
A Continuous-Time Tightened Formulation for Single-Stage Batch Scheduling
with Sequence-Dependent Changeovers

Pablo A. Marchetti and Jaime Cerdá*

INTEC (UniVersidad Nacional del Litoral-CONICET), Güemes 3450, 3000, Santa Fe, Argentina

This work presents a new mixed-integer linear programming (MILP) continuous-time approach for the short-
term scheduling of single-stage multiproduct batch plants with parallel units and sequence-dependent
changeovers. It uses a unit-specific precedence-based representation, combined with effective, nontrivial
tightening constraints, to develop a very efficient problem formulation. The additional cuts account for the
updated information provided by allocation and sequencing binary variables to systematically reduce the
solution space of the corresponding LP at every node of the enumeration tree. In this way, close bounds for
key variables like makespan, task earliness, and task starting/completion times are generated and continually
improved throughout the search in order to accelerate the node pruning process. Alternative problem objectives
like the minimum total earliness or the shortest makespan can be managed. To make a thorough comparison
with previous continuous-time scheduling approaches, several benchmark examples have been solved. Results
show that the proposed approach usually presents the best computational performance.

1. Introduction

An efficient utilization of manufacturing resources is an
extremely important issue in the operation of multiproduct batch
plants to cut production costs and increase annual profits and
customer satisfaction. The scheduling function is the one
concerned with the proper allocation of production resources
to processing tasks. It aims to timely reach the specified
production targets with a minimum resource capacity. Therefore,
efficient tools helping schedulers to develop the best short-term
schedule of multiproduct batch plants are of great interest in
most manufacturing companies. Several solution methodologies
have been proposed for different types of batch scheduling
problems. An extensive review of the state of the art can be
found in Floudas and Lin1 and Méndez et al.2 Overall, exact
solution methods using mathematical programming models have
received most of the research attention. Depending on the way
the set of batches and their sizes are defined, two types of
scheduling methodologies have been developed: monolithic and
sequential approaches.2 The first group tackles the full batching/
scheduling problem. In addition to allocation and sequencing
decisions, a monolithic approach must also choose the set of
batches (size and number) that undergo each required processing
task (lot-sizing problem). Because the size of any batch can
change along the processing network, batch mixing/splitting
operations are needed and material balances should be incor-
porated in the problem formulation. The STN (state-task
network) representation, introduced in the seminal paper of
Kondili et al.,3 is generally used by monolithic approaches to
describe the production recipes. An alternative representation
is the resource-task network (RTN), where the concept of
resource is unified to explicitly include equipment units (Pan-
telides4). In contrast, sequential scheduling methods are not
concerned with the batching problem since they assume that
the set of batches for the entire process has been previously
adopted. Therefore, batch size, release times, due dates, and
any other related information are problem data. By just handling
linear production recipes, the treatment of mixing/splitting

operations and material recycles can be avoided and, conse-
quently, sequential models never include mass balance constraints.

Another way of classifying the scheduling methodologies is
based on the time representation being applied. On one hand, a
uniform time discretization approach assumes that the scheduling
horizon has been divided into several time periods of equal
duration, and the start/completion times of the tasks must occur
at period ends. Several monolithic methodologies using the
discrete time representation have been proposed to solve batch
scheduling problems.3-6 On the other hand, continuous-time
representations assume that the time events can take place at
any moment throughout the scheduling horizon. Timing deci-
sions are explicitly given in terms of continuous variables
denoting the exact times at which the events happen. Continu-
ous-time representations can be grouped into three different
types: global time point formulations, unit-specific time event
approaches, and precedence-based models. Global time point
formulations all assume a common variable time grid for all
shared resources and are based on STN7-9 or RTN process
representations.10-13 In such formulations, variable batch sizes
and batch-size dependent resource requirements are allowed and
tasks are required to start or end just at the time points. Since
more time points are needed as the set of batches becomes larger,
the number of global time points is a major multiplier of the
problem size. Thus, batch scheduling problems with more than
10-12 time points usually need a considerable CPU solution
time.9

An alternative methodology associates the starting time of
tasks to unit-specific time events.14-17 This time event repre-
sentation allows the same time point to have different values
for different units, thus producing a smaller model size with
regard to previous approaches. A similar idea has been previ-
ously proposed by Pinto and Grossmann18,19 by introducing the
notion of time slots as predefined time intervals of unknown
duration. In this case, each unit has associated a set of preordered
time slots to which the batches must be allocated, and the
number of slots and the slot time limits can vary with the unit.
Non-common slots become a feasible alternative because the
formulation was restricted to sequential processes without
resources different from equipment and, consequently, no mass

* To whom correspondence should be addressed. E-mail address:
jcerda@intec.unl.edu.ar.

Ind. Eng. Chem. Res. 2009, 48, 483–498 483

10.1021/ie701774w CCC: $40.75 2009 American Chemical Society
Published on Web 12/05/2008

balance equation is needed. A recent monolithic slot-based
approach relying on the notion of synchronous time slots has
been introduced to account for additional manufacturing re-
sources (manpower, utilities) on a STN-based formulation.20

Other continuous-time formulations have been developed to
handle sequential processes (linear recipes) based on the
immediate or general precedence concepts. On this kind of
approach, specific variables that represent the starting/completion
times of a given task are defined instead of using time points at
which any processing task can either begin or end. The
immediate precedence representation (either unit-specific21 or
not22,23) uses 0-1 variables to handle the decision of performing
one task immediately before another, and handles sequence-
dependent changeovers in a straightforward manner. The same
advantage can be found on the general precedence scheme
introduced by Méndez et al.;24 however, in this case the
precedence relation has been extended to include not only
the immediate predecessor but also all the tasks processed before
in the same unit. In addition, assignment and sequencing
decisions are decoupled and only one binary variable is required
to sequence every pair of processing tasks (i, i′). This leads to
an MILP mathematical formulation with a better computational
performance than other continuous time approaches for batch
scheduling with sequence-dependent changeovers.

In recent papers, Castro and Grossmann25,26 introduced a
multiple time grid approach. The new time-continuous repre-
sentation was shown to be very competitive for tackling single-
stage scheduling problems, because it uses a unit-specific time
grid. A significant number of examples were solved to compare
the performance of their single- and multiple-stage formulations
with other existing discrete/continuous MILP and constraint
programming (CP) approaches.

Overall, discrete time representations have a very tight
feasible region and present a small integrality gap for problems
with sequence-independent changeovers.2,25 The required CPU
time to solve them remains low as long as the model size
remains manageable. However, if the scheduling horizon of the
problem on hand is rather long, or the number of significant
digits on the problem data is important, then a greater number
of time intervals is required and the computational performance
rapidly worsens. In the latter case, the problem data are usually
rounded-off to prevent from largely increasing the number of
time intervals. As a result, a poor problem representation may
be obtained and the best schedule found is probably nonoptimal
or even infeasible. Sequence-dependent changeovers can be
managed by discrete formulations but at the expense of
significantly increasing the model size and the required com-
putational cost. In turn, continuous-time formulations present
larger integrality gaps and more loosely feasible regions.
However, some representations have shown to have a better
computational performance for certain objective functions or
for problems with some specific features. In monolithic continu-
ous-time formulations with either global time points or unit-
specific events, the number of points/events must be determined
through a rather costly iterative process that consists of
repeatedly adding another time point and solving the resulting
problem formulation until the best schedule found shows no
improvement. This procedure cannot guarantee the optimality
of the solution found. On the other hand, the performance of
precedence-based models is somewhat deteriorated by the use
of big-M sequencing constraints, especially when the makespan
is the objective function to be minimized. They produce an
increase in the integrality gap (the difference between the
optimal values of the relaxed RMIP and the original MILP

problems), thus making it harder to find the optimal schedule
through a branch-and-cut algorithm. Generally, issues such as
low number of binary variables and lack of big-M constraints
have been cited as key model features to bound the computa-
tional cost.

This work presents an enhanced mathematical formulation
for the scheduling of single-stage multiproduct batch plants with
sequence-dependent changeovers. It is based on the underlying
idea that a suitable time representation, combined with effective,
nontrivial tightening constraints (“cuts”), can lead to a MILP
problem formulation with a very good computational perfor-
mance. Such a combination permits to obtain better bounds from
the RMIP model solved at each node of the tree and thus
accelerate the node pruning process. In order to derive effective
cuts, a continuous-time unit-dependent precedence-based math-
ematical formulation has been developed. Nontrivial cuts that
take into account the information provided by allocation and
sequencing variables during the search (either if they were
branched or not by the solver algorithm) were also incorporated
in the problem formulation. Thus, valid tight bounds for key
variables such as makespan, task earliness, and task starting/
completion times that continually improve throughout the search
are generated. The proposed approach accounts for batch release
times, unit ready times, batch due dates, and sequence-dependent
setup times. Alternative problem objectives were used, such as
the minimization of the overall earliness or the makespan.
Several benchmark problems have been solved to make a
thorough comparison with the performance of previous schedul-
ing approaches, including the general precedence scheme of
Mendez et al.24 Future work will generalize the proposed
formulation to tackle multistage batch plant scheduling problems.

This work is organized as follows. In section 2, the scheduling
problem to be tackled is properly defined, and the model
assumptions are presented. Section 3 introduces the new
mathematical model and the special tightening constraints
involving just allocation variables or a mix of allocation and
sequencing variables. Special emphasis is made on setting close
upper bounds for the task completion times when the overall
earliness is minimized. Section 4 presents the computational
results for a set of benchmark examples, and the conclusions
are included in section 5.

2. Problem Statement

The problem of short-term scheduling of single-stage mul-
tiproduct batch plants with parallel production units can be stated
as follows. Given:

(a) a single-stage multiproduct batch plant with multiple
parallel units j ∈ J,

(b) a set of single-batch orders i ∈ I to be completed within
the scheduling horizon,

(c) the release time rti and the due date ddi for each batch
i ∈ I,

(d) the set of available processing units Ji ⊂ J and the constant
processing time ptij at each one for every batch i,

(e) the sequence-dependent setup times τii′j,
(f) the equipment unit ready times ruj, and
(g) the specified time horizon H.
The problem goal is to determine a production schedule that

completes all batch orders within their time limits, while
satisfying assignment and sequencing constraints and optimizing
a given schedule criterion, such as the makespan or the overall
weighted earliness.

