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A rigorous representation of the multistage batch scheduling problem is often useless to even provide
a good feasible schedule for many real-world industrial facilities. In order to derive a much simpler
scheduling methodology, some usual features of multistage batch plants should be exploited. A common
observation in industry is that multistage processing structures usually present a bottleneck stage (BS)
controlling the plant output level. Therefore, the quality of the production schedule heavily depends on
the proper allocation and sequencing of the tasks performed at the stage BS. Every other part of the pro-
cessing sequence should be properly aligned with the selected timetable for the bottleneck tasks. A closely
related concept with an empirical basis is the usual existence of a common batch sequencing pattern along
the entire processing structure that leads to define the constant-batch-ordering rule (CBOR). According
to this rule, a single sequencing variable is sufficient to establish the relative ordering of two batches at
every processing stage in which both have been allocated to the same resource item. This work intro-
duces a CBOR-based global precedence formulation for the scheduling of order-driven multistage batch
facilities. The proposed MILP approximate problem representation is able to handle sequence-dependent
changeovers, delivery due dates and limited manufacturing resources other than equipment units. Opti-
mal or near-optimal solutions to several large-scale examples were found at very competitive CPU times.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Batch processing plants producing a large variety of chemical
compounds by performing a similar sequence of processing stages
are very common in industry. Such multiproduct, multistage facil-
ities usually comprise several non-identical equipment units run-
ning in parallel at every stage. Manufactured products are chemically
similar and product processing times generally follow the same pat-
tern along the stage sequence. The plant operation is usually order-
driven and each customer order can involve one or several batches
of a given product and has a promised delivery due date. This kind
of industrial facilities can be referred to as order-driven multiprod-
uct, multistage batch plants. Since the client service level is the ma-
jor operational issue, the aim of the scheduling task is to dispatch
customer orders on time. To this end, the short-term production
schedule is routinely developed on a weekly basis to maximize cus-
tomer satisfaction while making an efficient utilization of the avail-
ablemanufacturing resources. However, the scheduling of real-world
multistage batch facilities is a combinatorial problem demanding
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a large computational cost that exponentially increases with the
number of production orders, processing stages, equipment units,
and the extent of the time horizon. The complexity of this scheduling
problem rises even more when discrete/continuous resources other
than units, like manpower, tools and utilities are available in finite
amounts. Despite its industrial significance, limited work has been
made on resource-constrained multistage batch scheduling.

Scheduling methodologies can be broadly classified into mono-
lithic or sequential approaches. Monolithic methods tackle not only
the scheduling problem but at the same time the batching problem
in order to decide the number and size of product batches to be pro-
cessed. In turn, sequential approaches assume that the set of batches
is already known, every lot has the same linear recipe and batch mix-
ing and splitting are forbidden operations. Accounting for their struc-
tural and operational features, sequential methodologies look more
suitable for order-driven multistage batch plants. However, pub-
lished results indicate that rigorous sequential approaches are usu-
ally unable to find a good feasible solution for real-world multistage
batch scheduling problems at reasonable CPU times. Consequently,
the development of highly efficient approximate methodologies for
resource-constrained multistage batch scheduling appears to be a
very promising research area.

A general review on batch scheduling can be found in Floudas
and Lin (2004) and Méndez et al. (2006). Using different time
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representations, several model-based sequential approaches for
order-driven multistage batch facilities have been proposed. They
include continuous-time formulations using the notions of time-
slots (Pinto and Grossmann, 1995, 1996), direct precedence (Hui
and Gupta, 2000; Hui et al., 2000; Gupta and Karimi, 2003), general
precedence (Méndez et al., 2001), and multiple time-grids (Castro
and Grossmann, 2005). The approach of Pinto and Grossmann
(1995) assumed sequence-independent setup times and considered
topology restraints. By using time matching constraints to equal
time coordinates of both units and tasks, their formulation was able
to solve small multistage batch scheduling problems with up to five
single-batch orders and five processing stages. Additional efforts for
reducing the computational cost included the use of pre-ordering
constraints and a special decomposition scheme to solve large-scale
problems. Later, continuous-time sequential approaches relying
on the immediate precedence notion were presented by Hui and
Gupta (2000) and Hui et al. (2000). They introduced a three-index
sequencing variable to denote that two batches are consecutively
executed on a given stage. In this way, the resulting MILP formu-
lation was able to easily handle sequence-dependent changeovers
and infeasible batch sequences. However, problems with more
than five single-batch orders could not be solved to optimality.
Méndez et al. (2001) introduced the general precedence concept to
develop a continuous-time problem formulation that accounts for
sequence-dependent changeovers and presents a much improved
computational performance. At each processing stage, only a single
0–1 variable is needed to decide the relative processing order of
any two batches allocated to the same equipment unit. As a result,
a large saving in binary variables was achieved. Besides, more com-
pact scheduling models can be derived from the original problem
formulation by embedding preordering rules for batches allocated
to the same unit in a very simple manner. Problems with five
single-batch orders and five stages were solved and the results were
favorably compared with those reported by Pinto and Grossmann
(1995). Afterwards, Gupta and Karimi (2003) presented an extensive
study of nine alternative immediate precedence continuous-time
models, closely related to formulations previously proposed (Hui
and Gupta, 2000; Hui et al., 2000) but requiring fewer binary vari-
ables and/or constraints. They solved several examples with up to
22 batches, and the results for the best-performance model were
successfully compared with previous contributions. Recently, Castro
and Grossmann (2005) introduced a multiple-time-grid continuous-
time formulation that efficiently handles order release-times and
due dates, and different types of objective functions. However,
changeover times were neglected. To make an appropriate com-
parison with other approaches, the authors also presented reduced
versions of a discrete-time and a uniform-time-grid continuous-
time model. To this end, resource-task network (RTN) formulations
for multipurpose plants (Pantelides, 1994; Castro et al., 2004) were
adapted to the multistage case. In addition, results obtained with a
general precedence model and a constraint programming (CP) ap-
proach (Harjunkoski and Grossmann, 2002) were also considered.
By solving 30 examples with up to 40 processing tasks, the results
led to conclude that there is not an ideal approach for all types of
batch scheduling problems and objective functions. However, for-
mulations with multiple time grids proved to be more convenient
than their uniform time grid counterpart.

