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Abstract. The recently discovered variational PDEs (partial differential equations) for fin-

ding missing boundary conditions in Hamilton equations of optimal control are applied to the

extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These

problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to

the PDEs are checked against the analytical solutions to the original LQR problem. This is the first

validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value

of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which

satisfies the variational equation. This last result has practical implications when implementing

two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
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1 Introduction

Hamilton’s canonical equations (HCEs) appear naturally in optimal control when

sufficient convexity is present. If the problem concerning an n-dimensional

control system and an additive cost objective is regular, i.e. when the Hamilto-

nian H(t, x, λ, u) of the problem is smooth enough and can be uniquely opti-

mized with respect to u at a control value u0(t, x, λ) (depending on the remain-
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ing variables), then HCEs appear as a set of 2n ordinary differential equations

(ODEs) whose solutions are the optimal state-costate time-trajectories.

In the general nonlinear finite-horizon optimization set-up, allowing for a free

final state, the cost penalty K (x) imposed on the final deviation generates a

two-point boundary-value situation. This is often a rather difficult numerical

problem to solve. However, in the linear-quadratic regulator (LQR) case, there

exist well-known methods (see for instance [2], [12]) to transform the bound-

ary-value into a final-value problem, related to the ordinary differential Riccati

equation (DRE).

The same question in the one-dimensional case and for a quadratic K (x) has

been imbedded into a whole (T, s)-family of problems (see [4] , [5], [9]), generat-

ing two first-order, quasilinear, uncoupled PDEs with classical initial conditions,

where the dependent variables are the missing boundary conditions ρ , x(T )

and σ , λ(0) of the HCEs. This ‘imbedding’ approach is completely disjoint

from Riccati equations, but more in the line of the early ideas introduced by

Bellman [1]. An analogous approach was reformulated for the multidimensional

case, in the light of the symplectic properties inherent to Hamiltonian dynamics

[5]. The variational and related PDEs were solved numerically for linear, bilin-

ear, and other nonlinear systems, but their complexity has impeded analytical

confirmation till now. In this article, such an analytical check is developed for

a well-known case-study, namely the time-variant LQR problem, looked at as a

nonlinear system with a nonlinear Lagrangian.

It is also known [6] that, in the general nonlinear case, the initial value P̃(0)

of the solution to the DRE associated with the linearization of the HCEs can

be recovered from the variational PDEs. This is of particular importance in

implementing two-degrees-of-freedom (2DOF) control in the Hamiltonian con-

text, because the P̃(t) enters the compensation gain, and it can be obtained

on-line from knowledge of P̃(0). For a time-variant LQR problem, regarded

as the combination of a nonlinear system (by considering the time t as an extra

state-variable) and a nonlinear cost, it is analytically checked that this P̃(t) is

essentially the same than the solution P(t) of the DRE of the original (main-

taining t as the independent variable) version. Since the P̃(t) is calculated from

P̃(0), and this from the variational PDEs, the analytical coincidence alluded
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above serves as the first validation of the PDEs in a nonlinear context known in

the literature so far.

The paper is organized as follows: after the Introduction, in Section 2 the

elements related to the time-variant LQR problem are introduced, and in Sec-

tion 3 two treatments of the autonomous and nonlinear version of the problem

are developed: (i) through the Hamiltonian Canonical Equations (HCEs), and

(ii) by solving the variational and related PDEs. Afterwards, the comparison

among numerical and analytical results is discussed. The Section 4 shows that

the Riccati matrices appearing in the time-variant and the autonomous versions

of the LQR problem are essentially the same. Section 5 is devoted to show

the importance of having the initial value of the Riccati matrix in constructing

2DOF control strategies for nonlinear systems subject to arbitrary Lagrangians.

As usual, a final Section summarizes the conclusions and perspectives.