To derive the proposed mathematical formulation for single-
stage batch scheduling, the following assumptions are made:

484 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

1. Model parameters are all deterministic.
2. Transition times between any pair of tasks are computed

by adding two components: a non-sequence-dependent (suij) and
a sequence-dependent (τii′j) setup time.

3. Processing times dominate sequence-dependent changeover
times (i.e., the longest changeover time never exceeds the
shortest processing time).

3. Mathematical Model

3.1. Problem Constraints. 3.1.1. Assignment of
Processing Units to Tasks. Let us define the binary variable
Yij to represent the decision of allocating the equipment unit j
to task i. Because a single unit must be assigned to every
required task, then constraint (1) must be satisfied.

∑
j∈ Ji

Yij) 1 ∀ i ∈ I (1)

3.1.2. Relationships among Assignment and Sequencing
Decisions. To choose the task processing sequence at every
equipment unit, a set of unit-specific sequencing variables Xii′j
is defined. They are based on the general precedence notion
introduced by Méndez et al.,24 because they describe the relative
ordering of any pair of tasks in the queue of any unit j ∈ Jii′. In
our formulation, however, a different set of sequencing variables
for each equipment item rather than a single one for the entire
single-stage multiproduct facilty is considered. Since the unit
index j is incorporated in the domain of the variable Xii′j, the
resulting approach can be regarded as a unit-dependent general-
precedence based scheduling methodology.

Xii′j) { 1 if task i is processed before task i′ in unit j
0 otherwise

∀ i, i′ ∈ I, j ∈ Jii : (i* i)

In other words, a different binary variable Xii′j is to be defined
not only for every possible permutation of any pair of tasks
(i, i′) potentially sharing an equipment unit but also for each
eligible unit j ∈ Jii′. By explicitly including the equipment
information on the definition of Xii′j, additional tightening
constraints that produce better lower bounds on the optimal value
of the objective function can be derived. In this way, the
convergence rate of the MILP solution algorithm can be
significantly improved with regard to the general precedence-
based scheduling approach,24 despite the larger number of unit-
specific sequencing variables Xii′j.

Since either Xii′j or Xi′ij must be equal to 1 whenever the pair
of tasks (i, i′) has been allocated to the same unit j ∈ Jii′ (Yij +

Yi′j) 2), then constraint (2), which relates assignment and
sequencing variables, must be incorporated in the problem
formulation.

Yij + Yi′j - 1eXii′j +Xi′ij ∀ i,i′ ∈ I, j ∈ Jii′ : (i* i′) (2)

3.1.3. Task Sequencing Constraints. Task-sequencing con-
straints (3) are needed to prevent from task overlapping when
two different tasks i,i′ ∈ I are processed in the same unit j∈Ji

∩ Ji′. The allocation time of unit j to any one of the tasks i ∈
Ij also includes the sequence-dependent setup time (τii′j + sui′j).

Ci + ∑
j∈ Jii′

(τii′j + sui′j)Yi′je Si′ +H(1- ∑
j∈ Jii′

Xii′j)

∀ i,i′ ∈ I : (i* i′) and (Jii′ *L) (3)

Equation (3) is just defined for any pair of tasks potentially
sharing an equipment unit. It provides a lower bound on the
value of the starting time Si′. In contrast to the definition of the
sequencing variables, the domain of eq (3) does not include
the equipment subscript j. As a result, a much lower number of
sequencing constraints is required with regard to the general
precedence approach of Méndez et al.24

3.1.4. Task Starting/Completion Times. The starting time
of task i (Si) can be derived from its completion time Ci by
subtracting its processing time ptij on the allotted unit j.

Si)Ci -∑
j∈ Ji

ptijYij ∀ i ∈ I (4)

Moreover, the constraints (5) and (6) introduce additional
bounds on the start and the completion time of task i ∈ I,
respectively. On one hand, task i must start not before either
its release time rti or the ready time of the allotted unit j (ruj).
The higher of both is used as a lower bound for Si. On the other
hand, task i must be completed before its promised due date.

Sig∑
j∈ Ji

Max[rti,ruj + suij]Yij ∀ i ∈ I (5)

Cie ddi ∀ i ∈ I (6)

3.1.5. Task Earliness. Alternatively, the due date constraint
for a processing task i can be written as follows:

Eig ddi -Ci ∀ i ∈ I (7)

where the non-negative variable Ei stands for the earliness of
task i.

3.1.6. Makespan. The schedule makespan (MK) denoting the
time required to complete all the processing tasks is given by

Figure 1. The necessary earliness of a task to meet other due date constraints.

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 485

the largest task completion time. Constraint (8) will be
considered only if MK is the selected problem goal to be
minimized.

MKgCi ∀ i ∈ I (8)

3.2. Tightening Constraints Involving Assignment
Variables. When the problem goal is to minimize the makespan,
the values of the assignment variables partially (non-integer Yij)
or completely (Yij) 1) allocating units to batches constitute
valuable information to derive much tighter lower bounds on
the optimal MK while executing the MILP solution algorithm.
Because the processing time is usually much longer than the
setup time for any task and the best schedule features a very
low equipment idle time in real-life problems, the overall
workload of an equipment unit then can be well-approximated
by just considering the run times of the allocated tasks. In this
way, the additional constraints (9) providing a tight lower bound
of the makespan for single-stage batch scheduling problems,
can be derived in a straightforward manner.

ruj
* +∑

i∈ Ij

(suij + ptij)YijeMK ∀ j ∈ J (9)

where ruj
*) Max [ruj, Min i∈Ij[rti - suij]] is a better estimation

of the jth-unit ready time, because it also considers the release
times of the candidate tasks for unit j. If changeover times are
not sequence-dependent and the minimum makespan is the
problem goal, the highest LHS of constraints (9) will provide a
close estimation of the optimal MK value. The effectiveness of
the valid cuts (9) can be measured through the increase of the
lower bound provided by the corresponding LP at every node
of the implicit enumeration tree. They are said to be valid cuts
because they never exclude integer solutions from the problem
feasible space.

If setup times are sequence-dependent and not negligible, they
can be easily taken into account by replacing eq (9) by the set
of constraints given in eq (10). The summation in eq (10) now
includes the lowest possible sequence-dependent setup time σij

Min

for every task i ∈ Ij in unit j, as defined by eq (11). Since the
first task in the queue of unit j just features a setup time suij,
then the value of the LHS of eq (10) should be reduced by the
highest possible σij

Min, in order to develop a valid cut that ensures
the optimality of the solution.

ruj
* -Max

i∈ Ij

[σij
Min]+∑

i∈ Ij

(σij
Min + suij + ptij)YijeMK ∀ j ∈ J

(10)

where

σij
Min) Min

i′∈ Ij : i′*i
[τi′ij] ∀ i ∈ I, j ∈ Ji (11)

Cuts (9)-(10) just involve assignment variables Yij. When
the production schedule featuring the minimum makespan is
sought, then the mathematical model to be solved will include
the set of equations {(1)-(6), (8), and (9) or (10)}. In the next
section, additional cuts based on information provided by
assignment and sequencing variables are presented.

3.3. Valid Cuts Involving Sequencing Variables. New
linear tightening constraints, in terms of the model variables
Xii′j, providing good estimates for the earliest start time of task
i (ESTi), the latest completion time (LCTi), and the makespan
(MK), are going to be developed.

3.3.1. Lower Bound for the Task Starting Time Si. Let
us define the variable ESTi as the earliest starting time of task
i, i.e., a lower bound on the value of Si. A tight estimation of

ESTi requires knowledge of which tasks precede task i in the
waiting queue of the alloted unit, i.e., the information provided
by the sequencing variables Xi′ij. Equation (12) provides the ESTi

value, in terms of the unit-specific sequencing variables.

ESTi) ∑
i′∈ I : i′*i

∑
j∈ Jii′

(σi′j
Min + sui′j + pti′j)Xi′ij -Max

i′∈ Ij

[σi′j
Min]e Si

∀ i ∈ I (12)

Since the first task processed in unit j features only a setup
time sui′j, the RHS of eq (12) should be reduced by the highest
possible σi′j

Min. As the solution algorithm progresses and process-
ing tasks become gradually allocated to units by setting the
related assignment variables to one, the sequencing variables
Xi′ij, either branched or not, will also increase to 1 by the effect
of the constraints (2), thus generating better lower bounds on
the starting time Si. The constraint (12) on the value of Si can
be used when either the makespan or the overall earliness is
minimized.

3.3.2. Lower Bound for the Makespan. A tightening lower
bound for MK can be generated by adding to the value of Ci

the total setup and processing times of the tasks executed after
task i in the same unit. This improvement on the lower bound
of MK can be achieved using the information provided by the
sequencing variables Xii′j.

Ci + ∑
i′∈ I : i′*i

∑
j∈ Jii′

(σi′j
Min + sui′j + pti′j)Xii′jeMK ∀ i ∈ I

(13)

Cut (13) can replace constraint (8) in the mathematical
formulation when the makespan is the problem objective to be
minimized. Compared to cut (13), the impact of eq (9) or eq
(10) on the computational cost is much stronger.

3.3.3. Close Upper Bound for the Task Completion
Time Ci. From constraint (6), the due date of task i (ddi) can
be regarded as an upper bound of the completion time Ci, i.e.,
the latest completion time of task i (LCTi). Sometimes, however,
the completion of task i must occur before ddi, so that other
tasks i′ * i following task i on the same processing queue can
be finished on time (Ci′ e ddi′). In such cases, task i will feature
a necessary earliness (Ei > 0) and a tighter estimation of LCTi,
lower than ddi, can be established through the information
provided by the sequencing variables related to task i.

3.3.3.1. Illustrating the Necessary Earliness of a Task.
Figure 1a shows a simple example where a pair of tasks (i, i′)
has been allocated to the same unit j and ddi > ddi′. In addition,
the allocation time of unit j to task i: PTij) (τi′ij + suij + ptij)
is larger than the difference (ddi - ddi′). In Figure 1b, task i is
processed before task i′ in unit j ∈ Jii′ and, therefore, Xii′j) 1.
To timely complete task i′, the latest completion time of task i
(LCTi) must be earlier than ddi. Then, LCTi e ddi - Ei and a
first estimation of the threshold value of Ei is given by Ei)
PTi′j + (ddi - ddi′). A larger value of Ei would result if task i′
does not directly succeed task i. The opposite case is considered
in Figure 1c, where task i′ is processed before task i and Xi′ij)
1. Because PTij > (ddi - ddi′), then LCTi′ will be less than ddi′:
LCTi′ e ddi′ - Ei′, with Ei′) PTij - (ddi - ddi′). If task i is
shorter and PTij e (ddi - ddi′), then LCTi′) ddi′ and the value
of Ei′ will be driven to zero.

