R(X) ⊆ R(A⋆k ⋆ Im) holds. According to (19) we get

WA = V

[
W1A1 W1A12 +W12A2

0 W2A2

]
V ∗,
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16 D.E. Ferreyra, F.E. Levis and N. Thome

which implies

A⋆(k+1) = A(WA)k

= U

[
A1 A12

0 A2

] [
(W1A1)

k Z
0 0

]
V ∗ = U

[
A1(W1A1)

k A1Z
0 0

]
V ∗,

where Z =
∑k

j=0(W1A1)
j(W1A12 + W12A2)(W2A2)

k−j . In consequence, if G =
W1A1W12 + (W1A12 +W12A2)W2, we obtain

A †⃝,W ⋆ A⋆(k+2) = A †⃝,WWAW [A(WA)k]

= U

[
(W1A1W1)

−1 0
0 0

] [
W1A1W1 G

0 W2A2W2

] [
A1(W1A1)

k A1Z
0 0

]
V ∗

= U

[
Irk((WA)k) (W1A1W1)

−1G
0 0

] [
A1(W1A1)

k A1Z
0 0

]
V ∗

= U

[
A1(W1A1)

k A1Z
0 0

]
V ∗ = A⋆(k+1).

Also, we have

A †⃝,W ⋆ A ⋆ A †⃝,W = A †⃝,WWAWA †⃝,W

= U

[
(W1A1W1)

−1 0
0 0

] [
W1A1W1 G

0 W2A2W2

] [
(W1A1W1)

−1 0
0 0

]
V ∗

= U

[
Irk((WA)k) (W1A1W1)

−1G
0 0

] [
(W1A1W1)

−1 0
0 0

]
V ∗ = A †⃝,W ,

and

(In ⋆ A ⋆ A †⃝,W )∗ = (WAWA †⃝,W )∗

=

[
V

[
W1A1W1 G

0 W2A2W2

] [
(W1A1W1)

−1 0
0 0

]
V ∗

]∗
=

(
P(WA)k

)∗
= P(WA)k = WAWA †⃝,W = In ⋆ A ⋆ A †⃝,W .

Conversely, suppose that X ∈ Cm×n satisfies (26). We assume A and W have the
forms given in (19) and X is partitioned as

X = U

[
X1 X12

X21 X2

]
V ∗,

according to the size of blocks in A. Direct calculations show that the equation
X ⋆ A⋆(k+2) = A⋆(k+1) is satisfied if and only if X1 = (W1A1W1)

−1 and X21 = 0.
Thus,

X = U

[
(W1A1W1)

−1 X12

0 X2

]
V ∗. (27)

Since R(X) ⊆ R((AW )k) can be equivalently expressed as P(AW )kX = X, it is

seen that R(X) ⊆ R(A⋆k ⋆ Im) holds if and only if X2 = 0. In consequence, by
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Revisiting the core EP inverse 17

(27) we get that (In ⋆ A ⋆ X)∗ = In ⋆ A ⋆ X is equivalent to X12 = 0. Hence,

X = U

[
(W1A1W1)

−1 0
0 0

]
V ∗.

Now, Theorem 5.2 completes the proof. 2
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