2 Classical treatment of time-variant LQR problems

The optimal control problems treated here will concern time-variant controllable

linear systems

ẋ = A(t)x + B(t)u ; x(0) = x0 ∈ Rn ; u : [0, T ] → Rm ; (1)

coupled to a cost functional of the form

J(T, 0, x0, u(∙)) =

T∫

0

L(x(τ ), u(τ ))dτ + K (x(T )) , (2)

with a quadratic Lagrangian L and symmetric coefficient matrices of appropriate

order

L(x, u) = x ′Q(t)x + u′ R(t)u , (3)

K (x) = s
(
x ′x

)
, (4)

Q(t), s ≥ 0, R(t) > 0, T < ∞ . (5)

The optimal control solution to this problem in the set of admissible control

trajectories U = L2 [0, T ] can be expressed (see [12]) in feedback form as

u∗(t) = −R−1(t)B ′(t)P(t)x∗(t) , (6)
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where x∗(t) denotes the optimal state trajectory, and P(t) is the solution to the

Riccati Differential Equation (DRE)

π̇ = πW (t)π − π A(t) − A′(t)π − Q(t) ; (7)

with a final boundary condition

π(T ) = s I , (8)

and W (t) , B(t)R−1(t)B ′(t). The value (or Bellman) function

V (t, x) , inf
{
J(T, t, x, u(∙)) , u ∈ U

}
, (9)

satisfies the Hamilton-Jacobi-Bellman (HJB) equation and boundary condition

∂V

∂t
(t, x) +H 0

(
t, x,

[
∂V

∂x

]′

(t, x)

)
= 0, (10)

V (T, x) = 2sx, (11)

where H 0 is the minimized Hamiltonian defined as

H 0(t, x, λ) , H(t, x, λ, u0(t, x, λ)) , (12)

H is the usual Hamiltonian of the problem, namely

H(t, x, λ, u) , L(t, x, u) + λ′ f (t, x, u) , (13)

and u0 is the unique H -minimal control satisfying (since the problem is as-

sumed to be regular)

H(t, x, λ, u0 (t, x, λ)) ≤ H(t, x, λ, u) ∀u ∈ U = Rm . (14)

It is also known that the solution to the HJB equation is in this case (see [2])

V (t, x) = x ′ P(t)x , (15)

and then the optimal costate variable λ∗ results in

λ∗(t) =
[
∂V

∂x

]′

(t, x∗(t)) = 2P(t)x∗(t) . (16)
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Therefore, from [5]-[6] the optimal state and costate trajectories are solutions to

the following Hamiltonian Canonical Equations (HCEs)

ẋ = A(t)x + B(t)u0 (t, x, λ) = A(t)x −
1

2
W (t)λ , (17)

λ̇ = 2
[
Ṗ(t)x + P(t)ẋ

]
= −2Q(t)x − A′(t)λ , (18)

which in concise form read as one 2n-dimensional linear time-variant equation

v̇ = H(t) v , (19)

where

v(t) ,

(
x(t)

λ(t)

)

, and H(t) ,

(
A(t) − 1

2 W (t)

−2Q(t) −A′(t)

)

(20)

with mixed boundary conditions

x(0) = x0 , λ(T ) = 2sx(T ) . (21)

For further details concerning the solution to this problem see for instance [2]

and [12].

3 Transformation of the time-variant LQR problem into an autonomous

problem

3.1 Analytical solution of Hamilton’s equations for a case-study

The procedure for transforming the time-variant LQR problem into an autonom-

ous one is standard. An analytically solvable simple illustrative example will

be treated, with A(t) ≡ −1, B(t) = e−t , Q(t) ≡ 0, R(t) ≡ 1, s ≥ 0. The

relevant components of the problem will then be

ẋ = −x + e−t u , f (t, x, u) , (22)

L(t, x, u) = u2 , K (x) = s [x(T )]2 . (23)