This work introduces an approximate formulation for the
scheduling of resource-constrained multistage batch facilities that
relies on the so-called Constant Batch Ordering Rule (CBOR). The
resulting MILP mathematical model can be regarded as a compact
version of previous global precedence-based formulations (Méndez
et al., 2001; Méndez and Cerdá, 2002, 2003). Similar to these ap-
proaches, the approximate methodology still uses the notion of
global precedence variables to sequence batches on the queue of

any resource item. However, the CBO-rule embedded in the prob-
lem formulation produces a substantial saving in 0–1 sequencing
variables and a significant reduction in CPU time. To compare its
computational performance with previous work, our reduced MILP
formulation was applied to a large set of order-driven multistage
batch scheduling problems. In any case it usually discovers the true
optimal solution or at least near-optimal schedules at much lower
computational cost, especially for problem instances with limited
resources other than equipment items.

This paper is organized as follows. Section 2 introduces the
bottleneck resource notion and provides a thorough review of
bottleneck-based batch sequencing procedures. Section 3 introduces
the fundamentals of the Constant Batch Ordering Rule. Section 4
presents the formal statement of the multistage batch scheduling
problemwith resource constraints to be tackled, while Section 5 lists
the model assumptions. In Section 6, we introduce a CBOR-based
mathematical framework for non-constrained multistage batch
scheduling problems. The proposed formulation is extended in Sec-
tion 7 to account for discrete and continuous resource constraints.
Section 8 includes the best solutions found for a significant number
of benchmark examples and a thorough comparison with previous
approaches. The final conclusions are presented in Section 9.

2. The bottleneck resource concept

In order to derive a simpler batch scheduling formulation, some
usual features of multistage processing structures can be exploited.
A common observation in industry is the fact that most plants have
very few operations demanding the bottleneck resource. A bottle-
neck resource (BR) is one whose capacity QBR is often lower than the
demand placed on it. In other words, the overall capacity require-
ment on BR is usually a high fraction of QBR and even exceeds its ca-
pacity during some time intervals. Since the BR determines the plant
throughput, it should be working all the time and a buffer inventory
is kept in front of it to make sure that it never remains idle. There-
fore, the quality of the plant schedule strongly depends on the proper
unit allocation and sequencing of bottleneck operations. On the con-
trary, a non-bottleneck resource (NBR) has a capacity greater than its
workload and does not work constantly. Idle time is then a common
feature of NBRs and the main reason for the existence of alternative
schedules with a similar performance. Consequently, changes in the
schedule of non-bottleneck tasks has a minor impact and merely
produce slight variations on the production performance of batch
facilities. On the other hand, a capacity-constrained resource (CCR)
is one whose utilization is close to its maximum capacity and may
become a production bottleneck if not carefully scheduled (Chase
et al., 1998).

By definition, the aim of the scheduling function is to optimally
allocate resources to processing tasks over time. As mentioned, not
all resources but just those ones constraining the production flow
through the processing sequence really deserve especial attention.
The critical operations that should be carefully scheduled are those
requiring the BR, i.e. the bottleneck operations. Every other part
of the processing sequence should be properly aligned so that the
right amount of material required by bottleneck tasks timely arrives.
Consequently, a fundamental idea in multistage batch scheduling is
that the equipment units at the bottleneck stage (BS), also referred
to as the bottleneck work center, are the ones determining the plant
performance. Such equipment items are the BRs and the critical tasks
are those carried out at the BS.

2.1. A review of bottleneck-based sequencing procedures

This strategy of focusing the scheduling effort on the critical con-
straints was first explored by Goldratt and Cox (1986) through the
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so-called Optimized Production Technology (OPT) and implemented
in different OPT-software packages commercially available. They
were convinced that some basic principles could be exploited to
come up with a better scheduling system. An OPT-package performs
the following four basic steps: (i) identify the bottleneck resource;
(ii) schedule first the critical operations for the most effective usage
of BRs; (iii) schedule the upstream stages from the bottleneck so as
to meet the scheduled starting times of bottleneck operations; and
(iv) schedule the downstream stages assuming that the end times of
bottleneck operations are given (Chase et al., 1998). Therefore, the
batch sequencing at the BS is supposed to control the batch ordering
at the other upstream and downstream stages. As non-bottleneck
resources have idle capacities, the OPT-algorithm assumes that fea-
sible schedules for upstream and downstream stages satisfying the
proposed BS timetable can always be found.

The notion of bottleneck resource was later applied to gen-
erate near-optimal schedules at lower cost in many other pub-
lications. Adams et al. (1988) developed the so-called shifting
bottleneck procedure (SBP) based on a disjunctive graph representa-
tion to heuristically solve the standard job-shop scheduling problem.
In this problem, there is a single machine for each operation, and
the job-dependent task sequence is given. Then, only sequencing
decisions should be made. The problem goal is the minimization of
the makespan, i.e. the time needed for processing all jobs. Sequence-
dependent setup times and limited resources other than machines
were not considered. The SBP establishes the job-sequence on every
machine not yet sequenced one-by-one to identify the bottleneck
machine and the best sequence on that machine. After that, all
previous established sequences are locally reoptimized taking into
account the new partial schedule. The bottleneck identification and
the local reoptimization procedures are both based on repeatedly
solving one-machine scheduling (OMS) problems. The OMS prob-
lem is applied to each machine not yet sequenced to determine the
makespan. The one yielding the maximum makespan is regarded as
the bottleneck machine. To determine the makespan, the OMS for-
mulation includes estimated values of the head/tail times for each
job. The head time goes from the start of the schedule to the initial
time of the job, while the tail time goes from the finishing time to
the end of the schedule.