3.3.3.2. Multiple Contributions to the Necessary
Earliness of a Task. Let us now assume that task i preceeds
either task i′ (case a) or task i′′ (case b) in the waiting queue of
unit j ∈ Jii′i′′ . In addition, ddi′ < ddi < ddi′′ and PTi′′ j > (ddi′′ -
ddi). From Figure 2a, it follows that a first estimate of the
threshold earliness of task i to meet the due date ddi′ is Ei)

486 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

PTi′j + (ddi - ddi′) whenever Xii′j) 1. In turn, Figure 2b
indicates that the threshold value of Ei to meet the due date
ddi′′ whenever Xii′′ j) 1 is Ei) PTi′′ j - (ddi′′ - ddi).

In Figure 2c, task i precedes both tasks i′ and i′′ in the
processing queue of unit j ∈ Jii′i′′ (Xii′j) Xii′′ j) 1). Therefore,
such tasks (i′ and i′′) will require task i in unit j to be completed
earlier than ddi to meet their due date constraints. The latest
completion time of task i then will be given by LCTi e ddi -
Ei, with Ei) PTi′j + [PTi′′ j - (ddi′′ - ddi)]. If the controlling
task is task i′, it is shown that Ei is still greater than Ei (see the
Appendix). Such a higher threshold value of Ei, which is caused
by a pair of succeeding operations instead of a single one, can
be regarded as the result of adding properly defined contributions
of both tasks i′ and i′′ to the earliness of task i.

3.3.3.3. The Earliness Contribution Adding Rule. To
derive a general expression for the earliness contribution adding
rule, let us introduce the parameter �ii′j as the threshold
contribution of a succeeding task i′ to the earliness of task i,
i.e., a lower bound on the contribution of task i′ to the value of
Ei. Based on the due dates (ddi, ddi′) and a conservative
estimation for the allocation time of unit j to task i′ (PTi′j), three
different types of tasks i′ * i have been considered to define
the value of the earliness contribution �ii′j:

Type a: IAi) { ∀ i′ ∈ I(i′ * i) | ddi′e ddi and Jii′ *L}
Type b: IBi) { ∀ i′ ∈ I(i′ * i) | ddi′ > ddi and PTi′j > (ddi′ - ddi)

{ for some j ∈ Jii′}
Type c: ICi) { ∀ i′ ∈ I(i′ * i) | i′ ∉ (IAi ∪ IBi)}
where PTi′j) σi′j

Min + sui′j + pti′j. The set IAi ⊆ I represents all
the tasks i′ * i with ddi′ e ddi that may share some unit j ∈ Jii′
with task i. In turn, the set IBi comprises every task i′ * i with
ddi′> ddi and PTi′j> (ddi′ - ddi) for some unit j ∈ Jii′. Therefore,
only the equipment units j ∈ JBii′) {j ∈ Jii′ | PTi′j> (ddi′ -
ddi)} will be considered to calculate the contribution of task i′
∈ IBi to the necessary earliness of task i (Ei). The remaining
tasks are contained in ICi. The threshold contribution �ii′j of a
succeeding task i′ of any type to the value of Ei, whenever Xii′j
) 1, is given by eq (14):

�ii′j) { PTi′j if i′ ∈ IAi, j ∈ Jii′ (Type a)
PTi′j - (ddi′ - ddi) if i′ ∈ IBi, j ∈ JBii′ (Type b)
0 if i′ ∈ ICi, j ∈ Jii′ (Type c)

(14)

Moreover, the three types of tasks with the corresponding
earliness contribution �ii′j are illustrated in Figure 3. To develop
the expression of �ii′j, it has been assumed that all due date
constraints must be satisfied (Ci′ e ddi′, i′ ∈ I). Notice that the
value of �ii′j can be computed before the problem formulation
is solved.

The parameter �ii′j represents the threshold contribution of
task i′ to the earliness of task i, regardless of the number of
tasks succeeding task i in the processing queue of unit j.
Therefore, the earliness contribution adding rule providing a
conservative estimation of Ei will be given by:

Ei) ∑
k∈ IAi

∑
j∈ Jik

�ikjXikj+∑
l ∈ IBi

∑
j∈ JBil

�il jXil j ∀ i ∈ I (15)

In Figure 2c, task i′ belongs to the set IAi, while i′′ ∈ IBi,
since j ∈ JBii′′ . Moreover, the due date constraint for task i′′
sets the value of Ei. From eq (15), a good, conservative estimate
of the necessary earliness of task i (Ei) to meet the due dates of
the succeeding tasks is given by:

Ei) �ii′jXii′j + �ii′′ jXi′′ j) PTi′j + PTi′j - (ddi′′ - ddi) (16)

Figure 2. The necessary earliness of a task to meet due dates of two succeeding operations.

Figure 3. Threshold contribution of task i′ to the necessary earliness of
task i.

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 487

Because Ei) PTi′j + [PTi′′ j - (ddi′′ - ddi)] in Figure 2c,
then Ei) Ei. Equation (15) still provides a valid lower bound
of Ei if the controlling task is i′. In such a case, it can be found
that Ei g PTi′′ j + PTi′j + (ddi - ddi′) and Ei is still a valid
bound (see Appendix). From the threshold earliness of task i
(Ei), a better estimation of its latest completion time (LCTi) can
be derived:

Cie LCTi) ddi -Ei) ddi - ∑
k∈ IAi

∑
j∈ Jik

�ikjXikj+∑
l ∈ IBi

∑
j∈ JBil

�il jXilj

∀ i ∈ I (17)

Equation (17) will substitute eq (6) to get a tighter problem
formulation. In the Appendix, it has also been proven that the
earliness of task i always satisfies the following condition:

Eig ∑
k∈ IAi

∑
j∈ Jik

PTkjXikj+∑
l ∈ IBi

∑
j∈ JBil

PTl jXil j -

Max
l ∈ IBi

[(ddl - ddi) ∑
j∈ JBil

Xil j] ∀ i ∈ I (18)

so as to meet the due dates of all succeeding tasks, whatever
the type and number of succeeding operations. From eqs (14)
and (15), a general expression for the threshold earliness of task
i (Ei) can be written as follows:

Ei) ∑
k∈ IAi

∑
j∈ Jik

PTkjXikj+∑
l ∈ IBi

∑
j∈ JBil

PTl jXil j -

∑
l ∈ IBi

(ddl - ddi)(∑
j∈ JBil

Xil j) (19)

However,

∑
l ∈ IBi

(ddl - ddi)(∑
j∈ JBil

Xil j)gMax
l ∈ IBi

[(ddl - ddi)(∑
j∈ JBil

Xil j)] (20)

Therefore, Ei g Ei and consequently Ei as given by eqs (14)
and (15) always represents a threshold value for the earliness
of task i. When the overall earliness is to be minimized, the
mathematical model will at least include the set of equations
{(1)-(7), (14)-(15), and (17)}. To reduce the earliness of task
i and, consequently, the value of Ei, it is expected that those
binary variables Xii′j related to tasks i′ with low �ii′j would be
favored to be 1 at the optimal schedule. During the execution
of the branch-and-cut search, eqs (15) and (17) will generate
an increasing lower bound for Ei as the solution algorithm
progresses and the nonzero sequencing variables Xii′j gradually
rise to 1.

3.3.4. Further Tight Estimations for the Latest
Completion Time of Task i. Let us assume that tasks i′, i′′ ∈
IBi are performed in unit j ∈ Jii′i′′ also assigned to task i. Figure
4a shows the threshold contributions of tasks (i′, i′′) to the
earliness of task i. As shown by eqs (14) and (15), both
contributions �ii′j) PTi′j - (ddi′ - ddi) and �ii′′ j) PTi′′ j - (ddi′′
- ddi) result from adopting the due date ddi as the reference
time. Therefore, the completion time of task i (Ci) should never
exceed the upper bound: Ci e ddi - (�ii′j + �ii′′ j), as depicted
in Figure 4b. If task i′ would belong to IAi, just the value of
�ii′j will change to �ii′j) PTi′j, but the same expression can be
applied to estimate the LCTi value.

However, tighter estimations of LCTi can be obtained by
adopting a reference time t different from ddi. In Figure 5, the due
date ddi′ has been chosen as the new reference time (t) ddi′>
ddi). Obviously, new threshold contributions to Ei, which are now
referred to time t and denoted by �ti′j and �ti′′ j, are to be defined.
As shown in Figure 5a, their values will be given by �ti′j) PTi′j
- (ddi′ - t) and �ti′′ j) PTi′′ j - (ddi′′ - t). Since t) ddi′, then �ti′j

) PTi′j. By choosing a reference time greater than ddi, some
additional tasks such as i# ∈ IBi′ may have to start before t) ddi′
to be completed on time; i.e., at time ddi# (see Figure 5a). Even a
task i# belonging to the subset ICi may contribute to the earliness
of task i by anticipating the starting time of some other tasks (i′,
i′′) ∈ IBi (see Figure 5b). By choosing t) ddi′, the earliness
contribution from task i#, which is now given by �ti#j) PTi#j -
(ddi# - t), should also be considered. Because Ci e ddi < t, it
follows from Figure 5b that:

Ci + (�ti′j + �ti′′j + �ti#j)e t

For a reference time t * ddi, a general expression for the
threshold contribution of task k * i to the value of Ei is given
by

�tkj) { PTkj (if ddke t)
PTkj - (ddk - t) (if ddk > t and PTkj > ddk - t)
0 (otherwise)

(21)

Equation (21) can be derived from eq (14) by changing the due
date ddi by a reference time t * ddi. Let us define the time sets
DDi, DDi

+, and DDi
-:

DDi) {ddk | k ∈ I, ddk * ddi, Jik *L}

DDi
+) {t ∈ DDi | t > ddi}

DDi
-) {t ∈ DDi | t < ddi} i ∈ I

The threshold estimation of LCTi with regard to time t > ddi is
given by the RHS of eq (22):

Figure 4. Threshold contributions to the value of Ei, relative to the reference
time t) ddi.