Notice that here the Lagrangian is autonomous, although this is not essential at

this point. For this example the unknown variable of the corresponding DRE in

Eq. (7) can be found analytically, namely

P(t) =
e2t s

e2T + s(T − t)
, (24)
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and so the LQR problem is completely solved. However, for the purposes of

this article the problem will be transformed into an autonomous one through the

usual change of variables

x → x1 , t → x2 , (25)

and for simplicity the old symbol x will be maintained for the new state, i.e., in

what follows,

x , (x1, x2)
′ , (26)

and therefore, in the new set-up the (autonomous) dynamics reads

ẋ = fa(x, u) = ( f (t, x1, u), 1)′ , (27)

ẋ1 = −x1 + e−x2u , x1(0) = x0 , (28)

ẋ2 = 1 , x2(0) = 0 , (29)

and the transformed cost functional, Lagrangian, and final penalty are

Ja(T, 0, (x0, 0)′ , u(∙)) ,

T∫

0

La(x(τ ), u(τ ))dτ + Ka(x) , (30)

La(x, u) , u2 = L(t, x1, u) , (31)

Ka(x) , sx2
1 = x ′

[
diag(s, 0)

]
x = K (x1) . (32)

It is clear that the optimal control for both problems (the time-variant and the

autonomous one) will be the same, since

Ja(T, 0, (x0, 0)′ , u(∙)) = J(T, 0, x0, u(∙)) . (33)

However, the new dynamics becomes nonlinear (actually, Eq. (28) having an

exponential, implies that all powers of x1 are present, and they are multiplied by

the control). New expressions for the Hamiltonian Ha , the Ha-minimal control

u0
a , and the minimized (or control) Hamiltonian H 0

a will apply, namely

Ha(x, λ, u) , La(x, u) + λ′ fa(x, u)

= Ru2 + λ1(−x1 + e−x2u) + λ2 , (34)
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u0
a(x, λ) , arg min

u
H(x, λ, u) = −

1

2R
e−x2λ1 , (35)

H 0
a (x, λ) , Ha(x, λ, u0(x, λ)) = −x1λ1 −

1

4R
e−2x2λ2

1 + λ2 , (36)

and the HCEs for this case will be, in component-by-component form,

ẋ1 = −x1 −
1

2
e−2x2λ1, x1(0) = x0 ; (37)

ẋ2 = 1, x2(0) = 0 , (38)

λ̇1 = λ1, λ1(T ) = 2sx1(T ) ; (39)

λ̇2 = −
1

2
e−2x2λ2

1, λ2(T ) = 0, (40)

These ODEs can be solved analytically, and their solutions result in

x1(t) = e−t

(
x0 −

t

2
c1

)
; (41)

x2(t) = t, (42)

λ1(t) = c1et , c1 =
2sx0

e2T + sT
, (43)

λ2(t) = c3 −
1

2
c2

1t, c3 =
T

2
c2

1 . (44)

It can be easily checked that the optimal control for the original problem, calcu-

lated from Eqs. (6, 24), is the same that the one obtained from Eqs. (35, 42-44).

3.2 Variational PDEs for missing boundary conditions

The autonomous nonlinear problem posed by Eqs. (27-32) will be now treated

from the ‘invariant-imbedding’ approach and its solution compared against the

one analytically obtained in the previous subsection. The following notation for

the missing boundary conditions will be used in this subsection

ρ(T, s) , x∗(T ) , σ (T, s) , λ∗(0) . (45)

The introduction of the variational PDEs is done through the following objects.

First of all φ : [0, T ] × Rn ×Rn → Rn ×Rn will denote the flow of the Hamil-
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tonian equations (37-40), i.e.
(

x(t)

λ(t)

)

= φ(t, x0, σ ) ∀t ∈ [0, T ] ; φ(0, x, λ) =

(
x

λ

)

, (46)

and φt is the t-advance map defined for each t as: φt(x, λ) , φ(t, x, λ).

The flow must verify the ODEs of Hamiltonian dynamics, i.e.:

D1φ(t, x, λ) =
∂φ

∂t
(t, x, λ) = X(φt(x, λ)) , (47)

where X is the Hamiltonian vector field corresponding to the optimal control

problem with dynamics defined by fa and Lagrangian La , i.e.