Dauzere-Peres and Lasserre (1993) proposed a modified version
of SBP to not only considering some precedence constraints between
jobs but also reducing the sensitivity of SBP to the number of lo-
cal reoptimization cycles. Ivens and Lambrecht (1996) extended the
disjunctive graph representation and the SBP to solve non-standard
job-shop scheduling problems. The adapted SBP relies on an ex-
tended disjunctive graph (EDG) and has been applied to real-life
problems involving product assemblies and splits, overlapping op-
erations, parallel machines, sequence-independent setup times and
transit times. However, it is required to solve parallel machine prob-
lems instead of one-machine problems for identifying the bottleneck
processing stage. Scarce resources different from machines were not
explicitly considered. Balas and Vazacopoulos (1998) developed a
guided local search (GLS) procedure using interchange of operations
and the neighborhood tree concept, and embedded it into a shift-
ing bottleneck framework to generate a very efficient hybrid proce-
dure for job-shop scheduling. In turn, Maravelias (2006) proposed an
assignment-sequencing decomposition framework for the schedul-
ing of multistage batch plants. The assignment subproblem is solved
by applying mixed-integer methods, while the sequencing problem
is tackled using the hybrid SBP (Balas and Vazacopoulos, 1998). In
the first step of SBP, it should be checked whether a feasible sched-
ule can be obtained using the task-unit assignments found through
the allocation subproblem. If not, a strong integer cut forbidding the
current assignments should be added and the procedure is repeated
until a feasible set of assignments is generated.

2.2. Common features of bottleneck-based sequencing procedures

The major common features of the reviewed bottleneck proce-
dures can be summarized as follows:

(a) They just deal with “pure” sequencing subproblems by assuming
known, feasible order-unit assignments.

(b) They need to identify the BR because are based on one-resource
sequencing (ORS) problems.

(c) They usually assume sequence-independent setup times.
(d) They do not account for scarce resources, like manpower or

steam, shared bymultiple processing stages whose partial sched-
ules are therefore coupled. When using SBP procedures, the in-
terdependency of ORS problems is likely to produce infeasible
partial schedules.

3. The Constant Batch Ordering Rule (CBOR)

The supporting idea of bottleneck-based sequencing procedures
is that the best ordering of processing tasks at the bottleneck stage
mostly determines the whole production schedule, and therefore
the associated sequencing decisions stand for the problem critical
variables. Any pair of batches (i,i′) allocated to the same equipment
unit at some non-bottleneck stagewill be arranged as required by the
BS schedule. This explains why a characteristic sequencing pattern
frequently observed in optimal short-term schedules of multiproduct
batch facilities with multiple stages is a constant ordering of batches
(i,i′) in any processing stage where batches (i,i′) have been allocated
to the same equipment unit. In other words, if batches (i,i′) share the
same processing unit at stages s and s′ and batch i is processed before
batch i′ in stage s, then the same sequencing pattern (i,i′) usually
holds at the later stage s′. In this way, the notion of BR leads to
establishing a very simple principle, i.e. the so-called constant-batch-
ordering pattern. In contrast to the bottleneck-based procedures,
the constant-batch-ordering rule can be applied without knowing
the location of BS. It simply assumes the existence of a bottleneck
resource that controls the relative ordering of any pair of batches
throughout the processing sequence. In Fig. 1, batches (i,i′) have both
been assigned to unit U2 in stage s and to unit U3 in the next stage
s′. Moreover, batch i is processed before in unit U2. According to the
CBO rule, the batch sequence (i,i′) is repeated in unit U3 (see Fig. 1).
In case tasks (i,BS) and (i′,BS) are performed in two different units
j, j′ ∈ JBS at the bottleneck stage, the CBOR assumes that the role of the
bottleneck stage BS is taken by the next capacity-constrained stage
(CCS) where batches (i,i′) share the same equipment unit. Moreover,
the BR may change with the product mix but there is always at least
one controlling the plant schedule.

Fig. 1. Illustrating the constant-batch-ordering rule.
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A detailed analysis of the optimal solutions found for a myr-
iad of multistage batch scheduling problems reported in the liter-
ature (Pinto and Grossmann, 1995; Hui et al., 2000; Méndez et al.,
2001; Gupta and Karimi, 2003; Castro and Grossmann, 2005) shows
that the CBOR generally applies. Testing the CBO Rule can only be
done when a detailed Gantt chart describing the best schedule has
been published. The CBOR leads to a much simpler batch scheduling
formulation with a unique sequencing variable Xii′ establishing the
relative ordering of any pair of batches (i,i′) throughout the whole
multistage processing system rather than a different one Xii′s for
each stage s. Since batches are sequenced only if allocated to the
same unit, the value of variable Xii′ is only relevant for stages where
batches (i,i′) actually share a processing unit, otherwise it is mean-
ingless. In the proposed CBOR-based formulation,

Xii′ =

⎧⎪⎪⎨
⎪⎪⎩
1 If batch i is executed before batch i′ at any

stage swhere both share the same equipment unit
0 If batch i is executed after batch i′ at any stage

s where both share the same equipment unit

In case the batch process comprises five stages and every product
can be processed in any equipment unit, the number of sequencing
variables can be reduced five times through using the CBOR-based
scheduling approach.

