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Inverse finite element method for large-displacement beams
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SUMMARY

A finite element model for the inverse analysis of large-displacement beams in the elastic range is
presented. The model permits determining the initial shape of a beam such that it attains the given
design shape under the effect of service loads. This formulation has immediate applications in various
fields such as compliant mechanism design where flexible links can be modeled as large-displacement
beams. Numerical tests for validation purposes are given, together with two design applications of flexible
mechanisms with distributed compliance: a flexible gripper and a flexible S-type clutch. Copyright �
2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The classical (direct) problem in Elasticity consists in computing the deformed shape of a body
knowing its mechanical properties and the applied loads in a given undeformed (reference) config-
uration. The deformed configuration—unknown at the start of the analysis—is computed as the
solution of this direct problem, which is inherently non-linear when large deformations are involved.
In this work we deal with the inverse problem, i.e. to determine the undeformed (reference) config-
uration knowing the deformed shape of the body and the applied loads. Beck and Woodburry [1]
classified it as an inverse design problem, in contrast to classical inverse (measurement) problems
that consist in determining material data knowing both the deformed and undeformed configura-
tions, as well as the service loads.
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Inverse methods constitute a very useful tool that allows engineers to conceive designs in less time
and at lower costs than those involved in traditional experimental and direct computational design.
Also, the iterative trial and error approach used many times in design processes is avoided. Finite
element models for the inverse design of two- and three-dimensional isotropic elastic continuum
bodies subjected to large deformations have been proposed by Govindjee and co-workers [2–4]
and Yamada [5]. Later, Govindjee [6] extended the inverse finite element design to hyperelastic
orthotropic materials with applications to axi-symmetric problems. More recently, Lu et al. [7]
and Fachinotti et al. [8] developed three-dimensional models for the inverse design of orthotropic
hyperelastic solids. Also, inverse finite element was applied to the design of shells [9].

In this paper, we focused on the design of compliant mechanisms and extended our previous
work [8] to two- and three-dimensional highly flexible beam structures. To this end, we formulated
an inverse finite element model based on the non-linear beam formulation proposed by Cardona and
Géradin [10, 11]. Compliant mechanisms necessarily have low mass and very high flexibility, so
large displacements behavior ought to be considered. We proceeded by formulating the kinematic
beam assumptions before expressing non-linear strain measures. We used the rotational vector
to parameterize rotations, since it has a simple geometric meaning and does not introduce any
singularity in representing rotations of any magnitude. We further assumed that beam cross-sections
remain straight but the beam could undergo shear strains. For the purpose of flexible mechanism
analysis and synthesis, a simplified linear elastic constitutive relation was adopted. Although
flexibility effects were introduced using a large displacement hypothesis with finite rotations, we
assumed that the strains which resulted were small.

Two simple tests were proposed for validation purposes. The first one was the two-dimensional
bending of a cantilever beam, for which an analytical solution is available [12]. The second problem
is the 45-degree bend of a cantilever beam, which has been widely used as a benchmark for
three-dimensional flexible beams models [10, 11, 13–15].

Finally, two examples of applications in the field of compliant mechanisms analysis are shown:
the design of a flexible gripper previously studied by Lan and Cheng [16], and the design of an
S-type flexible clutch.

2. BEAM KINEMATICS

Let us consider a beam of cross-section A0 and length L , with initial configuration B0 =A0 ×
[0, L]∈ R3 and current deformed configuration B=A×[0, l]∈ R3 (Figure 1). We assume that
deformation of the beam takes place such that the cross-section does not change and remains plane;
however, shear effects make the cross-section to not remain normal to the centroidal line [10, 11].

The current position x∈B of a generic point can be expressed as

x(s)=x0(s)+y(s)

where s is the length parameter along the neutral axis of the beam, x0 is the trace of the neutral
axis on the cross-section A containing the point x and normal to the neutral axis, and y is the
position of x in the cross-section relative to x0.

Before deformation, this same material point occupied the position X∈B0:

X(S)=X0(S)+Y(S)
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Figure 1. Description of beam kinematics.

where S is the length parameter along the neutral axis of the undeformed beam, X0 ∈B0 is the
position occupied by the point at x0 ∈B before deformation, and Y is the position of X relative
to X0.