Figure 5. Threshold contributions to the value of Ei with regard to time
t > ddi.

488 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

Cie t- ∑
k∈ I : k*i

∑
j∈ Jik

�tkjXikj ∀ i ∈ I, t ∈ DDi
+ (22)

where the summation is extended to any task k different from
task i (see Figure 5b). By replacing t by ddi, eq (22) reduces to
eq (17). From Figures 4a and 5a, it follows that the threshold
contribution of every task l ∈ IBi becomes higher when a
reference time t later than ddi is selected. Often, a tighter
estimation of LCTi can be obtained by adopting t > ddi, as
shown in Figures 4b and 5b. This is so because the indirect
contribution of tasks k ∈ ICi to the earliness of task i can also
be considered. Indeed, any task i′ queued after task i in the same
unit can be the controlling task of i and, consequently, any due
date ddi′ ∈ DDi

+ can be chosen as the new reference time t.
From the tasks featuring �tkj > 0, only those performed after
task i in the same unit will really contribute to the value of Ei.
A valid upper bound of Ci is still obtained by adopting t) ddi′,
even if Xii′j) 0.

So far, we show the advantage of using t > ddi. However,
the selection of a reference time t < ddi may also provide a
tighter estimation of LCTi (see Figure 6a). In Figure 6b, task i′
featuring ddi′ < ddi is performed after task i in the same unit j,
and the due date ddi′ has been adopted as the new reference
time instead of ddi. According to eq (14), the threshold
contribution of task i′ to the value of Ei is �ii′j) PTi′j, although
the earliness of task i is really equal to PTi′j + (ddi - ddi′).
Interestingly, the threshold contribution of task i′ to Ei for this
reference time t) ddi′ is still �ti′j) PTi′j by eq (21). When a
reference time t < ddi is used, Figure 6b shows that the
following condition holds:

Ci + �ti′je t

which can be rewritten as follows:

Ci + �ti′je ddi - (ddi - t)

Because t < ddi, the term (ddi - t) is positive and a tighter
upper bound of Ci can be achieved. However, the inequality Ci

+ �ti′j e ddi - (ddi - t) holds only if some task i′ with ddi′)
t ∈ DDi

- really succeeds task i in the queue of unit j ∈ Jii′ (see
Figure 6b). To guarantee this condition, a non-negative continu-
ous variable wit is defined as follows:

∑
j∈ Jii′

Xii′jewit ∀ i ∈ I, t ∈ DDi
-, i′ ∈ I(t) : Jii′ *L (23)

where

I(t)) {k ∈ I | ddk) t}

According to eq (23), wit will be equal to 1 only if some task
i′ featuring a due date ddi′) t ∈ DDi

- is processed after task i
in unit j ∈ Jii′. Therefore, a valid upper bound of Ci will be:

Cie ddi - (ddi - t)wit - ∑
k∈ I : k*i

∑
j∈ Jik

�tkjXikj ∀ i ∈ I, t ∈ DDi
-

(24)

If there are several tasks i′ ∈ I(t) with a common due date
t ∈ DDi

-, any of them with Xii′j) 1 can make the LHS
summation of eq (23) equal to 1. If so, the second term on the
RHS of eq (24) becomes nonzero and a tighter estimation of
LCTi can be generated. The better estimation of LCTi provided
by the set of equations (21)-(24) permits one to greatly
accelerate the node pruning process. When the overall earliness
is to be minimized, the mathematical model will include the
set of equations {(1)-(7), (17), and (22)-(24). Equations
(14)-(15) and (17) represent a rather small, very effective subset
of tightening constraints. In some cases, it may be more
convenient to only include such valid cuts in the problem
formulation.

3.4. Objective Functions. The improved model with tighten-
ing constraints can be efficiently used to undertake problems
with the following alternative problem goals.

3.4.1. Overall Weighted Earliness. When the overall earli-
ness is to be minimized, eq (25) must be used. In this case,
enough production capacity is assumed to be available to
complete all batches before their due dates, i.e., constraint (7)
is satisfied. The positive weight coefficient Ri represents the
unit inventory cost for batch i.

Minimize∑
i∈ I

RiEi (25)

However, the minimum overall earliness is equivalent to
maximizing the summation of batch completion times. In this
case, the problem goal is given by

Minimize∑
i∈ I

Ri(ddi -Ci) ≡ Maximize∑
i∈ I

RiCi (26)

3.4.2. Makespan. If the minimization of the makespan is
pursued, the mathematical model should include constraint (8)
and the problem goal will be given by eq (27).

Minimize MK (27)

4. Computational Results

In this section, several examples are presented to illustrate
the computational advantage of the proposed formulation with
regard to other batch scheduling methodologies. Different sets
of tightening constraints were included, depending on the
selected problem goal: minimum makespan or least total
earliness. By doing that, the proposed approach clearly outper-
forms other continuous-time MILP methodologies when they
are applied to batch scheduling problems with sequence-
dependent changeovers. In particular, a comparison with the
sequencing model of Méndez et al.24 shows that our unit-
dependent general precedence framework requires a much lower
CPU time as the problem size increases, although a larger
number of binary variables is needed. Such a higher efficiency
of the MILP solution algorithm comes from the better threshold
value of the objective function and the tighter bounds on key
variables provided by the valid cuts {(9) or (10), (17),
(22)-(24)} added to the problem formulation.

The computational results reported in this section have been
obtained on a Pentium IV 2.8 GHz machine, with ILOG OPL

Figure 6. Threshold contributions to the value of Ei with regard to time
t < ddi.

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 489

Studio 3.7 software, using the embedded CPLEX v. 9.0 mixed-
integer optimizer. A CPU time limit of 1 h was defined. Unless
otherwise indicated, a relative gap tolerance of 1.0 × 10-6 was
adopted, and the big-M parameter was made equal to the horizon
length: H) Maxi∈I{ddi}.

4.1. Example 1. Example 1 involves a single-stage plastic
compounding plant with four extruders running in parallel. This
industrial problem, introduced by Pinto and Grossmann18 and
later studied by Ierapetritou, Hené, and Floudas,27 aims to
optimally schedule up to 29 batch orders. Méndez and Cerdá28

tackled an expanded instance of Example 1 with 40 batches
but assuming a dynamic scheduling scenario, with a general
precedence-based MILP rescheduling approach. Recently, Castro
and Grossmann25 efficiently solved some of the larger instances
of Example 1.

Order due dates and unit-dependent processing and setup
times for the 40-batch instance of Example 1 can be found in
Table 1. Two cases, called Example 1A and Example 1B, were
studied. In Example 1A, the setup time of any task i is not
dependent on the task i′ previously processed. In contrast,
sequence-dependent changeover times are considered in Ex-
ample 1B. Let us assume that five families of products are
manufactured in the plant and there is a different changeover
time for each ordered pair of families. Then, the set of batches
for Example 1B can be gathered into five groups F1-F5 (see
Table 2), with a sequence-dependent setup time τf, f ′ between a

generic family f and its succeeding family f ′, given in Table 3.
Moreover, changeover times between consecutive families are
not dependent on the assigned equipment item.

Several instances of Examples 1A and 1B involving an
increasing number of batches, ranging from 12 to 40, have been
solved in order to show the computational limit of the proposed
methodology. Results obtained by applying both the approach
of Méndez et al.24 and the proposed formulation with valid cuts
are compared in Tables 4-8. In both cases, the same computing
platform and the same ILOG-software and CPLEX-solver
versions were used. The makespan and the overall earliness were
alternatively selected as the problem objectives.

4.1.1. Makespan. Examples 1A and 1B were solved by first
assuming that the makespan is the problem goal to be
minimized. To illustrate the effect of the tightening constraints
involving assignment variables, only constraints (9) or (10) were

Table 1. Data for Example 1

Processing Time (days) Processing Time (days)

order due date (days) U1 U2 U3 U4 order due date (days) U1 U2 U3 U4

1 15 1.538 1.194 21 30 7.317 3.614
2 30 1.500 0.789 22 20 0.864
3 22 1.607 0.818 23 12 3.624
4 25 1.564 2.143 24 30 2.667 4.000
5 20 0.736 1.017 25 17 5.952 3.448 4.902
6 30 5.263 3.200 26 20 3.824 1.757
7 21 4.865 3.025 3.214 27 11 6.410 3.937
8 26 1.500 1.440 28 30 5.500 3.235
9 30 1.869 2.459 29 25 4.286
10 29 1.282 30 26 2.154
11 30 3.750 3.000 31 22 1.569 1.363
12 21 6.796 7.000 5.600 32 18 2.698 3.654
13 30 11.250 6.716 33 15 2.147
14 25 2.632 1.527 34 10 3.265 2.658
15 24 5.000 2.985 35 10 3.480 2.550
16 30 1.250 0.783 36 14 2.258
17 30 4.474 3.036 37 24 2.145 2.194
18 30 1.429 38 16 2.365 1.850
19 13 3.130 2.687 39 22 2.030
20 19 2.424 1.074 1.600 40 23 1.890

unit setup time 0.180 0.175 0.237 unit setup time 0.180 0.175 0.237

Table 2. Product Families for Example 1B

family batches

F1 O1, O2, O3, O5, O10, O16, O20, O22

F2 O4, O8, O9, O14, O18, O26, O31

F3 O7, O23, O24, O30, O33, O34, O36, O37, O38, O40

F4 O6, O11, O15, O17, O19, O32, O35

F5 O12, O13, O21, O25, O27, O28, O29, O39

Table 3. Sequence-Dependent Setup Times for Example 1B

τf,f′

F1 F2 F3 F4 F5

F1 0.104 0.127 0.178 0.192 0.217
F2 0.122 0.115 0.266 0.229 0.291
F3 0.191 0.214 0.175 0.304 0.424
F4 0.350 0.205 0.328 0.184 0.400
F5 0.357 0.423 0.348 0.284 0.205

Figure 7. Optimal schedules for two instances of Example 1 found with
the proposed model.

490 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

incorporated in the general precedence-based sequencing model
of Méndez et al.24 Such constraints can be used for either non-
sequence-dependent or sequence-dependent changeover times.
Moreover, due dates have been ignored to evaluate the ef-
fectiveness of the proposed constraints to find the short-term
schedule with the shortest makespan.