Since bottleneck resources other than equipment units may arise,
the CBO-rule should be generalized. Let us assume that a discrete
or continuous resource r ∈ R different from equipment is required
at some processing stages, and every stage s has its own set of re-
sources Rs. Let us also suppose that a pair of batches (i,i′) has been
allocated to the same unit j ∈ Js in stage s and batch i is processed
before. Then, the resource r will also be earlier allocated to batch i in
stage s. In other words, there is a common ordering of batches (i,i′)
in the queue of any shared resource of stage s. Therefore, a unique
sequencing variable Xii′ is just needed to establish the relative or-
dering of a pair of batches (i,i′) in the queue of any resource item
through the entire processing structure. As a result, the number of
sequencing variables is substantially reduced and the computational
cost required to find near-optimal schedules is diminished by orders
of magnitude. Though few detailed results on resource-constrained
scheduling of linear batch processes have been published, it can be
expected that the CBO-rule also yields good feasible solutions for
the resource-constrained case. Usually, the requirement of a limited
resource other than equipment has been confined to a single pro-
cessing stage in the examples solved in the literature. However, a
set of renewable resources could sometimes be shared by different
processing stages. A further generalization of the CBOR-based multi-
stage batch scheduling formulation to account for limiting resources
shared by several stages is discussed in Section 7.

The constant-batch-ordering rule is proposed for the schedul-
ing of multiproduct, multistage batch plants with multiple parallel
units running at every stage. The CBOR-based scheduling formula-
tion performs much better and usually provides the optimal sched-
ule if: (a) the manufactured products are chemically similar and
(b) the processing timesmostly follow the same change pattern along
the common task sequence, i.e. those difficult tasks requiring larger
processing times are mostly the same for all products. Even if the
processing time change pattern along the task sequence varies with
the product, the method still finds good, feasible schedules. In con-
trast to shifting bottleneck procedures, the constant-batch-ordering
rule-based scheduling approach can simultaneously handle alloca-
tion and sequencing decisions, sequence-dependent setup times and
limited resources other than equipment required at one or several
processing stages. Instead of sequencing machines one-by-one, all
of them are sequenced at the same time. This is so because the pro-
posed methodology does not need to explicitly identify the BS.

4. Problem statement

Given:

(i) a multiproduct multistage batch plant with several units j ∈ Js
running in parallel at every stage s ∈ S,

(ii) the set of batches i ∈ I to be processed following the same stage
sequence, and their release times rti and delivery due-dates
ddi,

(iii) the available equipment units j ∈ Js at each stage s ∈ S and their
ready times ruj,

(iv) the subset of units j ∈ Jis ⊆ Js that can be assigned to the stage
s of batch i, i.e. the task (i,s),

(v) the plant topology structure specifying the interconnections
between units belonging to consecutive stages,

(vi) the batch processing times ptij and the sequence-dependent
setup times, given as the sum of two components suij and �ii′j,

(vii) a set of renewable resource types r ∈ R different from equip-
ment comprising a subset of unary resources R� and a subset
of finite resources R�, such that R = R� ∪ R�,

(viii) the set of resource items z ∈ Zr for each unary resource type
r ∈ R�, and their capacities qz,

(ix) the available capacity Qr of each finite renewable resource
r ∈ R�,

(x) the subset of resource types Ris ⊂ R required by task (i,s),
(xi) the amount �isr of resource type r ∈ Ris (or �isjr if the resource

requirement is unit-dependent) needed for the processing of
task (i,s), and

(xii) the length of the time horizon H.

The problem goal is to determine: (a) the allocation of batches to
equipment units and other resource items, (b) the sequence of tasks
at each resource unit, and (c) the starting and completion times of
every batch at each stage, so that all problem constraints are satisfied
and, at the same time, a given performance criterion (e.g. overall
tardiness, earliness or makespan) is optimized.

5. Model assumptions

To develop an approximate mathematical framework for the
short-term scheduling of multistage multiproduct batch plants with
resource constraints, the following assumptions have been made:

1. Model parameters are all deterministic data.
2. Once the processing of a task starts in a given unit, it should be

carried out until completion without interruption.
3. Unlimited intermediate storage to receive in-process material

from each stage is available.
4. Changeover times are sequence-dependent.
5. Batch transfer times are negligible.
6. Processed batches all meet quality specifications.
7. Batch mixing and splitting are not allowed.
8. The amount of resource needed by a processing task is used over

the entire task length and released at the task end.
9. The relative ordering of batches throughout the processing struc-

ture always satisfies the CBOR.

6. The CBOR-based multistage batch scheduling formulation

6.1. Unit allocation constraints

Every batch imust be assigned to a single equipment unit j ∈ Jis at
every stage s. Since each unit belongs to a unique processing stage,
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the stage index s can be deleted from the domain of variable Yij:∑
j∈Jis

Yij = 1 ∀i ∈ I, s ∈ S (1)

6.2. Topological constraints

Often, multistage batch plants present topological constraints
that limit the number of possible batch routes throughout the pro-
cessing structure. Assuming that task (i,s) is performed in unit j ∈ Jis
(i.e. Yij = 1), the aim of constraint (2) is to guarantee that the unit
allocated to task (i,s+1) not only belongs to the set of eligible units
Ji,s+1, but is also accessible from unit j ∈ Jis. In constraint (2), J(j)s+1
stands for the subset of equipment items available at stage s+1 that
are physically connected to unit j ∈ Jis. Moreover, s� represents the
last stage:

Yij�
∑

j′∈(Ji,s+1∩J(j)s+1)

Yij′ ∀i ∈ I, s ∈ S − {s�}, j ∈ Jis (2)

6.3. Batch timing constraints

Constraint (3) defines the relationship between the starting time
(Sis) and the completion time (Cis) of task (i,s) in terms of the pro-
cessing time required on the assigned unit:

Sis = Cis −
∑
j∈Jis

ptijYij ∀i ∈ I, s ∈ S (3)

Additional bounds on the starting and the completion time of ev-
ery batch i are given by constraints (4)–(6). A lower bound on the
starting time at the first stage sf is set up not only by its release
time rti but also by the sum of the ready time and the setup time
of the allocated unit. Thus, constraint (4) assumes that all materi-
als required to process batch i are not available until time rti. It is
straightforward to account for the more general case where every
task (i,s) has its own release time (i.e. rtis).