Vectors y and Y are related by

Y=RTy (1)

where R is the so-called rotation operator, which belongs to the Lie group of proper orthogonal linear
transformations. Since sections are assumed to remain plane during deformation, the transformation
(1) is constant on the cross-section A.

Let {E1,E2,E3} be an orthonormal basis in B0, such that E1 =dX0/dS is tangent to the neutral
axis, and E2 and E3 define the principal axes of inertia of the cross-section A0 of the undeformed
beam. The corresponding orthonormal triad in B is {t1, t2, t3}, with

ti =REi , i =1,2,3

Let us also consider an orthonormal basis {t∗1, t∗2, t∗3} in B, such that t∗1 =dx0/ds is normal to
the cross-section A and tangent to the neutral axis, and t∗2, t∗3 are aligned along the directions
of the principal axes of inertia of the cross-section. The corresponding orthonormal triad in B is
{e1,e2,e3}, with

ei =RTt∗i , i =1,2,3

Note that although t∗1 and E1 are aligned with the neutral axes in B and B0, respectively, e1
and t1 are not general aligned with the neutral axes in B0 and B because of shear deformation.
We remark that, for the same reason, A and A0 do not contain the same material points.

In the inverse analysis, the variables x0 that determine B are assumed to be known. Then, we
have to solve a problem for the unknowns X0 and R in order to completely determine B0.

2.1. Parameterization of rotations

Let us introduce the Cartesian rotational vector w, which is defined as the vector whose direction
is that of the rotation axis n and whose length is equal to the amplitude of the rotation �:

w=n�
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Using w, the rotation operator in three-dimensional space is completely determined by means of
Rodrigues formula:

R(w)=I+ sin�

�
w̃+ 1−cos�

�2
w̃w̃ (2)

where I is the identity matrix and, from now on, ũ is the skew-symmetric matrix associated with
the vector u given as

ũ=

⎡⎢⎣
0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤⎥⎦
Using this operator, the cross product of two vectors u and v can be obtained as

u×v= ũv

Let us note that R→I when �→0.
Since w suffices to completely describe the rotation R, we consider the minimal set of variables

{X0,w}—instead of {X0,R}—as unknown fields of the inverse problem.

2.2. Spatial deformation measures

Material deformation measures are given by the vectors of deformation of the neutral axis C and
curvature K [11]:

C= RT dx0

dS
− dX0

dS

K = T
dw

dS

where T is the tangent operator

T(w)=I+ cos�−1

�2
w̃+

(
1− sin�

�

)
w̃w̃ (3)

(note that T→I as �→0).
The spatial counterparts of vectors C and K, say c and j, respectively, are obtained by applying

a rotation to the current configuration:

c= RC= dx0

dS
−R

dX0

dS

j= RK=RT
dw

dS

Since the length parameter S along the undeformed beam can be expressed as a function of the
current length parameter s, the derivative of any function � with respect to S can be computed
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using the chain rule:

d�

dS
= �′

S′

with (∗)′ ≡d(∗)/ds. Then, the spatial measures of the deformation of the neutral axis and curvature,
referred to the known deformed frame, can be computed using the expressions:

c= 1

S′ (x
′
0 −RX′

0) (4)

j= 1

S′ RTw′ (5)

3. GOVERNING EQUILIBRIUM EQUATIONS

We formulate the equilibrium equations in the known deformed configuration B [8]. Let A be the
cross-section containing point x∈B and normal to the neutral axis in the deformed configuration.
The area of A is assumed to be constant along the beam. Let us call n and m the resultant force
and moment with respect to x0 of the tractions acting over the surface A, and n̄ and m̄ the external
force and moment per unit length at x.

Then, assuming static conditions, the translational and rotational equilibrium equations at every
point x∈B can be expressed as follows:

n′+ n̄=0

m′+x′
0 ×n+m̄=0

The weak form of the equilibrium equations over B can be written as:∫
B

(n′+ n̄)T�X0 ds+
∫
B

(m′+x′
0 ×n+m̄)T�wds =0

where �X0 and �w are admissible variations of X0 and w.
Finally, after integration by parts, the equivalent variational problem takes the following form:

Find X0(s) and w(s) such that∫
B

[nT(�X′
0 +x′

0 ×�w)+mT�w′]ds =
∫
B

(n̄T�X0 +m̄T�w)ds (6)

for all admissible �X0 and �w.