X(x, λ) ,

(
F(x, λ)

−G(x, λ)

)

,

(
H 0

a
∂λ

(x, λ)

−H 0
a

∂x (x, λ)

)

. (48)

Let us denote then, for the variables t , s, x , λ in their corresponding domains

of definition,

V (t, s) , Dφt(x0, σ (T, s)) . (49)

It can be shown, by deriving spatially (with respect to (x, λ)) the ODE condition

in Eq. (47), that the following ‘variational equation’ (see [11]) applies:

V̇ (t, s) = A(t, s)V (t, s) , V (0, s) = I , (50)

where A(t, s) , DX ◦ φt(x0, σ (T, s)) and V̇ (t, s) stands for ∂V
∂t (t, s). For the

example under study, some of the previously defined objects read then

X(x, λ) =









−x1 − 1
2 e−2x2λ1

1

λ1

− 1
2 e−2x2λ2

1









(51)

DX(x, λ) =








−1 e−2x2λ1 − 1
2 e−2x2 0

0 0 0 0

0 0 1 0

0 e−2x2λ2
1 −e−2x2λ1 0
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A(t, s) =








−1 e−2x2(t)λ1(t) − 1
2 e−2x2(t) 0

0 0 0 0

0 0 1 0

0 e−2x2(t)λ2
1(t) −e−2x2(t)λ1(t) 0








=








−1 c1e−t − 1
2 e−2t 0

0 0 0 0

0 0 1 0

0 c2
1 −c1e−t 0








. (52)

Then, for this case, the linear time-variant variational equation (50) can be inte-

grated analytically, and its solution results in

V (t, s) =








e−t c1te−t − 1
2 te−t 0

0 1 0 0

0 0 et 0

0 c2
1t −c1t 1








. (53)

Now it should be noted from (50) that V is the fundamental matrix 8(t, 0) of

the linear system (s is fixed)

ẏ = A(t, s) ∙ y , (54)

in particular y(t) = 8(t, τ )y(τ ), 8(τ, τ) = I , and it can be shown (see [12])

that (by abuse of notation) V (T, s) = 8(T, 0) verifies

D1V (T, s) = VT (T, s) = A(T, s) V (T, s) , V (0, s) = I . (55)

This is the Variational Riccati Equation (VRE), its name coming from dynam-

ical systems and control theory (see [11]-[12]). It should be noted that

A(T, s) = DX(x(T ), λ(T )) = DX(ρ(T, s), 2sρ(T, s)) , (56)

and therefore in general it must be solved in parallel to an appropriate equation

for ρ(T, s). It turns out that several equivalent equations may play this role (see

[5] for more details), for instance the pair (which also involves σ(T, s))

V ′
1(2sρT + G) + V ′

3(F − ρT ) = σT (57)

V ′
1(2ρ + 2sρs) − V ′

3ρs = σs (58)
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where the Vi , i = 1, . . . 4 are the partitions into n × n submatrices of

V =

(
V1 V2

V3 V4

)

,

and

F(ρ, s) , F(ρ, 2sρ), G(ρ, s) , G(ρ, 2sρ) . (59)

Just for illustration these PDEs (55, 57, 58) are solved numerically, and their

solutions compared against the following analytical expressions obtained from

definition (45) and Eqs. (42-44):

V (T, s) =









e−T 2sT e−T

e2T +sT
− 1

2 T e−T 0

0 1 0 0

0 0 eT 0

0 4s2T

(e2T +sT)
2 − 2sT

e2T +sT
1









, (60)

ρ1(T, s) = x1(T ) =
eT

e2T + sT
+ e−T (x0 − 1), (61)

ρ2(T, s) = x2(T ) = T, (62)

σ1(T, s) = λ1(0) = c1 =
2s

e2T + sT
, (63)

σ2(T, s) = λ2(0) = c3 =
T

2
c2

1, (64)

The first component of ρ, σ , obtained by solving simultaneously equations

(55, 57 and 58) with Mathematicar are plotted in Figures 1 and 2, respectively.