Sis�
∑
j∈Jis

max[rti, ruj + suij]Yij ∀i ∈ I, s = sf (4)

The relationship between the completion time and the starting
time of a batch at a pair of consecutive stages (s, s+1) is defined by
the technological constraint:

Cis�Si,s+1 ∀i ∈ I, s ∈ S − {s�} (5)

Besides, constraint (6) states that the completion time of the last
stage of batch i must not be later than its delivery due-date ddi. The
inclusion of this constraint in the problem formulation depends on
the objective function being adopted:

Cis�ddi ∀i ∈ I, s = s� (6)

6.4. Sequencing constraints

Let us assume that batches (i,i′) have been allocated to the same
unit j ∈ Jii′s at some processing stage s. Then, a pair of sequencing con-
straints are needed to ensure that tasks (i,s) and (i′,s) are performed
once at a time. By using the global precedence concept introduced
by Méndez et al. (2001), a single 0–1 three-index sequencing vari-
able Xii′s would be enough to control the relative ordering of batches
(i,i′) at stage s. Moreover, Xii′s will be equal to 0 or 1 depending on
whether task (i,s) is queued after or before task (i′,s) at unit j ∈ Jii′s,
respectively. By assuming a constant batch ordering throughout the
processing structure, however, the stage-index s can be withdrawn
from the domain of X's and the sequencing variables will be simply

given by Xii′ . Therefore, the batch sequencing constraints (7a,b) can
be written as follows:

Cis + �ii′j + sui′j�Si′s + H(1 − Xii′ ) + H(2 − Yij − Yi′j)

∀i, i′ ∈ I, s ∈ S, j ∈ (Jis ∩ Ji′s) : (i< i′) (7a)

Ci′s + �i′ij + suij�Sis + HXii′ + H(2 − Yij − Yi′j)

∀i, i′ ∈ I, s ∈ S, j ∈ (Jis ∩ Ji′s) : (i< i′) (7b)

Let us call Ŝii′ ⊆ S the subset of processing stages at which batches
(i,i′) have been allocated to the same unit j, i.e. Yij + Yi′j = 2. Since a
single variable Xii′ determines the relative ordering of batches (i,i′),
then batch i will be permanently processed before (Xii′ = 1) or after
batch i′ (Xii′ = 0) at any stage s ∈ Ŝii′ . In turn, the value of Xii′ will be
meaningless for any stage s /∈ Ŝii′ . Therefore, a single variable Xii′ can
be defined to determine the relative ordering of batches (i,i′) at every
stage s ∈ S. In this way, the number of sequencing variables is reduced
by a factor equivalent to the number of processing stages. Constraint
(7a) introduces the required changeover time (�ii′j + sui′j) after the
completion of task (i,s) and before starting (i′,s). Similarly, constraint
(7b) considers the changeover time between the completion of batch
i′ and the start of batch i at stage s.

6.5. Objective functions

If the selected problem goal is to minimize the overall batch tar-
diness, the mathematical formulation should include the constraints
(8) and (9). The tardiness of batch i (Ti) is obtained from its delivery
due date ddi and the completion time of the last processing stage.
A batch-dependent weight coefficient �i can be used to penalize a
tardy batch i:

Cis − ddi�Ti ∀i ∈ I, s = s� (8)

Minimize
∑
i∈I

�iTi (9)

When the minimization of the makespan MK is the problem goal,
the largest batch completion time will be the lower bound for the
objective function MK, as indicated by:

MK�Cis ∀i ∈ I, s = s� (10)

Minimize MK (11)

7. Extending the approach to account for other types of
resources

If manufacturing resources other than equipment units are also
required at some stages, then two different cases can arise depending
on whether: (1) each processing stage s has its own set of resource
items z ∈ Zrs of type r ∈ R or (2) several processing stages share a
common set of resource items z ∈ Zr of type r.

7.1. Case 1: Each stage has its own set of resource items

As previously discussed in Section 3, the CBOR can be easily
extended to Case 1 because the sequencing variable Xii′ controls the
relative ordering of tasks (i,s) and (i′,s) in the queue of any shared
resource item at stage s. For instance, let us assume that a discrete
resource of type r is needed at stage s. If the pair of batches (i,i′) has
been allocated to both the unit j ∈ Jii′s and the resource item z ∈ Zrs
of type r at stage s, and, in addition, batch i is processed before, then
batch i should also be first assigned to resource item z. If batches
(i,i′) only share a non-equipment resource item z ∈ Zrs of type r at
stage s, then Xii′ just determines their relative ordering in the queue
of resource item z. In case the resource r is largely needed at stage



Author's personal copy

2738 P.A. Marchetti, J. Cerdá / Chemical Engineering Science 64 (2009) 2733 -- 2748

s, then such a stage could become the BS controlling the batch se-
quence throughout the processing structure. In this way, a particular
stage can become a BS because of a BR different from equipment.
Moreover, the CBOR still holds and a unique sequencing variable Xii′

for the whole processing structure will be enough to establish the
sequencing of batches (i,i′) at any stage where they both share at
least a resource item. Although resources different from equipment
units have been considered, no additional sequencing variables
are needed and the same set of variables Xii′ defined in Section 6
remains valid for the resource-constrained case. As a result, an
important saving in binary variables is achieved. However, further
0–1 allocation variables and constraints assigning tasks to non-
equipment resource items must be included. They will be presented
in Section 7.3 after introducing Case 2 because the same sets of
assignment variables and constraints can be used for Cases 1 and 2.