3.1. Constitutive equations

Let us make the following assumptions [11]:

• the material remains in the linear elastic range, and
• although the beam may undergo large rigid-body rotations, its material strains remain small.
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Then, the following linear constitutive laws apply:

n = Cnc (7)

m = Cmj (8)

where Cn =Cn
i j t∗i ⊗t∗j and Cm =Cm

i j t∗i ⊗ t∗j are the second-order tensors of elastic integrated proper-
ties over the cross-section. The matrices of elastic coefficients Cn

i j and Cm
i j referred to the principal

axes of the deformed beam are written:

Cn =
⎡⎣E A 0 0

0 G A2 0
0 0 G A3

⎤⎦ , Cm =
⎡⎣G J 0 0

0 E I2 0
0 0 E I3

⎤⎦
being E A the axial stiffness, G Ai the shear bending stiffness along the transverse axis t∗i , G J the
torsional stiffness, and E Ii the bending stiffness along the principal axis t∗i (i =2,3).

4. FINITE ELEMENT METHOD

Based on the ‘direct’ beam element proposed by Géradin and Cardona [11], the current ‘inverse’
beam element representing the deformed configuration B is a straight, mixed linear–linear finite
element. The element geometry is linearly interpolated:

x0(s)=�1(s)x1
0 +�2(s)x2

0, 0�s�l =‖x2
0 −x1

0‖
where xi

0 is the position of node i , i =1,2, and �i is the linear shape function associated with
node i , defined as (Figure 2)

�1 =1− s

l
, �2 = s

l

The unknowns of the inverse problem are approximated as follows:

X0(s) = �1(s)X1
0 +�2(s)X2

0 (9)

w(s) = �1(s)w1 +�2(s)w2 (10)

where Xi
0 and wi are, respectively, the unknown values of X0 and w at node i .
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0
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S
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Figure 2. Finite element model of the inverse beam.
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Since x0 and X0 are both linearly interpolated, arc-length parameters s and S along the neutral
axes in the deformed and undeformed configurations are related by the linear expression:

S = L

l
s

with L =‖X2
0 −X1

0‖, and then

S′ = L

l

4.1. Discretized equilibrium equations

Following the standard Galerkin finite element formulation [17], we approximate the unknowns
X0 and w as well as their variations using Equations (9) and (10). Then, the equilibrium equations
(6) give rise to the following non-linear system of algebraic equations for the nodal unknowns Xi

0
and wi :

Fint(Q)−Fext =0 (11)

where Q is the vector of nodal unknowns defined as

Q=

⎡⎢⎢⎢⎢⎢⎣
X1

0

w1

X2
0

w2

⎤⎥⎥⎥⎥⎥⎦
and where Fint and Fext are the vectors of internal and external forces, respectively, given by

Fint =
∫
B

BTrds, Fext =
∫
B
uT t̄ds

with

B =
[

�′
1I �1x̃′

0 �′
2I �2x̃′

0

O �′
1I O �′

2I

]
, r=

[
n

m

]

u=
[

�1I O �2I O

O �1I O �2I

]
, t̄=

[
n̄

m̄

]

Here, O is the 3×3 null matrix and I is the 3×3 identity matrix; note also that �′
1 =−1/ l, �′

2 =1/ l
and x′

0 = (x2
0 −x1

0)/ l are constant within the element.
The external loads n̄ and m̄ are assumed to be given and independent of the unknowns; therefore

the external force vector Fext does not depend on the unknowns.
The internal force vector Fint depends on the unknowns via the internal efforts r, whose

dependence on the unknowns will be analyzed in next section.
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In order to avoid shear locking, Fint is evaluated using reduced integration with only one
sampling point located at s = l/2, yielding:

Fint =BT
sprsp l

where (∗)sp ≡∗|s=l/2, and

Bsp = 1

l

[−I 1
2 �̃x0 I 1

2 �̃x0

O −I O I

]

with �x0 =x2
0 −x1

0.