The numerical solution error with respect to the analytical solutions (61, 63) is

negligible, as can be observed for instance in Figure 3.

4 Riccati matrices for the time-variant and the autonomous versions of

LQR problems

For the transformed system in Eqs. (37, 40), the matrix

A(t) , DX(x(t), λ(t)) = H(t)
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Figure 1 – Final state values ρ1(T, s) = x∗(T ).

Figure 2 – Initial costate values σ1(T, s) = λ∗(0).
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Figure 3 – Relative percent difference between numerical and analytical solution of x1.

and its partitions result in the following expressions:

H(t) ,

(
Ã(t) − 1

2 W̃ (t)

−2Q̃(t) − Ã′(t)

)

, (65)

Ã(t) =

(
−1 c1e−t

0 0

)

, Q̃(t) =

(
0 0

0 − 1
2 c2

1

)

, (66)

W̃ (t) =

(
e−2t 0

0 0

)

. (67)

The linear system in Eq. (19), given the Hamiltonian structure of the matrix in

Eq. (65), has a solution v(t) = (x(t), λ(t))′ verifying

λ(t) = 2 P̃(t)x(t) (68)
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provided P̃(t) is a 2 × 2 matrix solution to the Riccati matrix ODE

π̇ = π W̃π − π Ã − Ã′π − Q̃ ; π(T ) = diag(s, 0) . (69)

Assuming the matrix V = V (T, s) = 8(T, 0) is known, and introducing the

two auxiliary matrices α, β
(

α(T, s)

β(T, s)

)

, V −1

(
I

2s I

)

, (70)

then it follows that, for any initial condition x0, the following identities apply:

(
x0

σ

)

= 8−1(T, 0)

(
ρ

2sρ

)

= V −1

(
I

2s I

)

ρ ,

(
α

β

)

ρ , (71)

σ = βρ = βα−1x0 = 2 P̃(0)x0 ∀x0 , (72)

and therefore the initial value P̃(0) can be recovered from the solutions to the

PDEs, namely

P̃(0) =
1

2
β(T, s) [α(T, s)]−1 . (73)

The Riccati matrix P̃(t) alluded to in Eq. (68) should be closely related to the

scalar function P(t) given in Eq. (24), since both P̃(t) and P(t) come from

essentially the same problem. The analytical confirmation of this assertion fol-

lows: (i) at the initial time t = 0, since

U (T, s) , [V (T, s)]−1

=

(
U1 U2

U3 U4

)

=









eT − 2sT
e2T +sT

1
2 T e−T 0

0 1 0 0

0 0 e−T 0

0 − 4s2T

(e2T +sT)
2

2sT e−T

e2T +sT
1









,

α(T, s) = U1 + 2sU2 =

(
eT + sT e−T − 2sT

e2T +sT

0 1

)

,

β(T, s) = U3 + 2sU4 =

(
2e−T s 0
4s2T e−T

e2T +sT
2s − 4s2T

(e2T +sT)
2

)

,
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then, from Eq. (73),

P̃11(0) =
1

2

{
β(T, s) [α(T, s)]−1}

11 (74)

=
1

2

[β(T, s)]11

[α(T, s)]11
=

s

e2T + sT
= P(0) ; (75)

and (ii) for time t ∈ (0, T ], by partitioning Eq. (69),

∙

P̃11 = P̃11W̃11 P̃11 − P̃11 Ã11 − Ã′
11 P̃11 − Q̃11

= P̃11W P̃11 − P̃11 A − AP̃11 − Q (76)

P̃11(T ) = s

so P̃11 verifies the same ODE and final condition as P does.

By uniqueness of solutions: P̃11(t) = P(t) ∀t ∈ [0, T ].

5 Relevance for two-degrees-of-freedom control

Two-degrees-of-freedom (2DOF) is a generic denomination for control schemes

attempting: (i) to generate a reference/desired state trajectory for the system,

and (ii) to track/compensate this trajectory in the presence of disturbances.