7.2. Case 2: A common set of resource items is shared by several
processing stages

On the other hand, Case 2 assumes that a resource of type r ∈ R
highly required at stage s is shared with other processing stages.
Suppose that resource r makes a particular stage the process bottle-
neck BS and, consequently, the tasks performed at stage BS turn to be
the critical ones. Therefore, the associated sequencing decisions be-
come the problem critical variables Xii′ ,BS (represented as Xii′ ) mostly
determining the whole production schedule. Similar to Case 1, such
critical sequencing variables Xii′ permit to also establish the relative
ordering of tasks (i,i′) in the queue of any dedicated resource shared
by (i,i′). By definition, a dedicated resource item is one that can only
be assigned to tasks performed at the stage to which it belongs.
Therefore, the sequencing variables Xii′ are able to synchronize the
use of dedicated resource items by processing tasks at the corre-
sponding stage. In contrast, bottleneck and even NBRs shared by sev-
eral processing stages require a special treatment. Tasks performed
at non-bottleneck stages requiring resource r are not synchronized
with critical operations at the BS also demanding r through the set of
variables Xii′ . Thus, additional sequencing variables and constraints
are needed to control the ordering of tasks competing for the same
BR/NBR but performed at different processing stages. Even if the
CBOR would still hold, the approximate problem formulation should
include further binary variables and constraints to coordinate the
timetables of tasks demanding the same utility resource at differ-
ent stages. As a result, the size of the MILP formulation grows but
the increase in the model size remains much lower than in previous
approaches (Méndez and Cerdá, 2003).

7.3. Allocation constraints for resources other than equipment units

Given the set of resource types R = R� ∪ R�, the proposed formu-
lation should be able to handle every type r ∈ R. Unary discrete re-
sources are included in the set R� while finite resources will belong
to the set R�. To use a common treatment for discrete/continuous
finite resources belonging to R�, they will be divided into a discrete
number of elementary resource items with unknown capacities to
be optimized by the model. The maximum number of elements of
type r is a model parameter usually estimated through the largest
number of parallel jobs requiring resource r. Then, each resource el-
ement can be consecutively assigned to processing tasks but once at
a time. If utilities like steam, electricity or cooling water are required,
each resource item will represent a portion of the corresponding re-
newable resource. Similarly, finite discrete resources like a pool of
manpower can be grouped into a relatively small number of crews
and each one can be independently allocated to tasks one by one.
After discretizing resources of type R�, both sets R� and R� can be

handled in a similar manner. Therefore, allocation constraints for ev-
ery resource item z ∈ Zr of any type r ∈ R can be written. The capac-
ity of the resource element z can be either known beforehand (for
unary resources) or a model variable (for finite discrete/continuous
resources). The 0–1 assignment variable Wisz denotes that the re-
source item z has been assigned to task (i, s) whenever it is equal to
one.

7.3.1. Allocation of unary resource items to processing tasks
In order to fulfill the resource requirement �isjr of type r ∈ R� de-

manded by task (i,s), several unary resource items z ∈ Zr of known
capacities qz ( = 1) should be allocated to (i,s). Constraint (12) as-
sumes that the resource requirement can vary with the equipment
unit assigned to task (i,s). It can be regarded as a generalization of
the allocation constraints proposed by Méndez and Cerdá (2003) to
handle unary resource requirements in a multistage batch plant.
∑
j∈Jis

�isjrYij =
∑
z∈Zr

qzWisz ∀i ∈ I, s ∈ S, r ∈ R�
is (12)

Constraint (12) can be simplified if the requirement of resource r by
task (i,s) is not unit-dependent. In such a case, the LHS of constraint
(12) should be simply replaced by �isr.

7.3.2. Allocation of finite discrete/continuous resources
To handle finite resources similarly to unary resources, each re-

source r ∈ R� is implicitly partitioned into a finite number of ele-
ments z ∈ Zr such that every element will be sequentially allocated
to several demanding tasks. Let us assume that the total capacity of
the finite resource r ∈ R� is Qr. Therefore, the overall requirement of
resource r by processing tasks simultaneously processed in different
equipment units must never exceed Qr at any moment. In contrast
to unary resources, the capacity of each resource item is now a vari-
able �z to be determined by the optimization process. According to
Eq. (13), the sum of the resource element capacities �z should be
equal to the total capacity Qr. When finite discrete resources are con-
sidered in R�, the elements included in the set Zr represent clusters
or groups of unary resources. For instance, the manpower pool may
be divided into several operator crews of different sizes, with each
one being handled as an individual resource item whose capacity is
equal to the number of workers in the crew. Then,
∑
z∈Zr

�z = Qr ∀r ∈ R� (13)

Let us define the continuous positive variable �isz to denote the
amount of resource of type r provided by the resource element z ∈ Zr
to task (i,s). Constraints (14) impose a pair of upper bounds on the
value of �isz by considering the element capacity �z and the alloca-
tion condition given by binary Wisz.