4.2. Computation of deformation and stress in the current finite element

By evaluating Equations (4) and (5) at the sampling point, we obtain:

csp = 1

L
(�x0 −Rsp�X0) (12)

jsp = 1

L
RspTsp�w (13)

with �X0 =X2
0 −X1

0, �w=w2 −w1, and Rsp =R(wsp) and Tsp =T(wsp) are given by Equations (2)

and (3), respectively, evaluated at wsp = (w1 +w2)/2.
Now, the internal efforts at the sampling point are obtained using Equations (7) and (8):

nsp = Cncsp

msp = Cmjsp

4.3. Linearization of the discrete equilibrium equations

The non-linear discrete equilibrium equations (11) are solved using the Newton–Raphson method
[17]. At each iteration k, the residual vector F=Fint −Fext is approximated using the linear Taylor
expansion:

F(k) ≈F(k−1)+S(k−1)(Q(k) −Q(k−1))=0

where S(k−1) is the tangent stiffness matrix:

S= dF
dQ

evaluated at iteration (k−1).
As already mentioned, only the internal forces are assumed to depend on the unknowns. By differ-

entiating Fint with respect to the unknowns Q, we obtain

S= lBT
sp

drsp

dQ
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Then, it only remains to compute the derivatives of the stresses, evaluated at the sampling point
s = l/2, with respect to Q:

drsp

dQ
=

⎡⎢⎢⎣
dnsp

dQ

dmsp

dQ

⎤⎥⎥⎦=
[

Cn O

O Cm

]⎡⎢⎢⎢⎣
dcsp

dX1
0

dcsp

dw1

dcsp

dX2
0

dcsp

dw2

djsp

dX1
0

djsp

dw1

djsp

dX2
0

djsp

dw2

⎤⎥⎥⎥⎦
The detailed computation of the derivatives of the deformation measures is given in the Appendix.

5. VALIDATION EXAMPLES

5.1. Bending of a flexible cantilever beam

Let us consider the plane bending of a flexible cantilever beam with constant rectangular cross-
section, whose geometrical and material properties are listed in Table I. We assume the beam
is clamped at the origin of a reference frame O-xyz, and it is aligned along the x-axis in the
undeformed configuration. It bends in the xz plane under a force P =105 N exerted at the free end
in the z-direction. The magnitude of force is such that the resulting deflections are large, out of
the range of linearized beam deflection equations.

In order to define the domain of inverse analysis, we need to know the whole elastica. An analyt-
ical expression of the elastica can be computed by assuming that shear effects on deformation are
negligible. This hypothesis is well justified since the beam has a high slenderness ratio. The large
deflection w(x) of a cantilever beam with bending stiffness E Iy under a vertical load P applied
at the free end is given by the solution of the differential equation:

d2w

dx2
+ P

E I
(xtip −x)

(
1+ dw

dx

)3/2

=0

subject to the boundary conditions:

w(0)=0,
dw

dx

∣∣∣∣
x=0

=0

Table I. Geometrical and material data for the problem of plane
bending of a flexible cantilever beam.

Beam width b=3cm
Beam height d =6cm
Beam length L =2m
Young’s modulus E =2.10×1011 N/m2

Shear modulus G =1.05×1011 N/m2
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The solution of the above boundary value problem is

w(x)=
∫ x

0

1√
�2(�)−1

d�, 0�x�xtip (14)

with

�(�)=
[

P

E I

(
xtip�− �2

2

)]−1

This integral does not have a closed solution, and is numerically evaluated using Gauss–Kronrod
quadrature [18] by setting the absolute tolerance to 10−10.

The position xtip = [xtip 0 ztip]T and the rotation angle �tip =‖wtip‖ of the loaded end after
deformation are obtained by using Howell’s elliptic-integral solutions [12]:

xtip = 1.408070m

ztip = 1.2843651m

�tip = 1.063764rad

The deformed beam, as determined using Equation (14), is depicted in Figure 3. This is actu-
ally the domain B of inverse analysis. Then, several meshes are defined by dividing B into
N =2,4,8,12,16,20 segments of equal length h = L/N , each one approximated using a straight
finite element. The targeted solution is the undeformed beam aligned with the x-axis.