Within this context, ‘optimal’ will be used to mean that there exists an under-

lying optimal control problem for a smooth nonlinear autonomous control sys-

tem whose dynamics and output are modelled by

ẋ = f (x, u) , y = Cx , (77)

subject to a general (as in Eq. (2) but with a not necessarily quadratic Lagran-

gian L) objective functional. When this problem is regular, the Hamiltonian

formalism applies as in the LQR problem above, and the Hamiltonian dynamics

are expressed as in Eqs. (37, 40, 51). It also can be shown [3] that the deviations(
x̃(t), λ̃(t)

)′
from the optimal trajectories follow approximately the dynamics

d

dt

(
x̃

λ̃

)

=

(
Ac − 1

2 Wc

−2Qc −A′
c

)(
x̃

λ̃

)

,
x̃(0) = x̃0

λ̃(T ) = 2sx̃(T )
(78)
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where the matrix coefficients take the form (see for instance [3])

Ac = fx − fu H−1
uu Hux ; Wc = 2 fu H−1

uu f ′
u ; (79)

Qc =
1

2
(Hxx − Hxu H−1

uu Hux) ,

all partial derivatives evaluated at the optimal values x∗(t), λ∗(t), u∗(t). Notice

that the dynamics in Eq. (78) has the same (Hamiltonian) structure (see [2], [12])

than that of equations (19-20) for an LQR problem. The solution of equation (78)

(denoted also
(

x̃(t), λ̃(t)
)

for simplicity) will then verify λ̃(t) = 2Pc(t)x̃(t),

with Pc(t) being a solution to the final-value problem:

π̇ = πWc(t)π − π Ac(t) − A′
c(t)π − Qc(t) ; (80)

π(T ) = s I . (81)

It is also known ([3], [6]) that the appropriate control for compensation is

û = −H−1
uu (Hux + 2 f ′

u Pc(t)) x̂ , (82)

where x̂ is the Kalman estimate of deviations x̃ = x − x∗ obtained by filtering

the output deviation y − Cx∗. Therefore it is essential to have Pc(t) on-line

when applying 2DOF control, and this is possible when Pc(0) is known and the

DRE is integrated in parallel with the model of the process. Now, it can be easily

checked ([3], [6]) that

Hc(t) ,

(
Ac(t) − 1

2 Wc(t)

−2Qc(t) −A′
c(t)

)

= DXc
(
x∗(t), λ∗(t)

)
, (83)

where Xc is the Hamiltonian vector field corresponding to f , L . Then, by de-

noting A(t, s) = Hc(t), and recalling the definition for V in equation (49) for

the flow φ corresponding to the vector field Xc, equations (50, 72) remain valid

for the appropriate objects, i.e.:

σ = λ̃(0) = 2Pc(0)x̃0 = β(T, s) [α(T, s)]−1 x̃0 , (84)

where α, β are as in equation (70). It follows that, whenever the variational

PDEs (55, 57 and 58) are solved, the value of

Pc(0) =
1

2
β(T, s) [α(T, s)]−1 (85)
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becomes available, and then the matrix Pc(t) (needed in the compensation and

the filtering stages of 2DOF control) can be calculated on-line by integrating the

Riccati equation (80) as an initial-value problem.

6 Conclusions

The variational PDEs associated with the Hamiltonian formulation of the op-

timal control problem for nonlinear systems have been validated when applied

to the usual time-variant LQR problem posed in extended state space (including

time as a new variable). The result has been checked analytically and numerically

for a scalar final penalization matrix, although the possibility of treating general

nonnegative-definite quadratic forms can be pursued along the lines of the linear

time-constant case (see [7], [8], [10]).

The new approach to recover missing boundary conditions of Hamilton’s

equations by solving quasilinear first-order PDEs has proven to be useful in

calculating the initial value of the solution to Riccati equations underlying the

linearization of the HCEs. This has a considerable practical value when instru-

menting 2DOF control strategies, since the solution of such Riccati equations

appear into the gain of the compensation stage, and they can be computed on-

line if treated as initial-value instead of classical final-value ODEs.
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