�isz ��z, �isz �QrWisz

∀i ∈ I, s ∈ S, r ∈ R�
is, z ∈ Zr (14)

Finally, constraint (15) indicates that the unit-dependent demand
of a resource type r ∈ R� (�isjr) should be fulfilled by one or several
resource items z ∈ Zr allocated to task (i, s):

∑
j∈Jis

�isjrYij =
∑
z∈Zr

�isz ∀i ∈ I, s ∈ S, r ∈ R�
is (15)

7.4. General sequencing constraints for cases 1 and 2

At processing stage s, a pair of batches i and i′ requiring the same
resource of type r ∈ R can eventually share one or several resource
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Table 1
Ten instances of Example 1 grouped into three problem sets.

Problem features Instances of Example 1

Problem set #1 Problem set #2 Problem set #3

Processing times See Table 2 See Table 2 See Table 2
Changeover times See Table 3 (sequence-dependent) See Table 3 (sequence-dependent) See Table 4 (unit-dependent)
Due dates See Table 5 See Table 5 ddi = 500 ∀ i ∈ I
Objective function Eq. (18) Eq. (10) (tardiness) Eq. (18)
Weighting coefficients Ni = 10000 ∀ i ∈ I �i = 1 ∀ i ∈ I Ni = 10000 ∀ i ∈ I
Problem sizes 5, 8, 10, 12 batches 10, 12, 17, 22 batches 5, 8 batches

Table 2
Batch processing times for every instance of Example 1.

Unit j Batch i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 18.1 23 18.1 20 17 15 31 12 13 12 8 10 18.1 23 18.1 20 17 15 31 12 13 12
2 18.1 23 18.1 20 17 14 30 12 7 4 9 7 18.1 23 18.1 20 17 14 30 12 7 4
3 18.1 23 18.1 20 17 13 34 14 8 23 13 14 18.1 23 18.1 20 17 13 34 14 8 23
4 18.1 23 18.1 20 17 12 32 15 9 12 – – 18.1 23 18.1 20 17 12 32 15 9 12
5 18.1 23 18.1 20 17 18 31 – – – 13 – 18.1 23 18.1 20 17 18 31 – – –
6 18.1 23 18.1 20 17 15 – 16 16 14 – 13 18.1 23 18.1 20 17 15 – 16 16 14
7 14 14 14 11 14 15 31 – 15 13 13 13 14 14 14 11 14 15 31 – 15 13
8 5 5 5 5 5 7 31 16 15 13 35 23 5 5 5 5 5 7 31 16 15 13
9 5 5 5 5 5 7 31 15 11 13 23 13 5 5 5 5 5 7 31 15 11 13
10 12 12 24 12 12 13 14 12 13 12 8 10 12 12 24 12 12 13 14 12 13 12
11 12 12 24 12 12 12 15 13 7 4 9 7 12 12 24 12 12 12 15 13 7 4
12 12 12 24 12 12 15 16 14 8 23 13 14 12 12 24 12 12 15 16 14 8 23
13 12 12 24 12 12 17 41 14 9 12 – – 12 12 24 12 12 17 41 14 9 12
14 12 12 24 12 12 17 15 14 – – 13 – 12 12 24 12 12 17 15 14 – –
15 12 12 24 12 12 18 81 14 16 14 – 13 12 12 24 12 12 18 81 14 16 14
16 12 12 24 12 12 19 – 14 15 13 13 13 12 12 24 12 12 19 – 14 15 13
17 12 12 24 12 12 – 16 14 15 13 35 23 12 12 24 12 12 – 16 14 15 13
18 – 12 – – – 16 16 14 11 13 23 13 – 12 – – – 16 16 14 11 13
19 – 12 – – – 13 21 10 12 6 8 10 – 12 – – – 13 21 10 12 6
20 9.5 – 9.3 7.9 12.5 13.5 12 10 15 – 5 – 9.5 – 9.3 7.9 12.5 13.5 12 10 15 –
21 9.5 – 9.3 7.9 12.5 14 13 9 17 12 12 12 9.5 – 9.3 7.9 12.5 14 13 9 17 12
22 – 100 – – – 14.5 11 8 17 23 23 23 – 10 – – – 14.5 11 8 17 23
23 24 – 24 24 24 12 11 – 22 12 12 12 24 – 24 24 24 12 11 – 22 12
24 24 – 24 24 24 12 11 7 21 22 22 21 24 – 24 24 24 12 11 7 21 22
25 – 48 – – – 23 11 7 – 12 12 16 – 10 – – – 23 11 7 – 12

elements z ∈ Zr. Constraints (16) define the general sequencing con-
straints for every pair of tasks performed at the same stage and for
every possible resource item that can be required by both ones. Allo-
cation variablesWisz andWi′sz are used to detect if tasks (i,s) and (i′,s)
share the resource element z at stage s. Since the unique sequencing
binary Xii′ determines the relative order of tasks (i,s) and (i′,s) in the
queue of any resource item z, then the sequencing constraints can
be derived from Eqs. (7a,b) by simply replacing Yisj by Wisz.

Cis�Si′s + H(1 − Xii′ ) + H(2 − Wisz − Wi′sz)

∀i, i′ ∈ I, s ∈ S, r ∈ (Ris ∩ Ri′s), z ∈ Zr : (i< i′) (16a)

Ci′s�Sis + HXii′ + H(2 − Wisz − Wi′sz)

∀i, i′ ∈ I, s ∈ S, r ∈ (Ris ∩ Ri′s), z ∈ Zr : (i< i′) (16b)

If tasks (i,s) and (i′,s′) share the same resource item but are per-
formed at different processing stages, further sequencing variables
and constraints must be added. Case 2 requires to define the addi-
tional binary variable Xis,i′s′ (i< i′) to sequence tasks (i,s) and (i′,s′)
carried out at the different stages s and s′ (see Méndez and Cerdá,
2003). General expressions for the additional sequencing constraints
are given below:

Cis�Si′s′ + H(1 − Xis,i′s′ ) + H(2 − Wisz − Wi′s′z)