For the sake of comparison, the general precedence models
without (i.e., Méndez et al.24) and with the valid cuts (9)–(10)
have been alternatively applied and the results are shown in
Tables 4 and 5, respectively. It can be observed that the proposed
constraints make the computational performance of the approach
always much faster. For Example 1A, instances with up to 40
batches are scheduled in less than a second. For sequence-
dependent changeover problems with up to 29 batches, optimal
or near-optimal solutions can be found in a few CPU seconds,
since the relative gap decreases significantly faster because of
the tightening constraints.

4.1.2. Overall Earliness. To evaluate the impact of the
tightening constraints {(17), (22)-(24)} providing a threshold
value for the earliness of task i and a closer upper bound for
Ci, several instances of Examples 1A and 1B were solved again;
however, this time the least overall earliness has been the
selected problem objective. The results found by alternatively
using the general precedence model of Méndez et al.,24 called
M1, and the proposed unit-dependent general precedence
formulation with either the constraint (17) or the full set of
tightening constraints {(17), (22)-(24)}, called M2 and M3,
respectively, have all been included in Tables 6-8.

Direct comparison between models M1 and M2 for n) 20
batches to measure the effect of cut (17) shows an improvement
in the computational time as large as 47:1 for the sequence-
independent problems (Example 1A) and 24:1 for the sequence-
dependent problems (Example 1B). When the number of batches
increases, despite the fact that it comprises a higher number of
constraints, the proposed model M3 presents the best compu-
tational performance and it can efficiently handle problems of
up to 35 batches for the sequence-independent case. In contrast,
problems with n g 22 exceed the computational time limit of
1 h if the approach of Méndez et al.24 is applied. Comparison

of the formulations M2 and M3 shows that the best CPU times
are obtained with model M3 for n > 20, because the additional
constraints (22)-(24) help in providing better lower bounds of
the objective function during the branch-and-cut search. When
smaller values of n are considered, the additional constraints
produce a small tightening effect, and the CPU improvement
almost vanishes because of the larger model size. Gantt charts
of the optimal schedules found with formulation M3 for both
Example 1A with n) 29 batches and Example 1B with n)
25 batches are shown in Figure 7.

The tightening effect of constraints {(17), (22)-(24)} really
is dependent on the existence of nonzero Xii′j variables. In fact,
the lower bound provided by the LP relaxation at the root node
of the enumeration tree is usually rather poor. However, the
allocation of units to tasks gradually forces some sequencing
variables by eq (2) to be 1. Therefore, the proposed constraints
for the earliness minimization problem do not have a notorious
effect until assignments of batches to units are at least partially
made. As a result, the increase in the lower bound of the problem
value during the search is slower than that observed for the
minimum-makespan problem.

In order to further analyze the performance of the proposed
formulation with regard to other previous approaches, a
comparison with both the discrete-time approach (F1) and the
new multiple time-grid formulation (F3) of Castro and Gross-
mann25 is also made. Such MILP models assume non-sequence-
dependent changeovers. The best solutions reported by Castro
and Grossmann25 for some instances of Example 1A using
formulations F1 and F3 have been included in Table 9. Similar
to this work, those results were obtained on a Pentium IV 2.8
GHz machine running the commercial solver GAMS/CPLEX
9.0. To keep the problem model on reasonable sizes, the number
of time points used by formulation F1 was reduced to 3001,
601, and 301 for problem instances with 12, 29, and 40 batches,
respectively. Therefore, problem data were rounded and the
optimality of the solution can no longer be guaranteed. The best
solutions found by the discrete time approach are different from
those provided by continuous-time formulations, because of this
rounding procedure. Moreover, the number of time points is

Table 4. Minimum-Makespan Solutions for Example 1 using the Model of Méndez et al.24

Example 1A:
Sequence-Independent Setup Times

Example 1B:
Sequence-Dependent Setup Times

n
binary

variables
continuous
variables constraints

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

12 82 25 214 8.428 19.03 94365 8.645 8.36 39350
16 140 33 382 12.353 2.43 3600a 8893218 12.854 1188.50 3421982
18 161 37 444 13.985 2872.81 7166701 14.633 27.07 3600a 8708577
20 201 41 558 15.268 22.62 3600a 6282059 15.998 21.95 3600a 6570231

a Resource limit exceeded.

Table 5. Minimum-Makespan Solutions for Example 1 by Incorporating the Valid Cuts 9-10

Example 1A:
Sequence-Independent Setup Times

Example 1B:
Sequence-Dependent Setup Times

n
binary

variables
continuous
variables constraints

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

12 82 25 218 8.428 0.05 12 8.645 0.05 15
16 140 33 386 12.353 0.03 1 12.854 0.09 44
18 161 37 448 13.985 0.11 27 14.611 40.36 116413
20 201 41 562 15.268 0.14 21 15.998 183.56 417067
22 228 45 622 15.794 0.20 49 16.396 167.09 359804
25 286 51 792 18.218 0.42 110 19.064a 79.25 109259
29 382 59 1064 23.302 0.61 82 24.723a 5.92 5385
35 532 71 1430 26.683 0.97 90
40 625 81 1656 28.250 0.91 34

a Relative gap tolerance) 0.01.

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 491

also a parameter in the multiple time grid formulation of Castro
and Grossmann.25 As a result, it requires an iterative process
that is stopped when no improvement on the objective function
is obtained by increasing the number of time points in just one
unit. As reported by Castro and Grossmann,25 for n) 29, the

same optimal schedule featuring an overall earliness of 59.896
days was found in 209 and 258 s by adopting 11 and 12 time
points, respectively. The same optimum was discovered by our
approach in 161.88 s (see Figure 7a and Table 8). In addition
to requiring at least (209 + 258)) 467 s, the multiple time

Table 6. Minimum-Earliness Solutions for Example 1 using the Model of Méndez et al.24

Example 1A:
Sequence-Independent Setup Times

Example 1B:
Sequence-Dependent Setup Times

n
binary

variables
continuous
variables constraints

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

12 82 24 214 1.026 0.03 22 1.376 0.01 12
16 140 32 382 9.204 1.30 3668 11.647 2.70 8301
18 161 36 444 16.496 38.48 84843 18.773 55.77 123666
20 201 40 558 17.073 77.78 148101 19.131 81.38 159388
22 228 44 618 22.815 1.68 3600a 4385294 27.754 8.33 3600a 3616973
25 286 50 788 29.430 49.63 3600a 2720801 40.541 57.68 3600a 3435213

a Resource limit exceeded.

Table 7. Minimum Earliness for Example 1 using the Proposed Model with eq (17)

Example 1A:
Sequence-Independent Setup Times

Example 1B:
Sequence-Dependent Setup Times

n
binary

variables
continuous
variables constraints

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

12 191 24 245 1.026 0.02 1 1.376 0.03 1
16 351 32 437 9.204 0.30 78 11.647 0.56 404
18 408 36 508 16.496 1.19 785 18.773 1.20 853
20 519 40 639 17.073 1.63 807 19.131 3.27 2178
22 574 44 721 22.815 9.11 6598 27.754 90.75 75569
25 738 50 916 29.430 91.14 57741 37.216 15.25 3600a 2006319
29 1001 58 1238 59.896 21.11 3600a,b 1399091

a Resource limit exceeded. b Best possible solution) 47.254.

Table 8. Minimum Earliness for Example 1 using the Proposed Model with eqs (17) and (22)-(24)

Example 1A:
Sequence-Independent Setup Times

Example 1B:
Sequence-Dependent Setup Times

n
binary

variables
continuous
variables constraints

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

objective
function

relative
gap (%)

CPU
time (s)

number of
nodes

12 191 67 365 1.026 0.03 1 1.376 0.03 1
16 351 104 636 9.204 0.53 59 11.647 0.72 173
18 408 117 727 16.496 1.23 216 18.773 1.39 396
20 519 156 946 17.073 2.30 358 19.131 4.78 1101
22 574 169 1058 22.815 4.02 865 27.754 15.34 5059
25 738 216 1355 29.430 17.53 3023 37.216 1468.53 291899
29 1001 270 1819 59.896 161.88 26139 75.067 7.99 3600a,c 634587
35 1353 363 2561 86.595 436.41 41317
40 1566 439 3047 126.249 8.01 3600a,b 209689

a Resource limit exceeded. b Best possible solution) 116.14. c Best possible solution) 69.068.

Table 9. Comparison of the Results for Example 1A with those reported by Castro and Grossmann25

Example 1A: Sequence-Independent Setup Times

n binary variables continuous variables constraints |T| RMIP solution solution found CPU time (s) number of nodes

Discrete Time Formulation

12 53955 12045 12017 3001 1.03 1.03a 7.35 0
29 23190 2405 2434 601 60.183 61.35a 300 892
40 14189 1205 1245 301 125.49 133.9 3600b,c 29878

Multiple Time Grid Formulation

12 120 21 65 5 0 1.026 0.38 470
29 614 45 154 11 37.12 59.896 209 183206
40 1018 57 201 14 85.29 126.927 3600b,d 1257613

Proposed Formulation (M3)

12 191 67 365 0.828 1.026 0.03 1
29 1001 270 1819 15.896 59.896 161.88 26139
40 1566 439 3047 39.968 126.249 3600b,e 209689

a A nonoptimal solution. b Resource limit exceeded. c Best possible solution) 130.47. d Best possible solution) 112.14. e Best possible solution)
116.14.

492 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

grid formulation is unable to rigorously guarantee that the
optimal schedule has been discovered. Since it does not require
an additional model parameter, the proposed model with eqs
(17) and (22)-(24) provides the optimal schedule at once and
no iterative procedure is to be executed. Despite the difference
in model size, the most restrained formulation M3, which
involves the constraints (17) and (22)-(24), generally shows a
better computational performance than previous methods. Larger
improvements relative to scheduling approaches that also handle
sequence-dependent changeovers were obtained.