Figure 4 depicts the L2-norm of the error in initial position X0 and rotation w for the different
meshes. Note that a quadratic convergence rate is obtained for both error measures.
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inverse analysis)
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Figure 3. Plane bending of a flexible cantilever beam: undeformed and deformed neutral
axes. Note that the scales for x and z are equal.
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Figure 4. Bending of a flexible cantilever beam: errors in the approximation of positions and rotations
(measured in L2-norm) using the proposed inverse finite element model, as a function of the element size.

Concerning the performance of the Newton–Raphson solver, let us mention that for all the
meshes considered here, it always took six iterations to attain ‖Fint −Fext‖<10−8‖Fext‖ starting
from the initial guess Xi

0 =xi
0 and wi =0 at every node i .

5.2. Cantilever 45-degrees bend

Let us now consider the cantilever 45-degrees bend depicted in Figure 5. The structure is clamped
at the origin O of the reference frame O-xyz, and lies in the plane xy when undeformed. The beam
has a unit square cross-section, Young’s modulus is E =107 and the shear modulus is G =5×106.
It is bent and twisted by the action of the force P =600 applied at the free end, in the z-direction.
This problem was used as a benchmark for three-dimensional flexible beam models by several
authors [10, 11, 13–15].

First, a direct analysis is performed. The beam is discretized using eight equal finite elements
[10, 11]. The computed position of the loaded end is shown in Figure 5.

Then, an inverse analysis using the beam inverse model is performed, starting from a grid drawn
on the computed deformed configuration. The solution of the inverse analysis should fit the original
grid of the direct analysis. As it can be seen in Figure 5, the model is highly accurate, and almost
complete agreement with the initial mesh is obtained. For instance, the distance between the given
and the computed position at the free-end (loaded) node in the undeformed configuration is 0.1179
(less than 0.2% of the displacement at the same node).

A quadratic convergence rate was obtained for the Newton–Raphson iterations, taking 7 iterations
to attain an equilibrium error norm ‖Fint −Fext‖<10−8‖Fext‖, starting from an initial guess Xi

0 =xi
0

and wi =0 at every node i .
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Figure 5. Cantilever 45-degree bend: solutions of direct and inverse analyses.

6. APPLICATIONS

6.1. Compliant gripper

A simple compliant gripper was proposed by Lan and Cheng [16], which allows to grab an
object of a certain size and shape when acted upon. They carried out a direct analysis using
intrinsic functions to parameterize the topology and the generalized multiple shooting method
(GMSM) to analyze the deflection of the mechanisms. These techniques were then integrated
into an optimization scheme in order to achieve the design constraints (desired shape under
loading).

Figure 6 depicts the targeted loaded shape in dashed line and the actuation force P =24N
applied at point C , as computed by Lan and Cheng using a quadratic polynomial to parameterize
the angle of rotation of the beam axis. The gripper has constant rectangular cross-section (10 mm
wide and 5 mm high), and is fixed at points A and B. It is made of polypropylene, with Young’s
modulus E =1.4×103 N/mm2 and the Poisson ratio �=0.25.

If we take as the domain of the analysis the desired shape of the gripper when actuated, we
can apply the method of inverse analysis to compute the unknown initial shape. The deformed
gripper is modeled using 46 flexible beam finite elements. The undeformed configuration obtained
as solution of the current inverse analysis is depicted by a solid line in Figure 6. This solution
agrees with that of Lan and Cheng, depicted by hollow circles in the same figure.

The solution of the discrete non-linear equation using the Newton–Raphson method took 6
iterations to get an equilibrium error norm ‖Fint −Fext‖<10−8‖Fext‖, starting from the initial guess
Xi

0 =xi
0 and wi =0 at every node i .
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Figure 6. Compliant gripper: deformed (given design requirement) and undeformed (computed)
configurations. Comparison with a reference solution [16].

Figure 7. Compliant S-clutch.

6.2. Compliant S-clutch

This mechanism connects two concentric shafts (Figure 7). When deformed under the effect of
centrifugal loads, the clutch shoes engage the friction surface of the outer drum. The objective is
to design a clutch that engages at a certain angular speed. The deformed geometry of the clutch
should match very closely the geometry of the drum to ensure a smooth distribution of the contact
force between both surfaces. This reduces stress concentration and makes wear evenly distributed
in the contact surfaces. Crane [19] studied this kind of mechanisms using a pseudo-rigid model.
We refer to [20] for several examples of industrial S-clutches.