4.2. Examples 2-6. The next five examples were taken from
Castro and Grossmann25 and involve an increasing number of
batches and equipment units. Some of these examples have first
been introduced by Harjunkoski and Grossmann.29 Problem data
for Examples 2-4 can be found in Appendix A of Harjunkoski
and Grossmann.29 Data for the remaining examples are reported
by Castro and Grossmann.25 All of them assume negligible setup
times. The problem sizes and names used to refer to Examples
2-6 are shown in Table 10. The problem data for Examples
2-6 are all integers and the time horizon is rather short;
therefore, one can expect that discrete formulations will feature
the best computational performance. Nevertheless, the proposed
approach still arises as a very good option and the best one
among the continuous-time scheduling methodologies.

4.2.1. Overall Earliness. If the total earliness is minimized,
then the tightening constraints (17) and (22)-(24) are added to
the mathematical formulation. In Table 11, the computational
results found for Examples 2-6 are compared with those
obtained with the discrete time (F1), multiple time grid (F3),
and sequence-based (F4) formulations, all reported in Castro
and Grossmann.25 The sequence-based formulation considered
in Table 11 is a continuous-time representation introduced by
Jain and Grossmann30 that involves a set of sequencing variables
yii′ (i * i′) to indicate that batch i is performed before batch i′
in some unit m, whenever yii′) 1. Although the underlying
idea is similar to the general precedence concept of Méndez et
al.,24 the model of Jain and Grossmann30 includes an additional
constraint relating allocation and sequencing decisions. Results
for the model of Jain and Grossmann30 used for comparison in
Table 11 are those found by Castro and Grossmann25 on a
Pentium IV 2.8 GHz machine using the commercial solver
GAMS/CPLEX 9.0.

From Table 11, it follows that the proposed MILP tightened
representation arises as the best continuous-time approach for
batch scheduling problems, only dominated by the discrete time
formulation on examples with a rather short time horizon.
Generally, our formulation requires the lowest CPU time among
the continuous-time methodologies, regardless of the model size.
For Example 2, it requires only 44% of the CPU time needed
by the multiple time grid formulation of Castro and Gross-
mann,25 and it is 24 times faster than the sequence-based
approach of Jain and Grossmann.30 When the number of batches
and units increases, such as in Example 3, the best solution is
discovered and proven to be the optimal one in only 25.9 s,
versus more than 3000 s required by the other continuous-time

formulations. If the number of batches further increases to 30,
then the computational performance of our approach becomes
deteriorated and no optimal solution is proven after 3600 s.
Notice that the number of time slots in the multiple time grid
formulation must be selected through an iterative procedure.
However, only the CPU time required by the iteration before
the last one is reported. Neither the overall time required by all
iterations nor the time required by the last iteration |T| + 1 is
included. For example, the multiple time grid formulation
requires 6 time points on each unit to schedule a set of 12
batches within 8.66 s in Example 2. The solution found is said
to be the optimal one because it has the same objective value
that the solution provided by the discrete time formulation.
However, it can be expected that the required CPU time when
the same problem is solved with 7 time points will at least be
of the same order of magnitude and, therefore, the total
computational cost will double the reported value. Moreover,
it may happen that the 7-time-point problem cannot be solved
within the CPU time limit and the optimal value for 7 time
points is indeed unknown. In such a case, the optimality of the
reported solution could not be proven.

Interestingly, the number of binary variables of the proposed
approach is at least one order of magnitude higher than the
number of variables required by the other continuous time
formulations included in Table 11. Moreover, it can be found
that the relaxed RMIP solution of the proposed tightened
formulation is equal to zero for Examples 2-6. However, the
additional cuts (14), (15), (17), and (21)-(24) allow to enhance
the lower bound of the objective function as the number of
branches in the implicit enumeration tree increases and,
therefore, an improved computational performance is achieved.

Some comments on the discrete approach need to be made.
As pointed out by Castro and Grossmann,25 the larger size of
the discrete formulation caused by the increase on the number
of batches from 12-20 in Examples 2-4 to 25-30 in Examples
5 and 6 was, to some extent, compensated by shortening the
scheduling horizon in the later examples, thus requiring fewer
time intervals. In addition to that, the problem data had only
two significant digits and, consequently, an interval length of δ
) 1 can be adopted. As a result, the optimal solutions found
were proven to be optimal because no approximation of the
problem data was needed. However, the discrete time formula-
tion will present a worse behavior when the time horizon
becomes longer or the number of significant digits of the
problem data requires a quite granulated δ. To overcome this
situation and maintain problem tractability, an increase on the
interval length δ is needed to cut the number of intervals;
therefore, the problem data must be rounded and the solution
optimality is no longer guaranteed.

4.2.2. Minimizing the Overall Earliness with Sequence-
Dependent Changeovers. Examples 2 and 3 are revisited to
show that batch scheduling problems with sequence-dependent
changeovers can be solved with similar computational efficiency.
Since the MILP models proposed by Castro and Grossmann25

all assume sequence-independent setup times, no comparison
with those approaches could be included. Six groups or families
of batches have been defined in Table 12, and sequence-
dependent setup times for every ordered pair of groups are listed
in Table 13. Families G1-G5 are used to solve Example 2, and
the remaining group (G6) is added when examining Example
3.

The computational results obtained by applying both the
approach of Méndez et al.24 and the proposed formulation with
valid cuts are compared in Table 14. They all were found using

Table 10. Problem Sizes and References for Examples 2-6

Reference

Example problem size
Harjunkoski and

Grossmann29
Castro and

Grossmann25

2 12 batches, 3 units single-stage 3 data set 2 P2
3 15 batches, 5 units single-stage 4 data set 2 P4
4 20 batches, 5 units single-stage 5 data set 2 P6
5 25 batches, 5 units P7
6 30 batches, 5 units P10

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 493

the same computing platform and the same CPLEX-solver
version that were mentioned at the beginning of this section. It
is simple to conclude that our tightening formulation presents
a much higher computational efficiency. For both examples, the
handling of additional sequence-dependent changeovers some-
what deteriorates the minimum overall earliness, as follows from
the results shown in Tables 11 and 14. However, the CPU time
required by the tightening model just increases from 3.88 s to
6.89 s in Example 2 and from 25.91 s to 38.06 s in Example 3.
Moreover, the number of variables and constraints does not vary
at all. In short, the proposed formulation can effectively manage
sequence-dependent setup times.

5. Conclusions

This work presents an efficient scheduling tool for single-
stage multiproduct facilities with sequence-dependent changeovers.
It is a continuous-time sequencing approach based on a MILP
formulation that mostly relies on the general precedence notion
of Méndez et al.24 Assignment and sequencing decisions related
to a particular task i have been decoupled, and the later ones

permit to select the tasks processed before task i in the same
equipment item. In the proposed model, however, a different
set of sequencing variables for each unit rather than a single
one for the entire facility has been defined, i.e., a unit-specific
general precedence scheme. By explicitly including the equip-
ment index in the domain of the sequencing variables, additional
nontrivial tightening constraints producing better lower bounds
on the optimal values of alternative objective functions (such
as makespan or overall earliness) or key variables (such as task
starting/completion times) have been developed. They are
expressed in terms of allocation and/or sequencing variables.
On one hand, the values of the assignment variables that are
allocating units to batches constitute valuable information to
derive tight lower bounds on the optimal makespan during the
search procedure. Because the processing time is usually much
longer than the setup time for any task, then the overall workload
of every equipment unit can be very well approximated by just
considering the run times of the allocated tasks. On the other
hand, the completion of a particular task i must often occur
well before the specified due date ddi, so that other tasks
succeeding task i in the same processing queue can be finished
on time. In such cases, task i will feature a necessary earliness
(Ei > 0) and a tighter estimation of the latest completion time
(LCTi) lower than ddi can be established using the information
provided by the sequencing variables related to task i.

By incorporating those valid cuts in the problem formulation,
the integrality gap is strongly reduced as the solution algorithm
progresses and the nonzero binary variables at the optimum
gradually increase to 1. In this way, the quality of the lower
bound provided by the corresponding LP at every node of the
enumeration tree is continually improved. They are demonstrated
to be valid cuts that never exclude integer solutions from the
feasible space. Several instances of six large examples involving
up to 40 batches and 5 parallel units have been addressed.
Despite the larger number of sequencing variables, the proposed
approach with the valid cuts clearly outperforms other MILP
continuous-time methodologies when they are applied to batch
scheduling problems with sequence-dependent changeovers.

Table 11. Computational Results for Earliness Minimization (Examples 2-6)

solution approach binary variables continuous variables constraints |T| solution found CPU time (s) number of nodes

Example 2

discrete timea 8914 1144 1156 381 98 1.56 b

multiple time grida b 6 98 8.66 b

sequence-baseda b 98 95.0 b

proposed formulation 432 78 536 98 3.88 1497

Example 3

discrete timea 16950 1856 1871 371 24 0.70 0
multiple time grida 325 26 101 5 24 3600c,d 2685905
sequence-baseda 285 31 2976 24 3226 649506
proposed formulation 1125 89 1012 24 25.91 7057

Example 4

discrete timea 23320 1906 1926 381 84e 1.23 0
multiple time grida 530 31 126 6 84e 3600c,d 1926341
proposed formulation 2000 126 1745 98 1987.7 193933

Example 5

discrete timea 13548 1471 1496 294 51 0.98 0
proposed formulation 3125 315 3048 51 1589.4f 160654

Example 6

discrete timea 16753 1471 1501 294 298 2.09 0
proposed formulation 4500 454 4408 469 3600c,d 50890

a As reported by Castro and Grossmann.25 b Unreported data. c Resource limit exceeded. d Best possible solution) 0. e A nonfeasible solution.
f Solution found using the proposed model with eq (17).

Table 12. Families of Batches for Examples 2 and 3

family batches

G1 O1, O2, O3

G2 O4, O5

G3 O6, O7

G4 O8, O9, O10

G5 O11, O12

G6 O13, O14, O15

Table 13. Sequence-Dependent Setup Times for Every Ordered Pair
of Groups at Examples 2 and 3

Sequence-Dependent Setup Time, τG,G′

G1 G2 G3 G4 G5 G6

G1 2 5 3 2 4 2
G2 3 3 4 6 3 5
G3 5 2 1 2 2 6
G4 3 6 3 2 3 4
G5 2 5 2 4 1 3
G6 4 6 6 5 4 3

494 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

Appendix: A Valid Lower Bound on the Earliness of a
Batch

Proposition: The threshold earliness value Ei given by constraint
(15) is always a lower bound on the earliness of batch i ∈ I.

Proof: To make the proof, four different cases will be
considered. In the first three cases, it will be initially assumed
that task i processed in unit j ∈ Ji,i1,i2 is followed by a pair
of succeeding tasks (i1, i2) on the jth queue (i.e., Ti){i1,
i2}).

Moreover, tasks (i1, i2) will belong to either IAi or IBi.
Therefore, some contribution on the earliness of task i is
expected from such tasks (i1, i2). In contrast, succeeding tasks
i′ ∈ ICi also processed in unit j are ignored. A fourth case is
finally analyzed where some earliness of task i is indirectly
caused by an element of ICi. For the sake of simplicity, the
setup times are assumed to be negligible. The proof for |Ti|)
2 is then generalized for an arbitrary number of succeeding tasks.
In the analysis, two elements of Ti are important: (a) the
controlling task ic, and (b) the last task in on the subsequence
Ti. The controlling task ic is the first task on the subsequence Ti

that is completed just in time: Cc) ddc. Moreover, unit j does
not remain idle at all from Ci to Cc. In turn, Cn) maxi′∈Ti Ci′.

A1: Case I. Every task succeeding task i on the queue of
unit j has a due date not later than ddi (i.e., Ti ⊆ IAi). Let us
assume that the sequence of succeeding tasks is given by Ti

){i1, i2}. Then,

(a) Xi,i1,j)Xi,i2,j) 1

(b) ddi1 < ddi2e ddi

Case I.1: Task i1 controls the necessary earliness of task i to
meet all due-dates constraints.

In Figure A1, tasks (i1, i2) have been arranged by increasing
due dates so as to decrease the necessary earliness Ei. Because
i1 is the controlling task, unit j does not remain idle waiting
for the next batch to be processed until the completion of task
i1. After that, some idle time may be observed. Then,

Eig pti1j + pti2j + (ddi - ddi2)

The threshold value for Ei given by eq (15) is

Ei) pti1j + pti2j

Since ddi - ddi2 g 0, then Ei g Ei.
Case I.2: Task i2 controls the necessary earliness of task i to

meet the due dates of all tasks succeeding task i in unit j (see
Figure A2).

In this case, unit j is not idle until the due date of the
controlling task ddi2. Then, the necessary earliness of task i is,

Ei) pti1j + pti2j + (ddi - ddi2)

and the threshold value of Ei given by eq (15) is Ei) pti1j +
pti2j. Because ddi - ddi2 g 0, then Ei g Ei. Unique expressions
of Ei and Ei for Case I can then be written as follows:

Eig pti1j + pti2j + (ddi - ddi2)

Ei) pti1j + pti2jeEi

Generalization for multiple succeeding tasks: Let us assume
that task i is processed in unit j and Ti ⊆ IAi denotes the
sequence of tasks succeeding task i. Because i′ ∈ Ti, then Xii′j
) 1 and the expressions of Ei and Ei for Case I are given by

Eig∑
i′∈ Ti

pti′jXii′j + (ddi - ddn)Xiinj

Eig∑
i′∈ Ti

pti′jXii′j

where ddn is the due date of the last task in the sequence Ti.
Since ddi - ddn> 0, it follows that Ei g Ei. Because the
processing unit performing task i is unknown before solving
the problem formulation, more general expressions of Ei and
Ei for Case I can be written as follows:

Eig ∑
i′∈ IAi

∑
j∈ Jii′

pti′jXii′j +Min
i′∈ IAi

[(ddi - ddi′)(∑
j∈ Jii′

Xii′j)]

Eig ∑
i′∈ IAi

∑
j∈ Jii′

pti′jXii′j

A2: Case II. Every task succeeding task i on the queue of
unit j has a due date later than ddi and belongs to the set IBi.
Assuming that Ti) {i1, i2} ⊆ IBi, then the following conditions
are satisfied:

(a) Xi,i1,j)Xi,i2,j) 1

(b) ddi < ddi1 < ddi2

(c) pti1j > (ddi1 - ddi)

(d) pti2j > (ddi2 - ddi)

Figure A1. Necessary earliness of task i for Case I.1.

Figure A2. Necessary earliness of task i for Case I.2.

Table 14. Computational Results for Examples 2 and 3 with Sequence-Dependent Changeovers

Example binary variables continuous variables constraints minimum earliness CPU time (s) number of nodes

Formulation of Méndez et al.24

2 102 24 444 111 282.47 808997
3 180 30 1110 33 3600a,b 3358784

Proposed Formulation

2 432 78 536 111 6.89 3194
3 1125 89 1012 33 38.06 10731

a Resource limit exceeded. b Best possible solution) 0.

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 495

In Figure A3, tasks (i1, i2) have been arranged by increasing
due dates so as to decrease the necessary earliness Ei. In this
case, the last task i2 in the sequence Ti will control the necessary
earliness Ei.

Since task i1 is scheduled before task i2 and because pti2j >
(ddi2 - ddi), then i1 must be completed before time ddi, and its
processing time pti1j is completely included on the exact
earliness:

Ei) pti1j + pti2j - (ddi2 - ddi)

On the other hand, according to eq (15),

Ei) pti1j + pti2j - (ddi2 - ddi)- (ddi1 - ddi)

Since ddi1 - ddi > 0, then Ei > Ei.
Generalization for multiple succeeding tasks: Let us now

assume that task i is processed in unit j and Ti ⊆ IBi is the set
of succeeding tasks satisfying the conditions

(a) ddi′ > ddi

(b) pti′j > (ddi′ - ddi) (for any i′ ∈ Ti)

Because the last task in the sequence Ti (task in) is also the
controlling task, then the expressions of Ei and Ei for Case II
will be given by:

Eig∑
i′∈ Ti

pti′jXii′j - (ddn - ddi)Xiinj

Ei) ∑
i′∈ Ti

[pti′j - (ddi′ - ddi)]Xii′j) ∑
i′∈ Ti

pti′jXii′j+

∑
i′∈ Ti

(ddi′ - ddi)Xii′j

Since (ddi′ - ddi) > 0 for any i′ ∈ Ti and the last summation
on the RHS of Ei also includes the term (ddn - ddi), then Ei g
Ei. However, the processing unit performing task i is unknown
before solving the mathematical model. Therefore, the general
expressions of Ei and Ei for Case II are:

Eig ∑
i′∈ IBi

∑
j∈ JBii′

pti′jXii′j -Max
i′∈ IBi

[(ddi′ - ddi)(∑
j∈ JBii′

Xii′j)]

Ei) ∑
i′∈ IBi

∑
j∈ JBii′

pti′jXii′j + ∑
i′∈ IBi

∑
j∈ JBii′

(ddi′ - ddi)Xii′j

A3: Case III. Task i features an intermediate due date,
relative to the succeeding tasks Ti. Therefore, Ti) Ti

A ∪ Ti
B,

where Ti
A ⊆ IAi and Ti

B ⊆ IBi. Let us now assume that Ti)
{i1, i2}, such that i1 ∈ IAi and i2 ∈ IBi. Therefore, the following
conditions are satisfied:

(a) Xi,i1,j)Xi,i2,j) 1

(b) ddi1 < ddi < ddi2

(c) pti2j > (ddi2 - ddi)

Moreover, tasks (i1, i2) have been arranged by increasing due
dates to decrease the earliness Ei.

Case III.1: Task i1 ∈ IAi, featuring a due date not later than
ddi, controls the necessary earliness of task i to meet all the
due-date constraints (see Figure A4).

Similar to Case I.1, the necessary earliness of batch i is

Ei) pti1j + (ddi - ddi1)

while the threshold value Ei given by eq (15) is

Ei) pti1j + pti2j - (ddi2 - ddi)

However,

ddi - ddi1g pti2j - (ddi2 - ddi)

Therefore:,

Eig pti1j + pti2j - (ddi2 - ddi) and Ei > Ei

Case III.2: Task i2 ∈ IBi, featuring a due date later than ddi,
controls the necessary earliness of task i to meet all due-date
constraints (see Figure A5).

Because i2 is the controlling task, it follows that:

Ei) pti1j + pti2j - (ddi2 - ddi)

According to eq (15),

Ei) pti1j + pti2j - (ddi2 - ddi)

Therefore, Ei) Ei.
A common expression of Ei for the two subcases III.1 and

III.2 is

Eig pti1j + pti2j - (ddi2 - ddi)

Generalization for multiple succeeding tasks: Assuming that
task i is processed in unit j and Ti is the sequence of tasks
succeeding task i, such that Ti) Ti

A ∪ Ti
B, where Ti

A ⊆ IAi

and Ti
B ⊆ IBi, it follows that the last element in of Ti will belong

to either Ti
A or Ti

B. Because every task of Ti should be scheduled
between Ci and the completion time of in, the possible
expressions of Ei for Case III are given by:

(a) Eig∑
i′∈ Ti

pti′jXii′j + (ddi - ddn)Xiinj (if in belongs to Ti
A)

Figure A3. Necessary earliness of task i for Case II.

Figure A4. Necessary earliness of task i for Case III.1.

Figure A5. Necessary earliness of task i for Case III.2.