The S-clutch studied here is made of an aluminum alloy with E =69×103 N/mm2 and shear
modulus G =25×103 N/mm2. In order to simplify the manufacture of the piece, the clutch shoes
are assumed to have a constant rectangular cross-section (30 mm wide, 10 mm high). A second
design requirement is that the clutch matches the inner diameter of the drum (110 mm) when
the angular speed is 1000 RPM. Further, perfect slipping between the clutch shoes is prescribed
at this speed (we could have eventually prescribe any given contact pressure as well). For the
finite element inverse analysis, the desired shape was discretized using 64 equally spaced beam
elements.
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Figure 8. Compliant S-clutch: deformed (given design requirement) and undeformed
(computed) configurations.

The solid line in Figure 8 represents the computed undeformed shape for manufacturing the
clutch, in order to verify the design requirements. The analysis took 6 Newton–Raphson iterations to
attain an equilibrium error norm ‖Fint −Fext‖<10−8‖Fext‖ starting from the initial guess Xi

0 =xi
0

and wi =0 at every node i .

7. CONCLUSIONS

A finite element model for the inverse analysis of large-displacement beams has been presented.
The objective in this kind of analysis is to solve inverse design problems, where the undeformed
configuration is determined knowing the deformed configuration and the applied loads. A linear
elastic constitutive relation is assumed.

Two- and three-dimensional test-examples have been shown, illustrating the accuracy of the
model. The performance was measured either by comparison to an analytical solution (2D case)
or by its ability to recover the original mesh of the corresponding direct analysis (3D case).

Two applications for compliant mechanisms design were presented. The inverse model was used
for the design of a compliant gripper and a centrifugal clutch. The proposed method proved to be
computationally advantageous for this kind of applications.

APPENDIX A: DERIVATIVES OF SPATIAL DEFORMATION MEASURES

Derivatives of c

From now on, let us obviate the subscript sp for notation convenience, keeping in mind however
that all the variables are evaluated at the sampling point located at s = L/2.
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By taking variations in Equation (12), we obtain

�c=− 1

L
c�L − 1

L
�R�X0 − 1

L
R�(�X0) (A1)

The variation of L takes the form

�L =�‖�X0‖= 1

L
�XT

0 �(�X0) (A2)

From [11], we know that

�Ru=−RũT�w (A3)

for an arbitrary vector u. Then,

�R�X0 =−R�̃X0T�w

Now, we can express the variation of c given by Equation (A1) in terms of the variations �w
and �(�X0) as follows:

�c=− 1

L

(
1

L
c�XT

0 +R
)

�(�X0)+ 1

L
R�̃X0T�w

Since �w= (�w1 +�w2)/2 and �(�X0)=�X2
0 −�X1

0, we derive from the above equation that:

�c
�X1

0

= 1

L

(
1

L
c�XT

0 +R
)

=− �c
�X2

0

�c

�w1
= 1

2L
R�̃X0T= �c

�w2

Derivatives of j

By taking variations in Equation (13), we obtain

�j=− 1

L
j�L + 1

L
�RT�w+ 1

L
R�T�w+ 1

L
RT�(�w) (A4)

Using Equation (A2), we have

j�L = 1

L
j�XT

0 �(�X0)

Using Equation (A3), we have

�RT�w=−RT̃�wT(�w)

In order to compute the last term in the r.h.s. of Equation (A4), note that

�T�w=A�w
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with

A=
[

�T

��1
�w

�T

��2
�w

�T

��3
�w

]
Now, we can express the variation of j given by Equation (A4) in terms of the variations �w,

�(�w) and �(�X0) as follows:

�j=− 1

L2
j�XT

0 �(�X0)+ 1

L
R(A−T̃�wT)�w+ 1

L
RT�(�w)

Since �w= (�w1 +�w2)/2, �(�w)=�w2 −�w1 and �(�X0)=�X2
0 −�X1

0, we get from the above
equation that:

�j
�X1

0

= 1

L2
j�XT

0 =− �j
�X2

0

�j

�w1
= 1

2L
R(A−T̃�wT−2T)

�j

�w2
= 1

2L
R(A−T̃�wT+2T)
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