496 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

(b) Eig∑
i′∈ Ti

pti′jXii′j - (ddn - ddi)Xiinj (if in belongs to Ti
B)

where ddn is the due date of the last task in.
If the positive term (ddi - ddn) Xiinj in expression (a) is

omitted, the inequality is still valid. A general expression of Ei

for Case III then can be written as follows:

Eig∑
i′∈ Ti

pti′jXii′j -Max
i′∈ Ti

B
[(ddi′ - ddi)Xii′j]

where j is the unit allocated to task i.
In turn, the threshold value for Ei is given by

Eig∑
i′∈ Ti

pti′jXii′j - ∑
i′∈ Ti

B

(ddi′ - ddi)Xii′j

Since ddi′ - ddi g 0 for any i′ ∈ T i
B and the last summation

on the RHS of Ei also includes the term (ddn
B - ddi), then Ei g

Ei. More general expressions for Ei and Ei are given by:

Eig ∑
i′∈ IAi

∑
j∈ Jii′

pti′jXii′j+∑
i′∈ IBi

∑
j∈ JBii′

pti′jXii′j -

Max
i′∈ IBi

[(ddi′ - ddi)(∑
j∈ JBii′

Xii′j)]

Ei) ∑
i′∈ IAi

∑
j∈ Jii′

pti′jXii′j+∑
i′∈ IBi

∑
j∈ JBii′

pti′jXii′j -

∑
i′∈ IBi

∑
j∈ JBii′

(ddi′ - ddi)Xii′j

A4: Case IV. Let us assume that a particular task i′
succeeding task i in the queue of unit j has a due date later than
ddi and belongs to the set ICi (i.e., pti′j < ddi′ - ddi). In addition,
the processing time of i′ in unit j satisfies the following
condition: pti′j> ddi′ - ddk for some task k ∈ IBi. Therefore,
task i′ may force to complete task k earlier than needed and
thus indirectly contribute to the earliness of task i. In other
words, task i′ may become the controlling task (i′) ic) and,
therefore, the unit j will not remain idle from time Ci to time
ddi′. Let us assume that Ti represents the sequence of succeeding
tasks up to task ic. Then, ic is the last task of Ti (ic) in) and the
expression for Ei will be

Eig∑
l ∈ Ti

ptl jXil j - (ddn - ddi)Xiinj

where Ti also includes some other tasks that belong to ICi. In
addition to the contributions from tasks belonging to IAi and
IBi, the expression of Ei will also include positive terms related
to tasks belonging to ICi. Therefore, the value of Ei will
experience a further increase, relative to the previous three cases.
On the contrary, the threshold value for Ei is still given by eq
(15):

Ei) ∑
i′∈ Ti

#

pti′jXii′j + ∑
i∈ Ti

B

(ddi - ddi)Xii′j

where Ti
⊂ Ti does not include the contributions of succeeding

tasks i′ ∈ ICi. It is straightforward to conclude that Ei g Ei.

Nomenclature

(a) Sets

I) batches or tasks
J) equipment units
Ji) equipment units that can be allocated to task i

Jii′) equipment units that can be allocated to tasks i and i′ (Jii′)
Ji ∩ Ji′)

IAi) tasks i′ * i featuring due dates ddi′ e ddi and common units
with task i (Jii′ * L)

IBi) tasks i′ * i featuring due dates ddi′> ddi, Jii′ * L and ptij>
ddi′ - ddi for some j ∈ Jii′

ICi) batches that cannot directly deteriorate the earliness of batch
i

DD) due dates
DDi

-) due dates earlier than ddi (t e ddi)
DDi

+) due dates later than ddi (t> ddi)

(b) Parameters

Ri) weighting coefficient for the earliness of batch i
�ii′j) threshold contribution of the succeeding task i′ in unit j to

the earliness of batch i
τii′j) sequence-dependent setup time between batch i and batch i′

in unit j
σij

Min) lowest sequence-dependent changeover for task i in unit j
ddi) due date for batch i
H) length of the scheduling horizon
ptij) processing time of batch i at unit j
PTij) total time allocation of unit j to batch i
PTij) conservative estimation of PTij

rti) release time of batch i
ruj) ready time of unit j
suij) setup time of batch i in unit j

(c) Binary Variables

Yij) denotes that batch i is allocated to unit j
Xii′j) denotes that batch i is run before batch i′ in unit j

(d) Continuous Variables

Ci) completion time of batch i
Ei) earliness of batch i
Ei) lower bound on the earliness of batch i
ESTi) earliest start time of batch i
LCTi) latest completion time of batch i
MK) makespan
Si) starting time of batch i
wit) continuous variable denoting that batch i has been completed

before the reference time t (when wit) 1)

Acknowledgment

Financial support received from FONCYT-ANPCyT (under
Grant PICT 11-14717), from CONICET (under Grant PIP-
5729), and from Universidad Nacional del Litoral (under
CAI+D 003-13) is fully appreciated.

Literature Cited

(1) Floudas, C. A.; Lin, X. Continuous-time versus discrete-time
approaches for scheduling of chemical processes: a review. Comput. Chem.
Eng. 2004, 28, 2109.

(2) Méndez, C. A.; Cerdá, J.; Grossmann, I. E.; Harjunkoski, I.; Fahl,
M. State-of-the-art review of optimization methods for short-term scheduling
of batch processes. Comput. Chem. Eng. 2006, 30, 913.

(3) Kondili, E.; Pantelides, C. C.; Sargent, W. H. A general algorithm
for short-term scheduling of batch operationssI. MILP formulation. Comput.
Chem. Eng. 1993, 17, 211.

(4) Pantelides, C. C. Unified frameworks for optimal process planning
and scheduling. In Proceedings of the Second Conference on Foundations
of Computer Aided Operations; Cache Publications: New York, 1994; p
253.

Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009 497

(5) Shah, N.; Pantelides, C. C.; Sargent, W. H. A general algorithm for
short-term scheduling of batch operationssII. Computational issues. Com-
put. Chem. Eng. 1993, 17, 229.

(6) Rodrigues, M. T. M.; Latre, L. G.; Rodrigues, L. C. A. Short-term
planning and scheduling in multipurpose batch chemical plants: A multi-
level approach. Comput. Chem. Eng. 2000, 24, 2247.

(7) Lee, K.; Park, H. I.; Lee, I. A novel nonuniform discrete time
formulation for short-term scheduling of batch and continuous processes.
Ind. Eng. Chem. Res. 2001, 40, 4902.

(8) Giannelos, N. F.; Georgiadis, M. C. A simple new continuous-time
formulation for short-term scheduling of multipurpose batch processes. Ind.
Eng. Chem. Res. 2002, 41, 2178.

(9) Maravelias, C. T.; Grossmann, I. E. New general continuous-time
state-task network formulation for short-term scheduling of multipurpose
batch plants. Ind. Eng. Chem. Res. 2003, 42, 3056.

(10) Schilling, G.; Pantelides, C. C. A simple continuous-time process
scheduling formulation and a novel solution algorithm. Comput. Chem. Eng.
1996, 20, S1221.

(11) Zhang, X.; Sargent, W. H. The optimal operation of mixed
production facilities-a general formulation and some approaches for the
solution. Comput. Chem. Eng. 1996, 20, 897.

(12) Castro, P.; Barbosa-Póvoa, A. P. F. D.; Matos, H. An improved
RTN continuous-time formulation for the short-term scheduling of multi-
purpose batch plants. Ind. Eng. Chem. Res. 2001, 40, 2059.

(13) Castro, P. M.; Barbosa-Póvoa, A. P.; Matos, H. A.; Novais, A. Q.
Simple continuous-time formulation for short-term scheduling of batch and
continuous processes. Ind. Eng. Chem. Res. 2004, 43, 105.

(14) Ierapetritou, M. G.; Floudas, C. A. Effective continuous-time
formulation for short-term scheduling. 1. Multipurpose batch processes. Ind.
Eng. Chem. Res. 1998, 37, 4341.

(15) Lin, X.; Floudas, C. A.; Modi, S.; Juhasz, N. M. Continuous-time
optimization approach for medium-range production scheduling of a
multiproduct batch plant. Ind. Eng. Chem. Res. 2002, 41, 3884.

(16) Vin, J. P.; Ierapetritou, M. G. A new approach for efficient
rescheduling of multiproduct batch plants. Ind. Eng. Chem. Res. 2000, 39,
4228.

(17) Janak, S. L.; Lin, X.; Floudas, C. A. Enhanced continuous-time
unit-specific event-based formulation for short-term scheduling of multi-
purpose batch processes: Resource constraints and mixed storage policies.
Ind. Eng. Chem. Res. 2004, 43, 2516.

(18) Pinto, J. M.; Grossmann, I. E. A continuous time mixed integer
linear programming model for short-term scheduling of multistage batch
plants. Ind. Eng. Chem. Res. 1995, 34, 3037.

(19) Pinto, J. M.; Grossmann, I. E. An alternate MILP model for short-
term scheduling of batch plants with preordering constraints. Ind. Eng.
Chem. Res. 1996, 35, 338.

(20) Sundaramoorthy, A.; Karimi, I. A. A simpler better slot-based
continuous-time formulation for short-term scheduling in multiproduct batch
plants. Chem. Eng. Sci. 2005, 60, 2679.

(21) Cerdá, J.; Henning, G. P.; Grossmann, I. E. A mixed-integer linear
programming model for short-term scheduling of single-stage multiproduct
batch plants with parallel lines. Ind. Eng. Chem. Res. 1997, 36, 1695.

(22) Méndez, C. A.; Henning, G. P.; Cerdá, J. Optimal scheduling of
batch plants satisfying multiple product orders with different due-dates.
Comput. Chem. Eng. 2000, 24, 2223.

(23) Gupta, S.; Karimi, I. A. An improved MILP formulation for
scheduling multiproduct, multistage batch plants. Ind. Eng. Chem. Res. 2003,
42, 2365.

(24) Méndez, C. A.; Henning, G. P.; Cerdá, J. An MILP continuous-
time approach to short-term scheduling of resource-constrained multistage
flowshop batch facilities. Comput. Chem. Eng. 2001, 25, 701.

(25) Castro, P. M.; Grossmann, I. E. An efficient MILP model for the
short-term scheduling of single stage batch plants. Comput. Chem. Eng.
2006, 30, 1003.

(26) Castro, P. M.; Grossmann, I. E. New continuous-time MILP model
for the short-term scheduling of multistage batch plants. Ind. Eng. Chem.
Res. 2005, 44, 9175.

(27) Ierapetritou, M. G.; Hené, T. S.; Floudas, C. A. Effective continu-
ous-time formulation for short-term scheduling. 3. multiple intermediate
due dates. Ind. Eng. Chem. Res. 1999, 38, 3446.

(28) Méndez, C. A.; Cerdá, J. Dynamic scheduling in multiproduct batch
plants. Comput. Chem. Eng. 2003, 27, 1247.

(29) Harjunkoski, I.; Grossmann, I. E. Decomposition techniques for
multistage scheduling problems using mixed-integer and constraint pro-
gramming methods. Comput. Chem. Eng. 2002, 26, 1533.

(30) Jain, V.; Grossmann, I. E. Algorithms for hybrid MILP/CP models
for a class of optimization problems. INFORMS J. Comput. 2001, 13, 258.

ReceiVed for reView December 27, 2007
ReVised manuscript receiVed July 25, 2008

Accepted August 12, 2008

IE701774W

498 Ind. Eng. Chem. Res., Vol. 48, No. 1, 2009