∀i, i′ ∈ I, s, s′ ∈ S, r ∈ (Ris ∩ Ri′s′ ),

z ∈ Zr : (i< i′) ∧ (s� s′) (17a)

Ci′s′ �Sis + HXis,i′s′ + H(2 − Wisz − Wi′s′z)

∀i, i′ ∈ I, s, s′ ∈ S, r ∈ (Ris ∩ Ri′s′ ),

z ∈ Zr : (i< i′) ∧ (s� s′) (17b)

8. Results and discussion

In order to compare the performance of the new approach
with previous scheduling methodologies, four examples have been
tackled. The comparison was made based on both the solution
quality (in terms of overall earliness/tardiness or makespan) and
the required CPU time. Examples 1 and 2 consider the short-term
scheduling of a multistage batch facility without resource con-
straints while Examples 3 and 4 also include limitations in man-
power or steam flow. The scarce resource is either confined to a
single stage (Example 3) or shared by a pair of stages (Example 4).
All examples have been solved using ILOG OPL Studio 3.7 (CPLEX 9.0
mixed-integer optimizer) on a Pentium IV PC (1.8GHz) with 1GB of
memory.

8.1. Example 1

Example 1 was taken from Gupta and Karimi (2003). It involves
the scheduling of at most 22 single-batch production orders to be
processed in a multiproduct, multistage batch plant with 25 equip-
ment units distributed among five consecutive stages as follows:
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Table 3
Sequence-dependent changeovers for problem sets 1 and 2 of Example 1.

Batch i Batch i′

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 7 8 9 10 5 7 8 9 7 8 9 5 7 8 9 7 5 7 8 9 7
2 7 6 5 8 4 5 6 5 4 7 8 4 5 6 5 4 4 5 6 5 4
3 12 8 7 6 4 5 7 6 5 6 6 4 5 7 6 5 4 5 7 6 5
4 11 9 5 2 8 6 6 7 7 6 7 8 6 6 7 7 8 6 6 7 7
5 12a 4 4 6 2 1 6 5 8 7 8 2 1 6 5 8 2 1 6 5 8
6 7 2 5 6 7 9 7 8 7 7 8 7 2 5 6 7 7 9 7 8 7
7 13b 3 4 5 6 6 8 4 4 5 15b 12b 3 4 5 6 6 4 8 4 4
8 8 7 8 9 4 5 5 8 9 8 6 8 7 8 9 4 5 5 5 8 9
9 4 5 6 7 8 9 6 16b 7 7 8 4 5 6 7 8 9 6 16b 6 7
10 5 6 7 8 9 4 5 17b 8 8 9 5 6 7 8 9 4 5 17b 8 5
11 5 6 6 7 6 7 8 8 9 8 8 5 6 6 7 6 7 8 8 9 8
12 4 5 6 7 8 7 5 6 7 7 8 4 5 6 7 8 7 5 6 7 7
13 5 7 8 9 10 5 7 8 9 7 8 9 7 8 9 7 5 7 8 9 7
14 7 5 6 5 8 4 5 6 5 4 7 8 4 6 5 4 4 5 6 5 4
15 12 8 1 5 6 4 5 7 6 5 6 6 4 5 6 5 4 5 7 6 5
16 11 9 5 5 2 8 6 6 7 7 6 7 8 6 6 7 8 6 6 7 7
17 12a 4 4 6 3 2 1 6 5 8 7 8 2 1 6 5 2 1 6 5 8
18 7 2 5 6 7 5 9 7 8 7 7 8 7 2 5 6 7 9 7 8 7
19 13b 3 4 5 6 6 5 8 13a 4 4 5 12b 3 4 5 6 6 8 4 4
20 8 7 8 9 4 5 5 5 8 9 8 6 8 7 8 9 4 5 5 8 9
21 4 5 6 7 8 9 6 16b 5 7 7 8 4 5 6 7 8 9 6 16b 7
22 5 6 7 8 9 4 5 17b 8 5 8 9 5 6 7 8 9 4 5 17b 8

aModified value from original problem data.
bInfeasible batch sequence.

U1–U6 in stage 1, U7–U9 in stage 2, U10–U19 in stage 3, U20–U22 in
stage 4, and U23–U25 in the last stage 5. Reduced versions of Exam-
ple 1 were first studied by Pinto and Grossmann (1995), Hui and
Gupta (2000), and Hui et al. (2000). Pinto and Grossmann (1995)
considered the schedule of five production orders assuming se-
quence independent changeovers, while Hui and Gupta (2000) and
Hui et al. (2000) accounted for 12 single-batch orders and sequence-
dependent changeovers. In the more recent version of Example 1
tackled in this paper (Gupta and Karimi, 2003), problems with up
to 22 batches were considered.

To make a comparison of results with those previous approaches
(Gupta and Karimi, 2003; Hui and Gupta, 2000; Hui et al., 2000; Pinto
and Grossmann, 1995), ten instances of Example 1 were solved. They
have been grouped into three different problem sets based on: (a)
the number of production orders; (b) the type of objective function
being adopted; (c) the handling of either sequence-dependent or
non-sequence dependent changeovers; and (d) the handling of a
specific due date for each production order or a common one for all
of them. Similarly to Gupta and Karimi (2003), two different classes
of problem objectives have been used: (1) minimum tardiness and
(2) minimum weighted combination of order earliness and tardiness
as given by

Maximize
∑
i∈I

((∑
s∈S

wisCis

)
− NiTi

)
(18)

where the coefficients wis are

wis = 0.2 × ord(s) × maxi∈I(ddi)
ddi

(19)

Instead of minimizing the batch earliness, an equivalent problem
objective (18) simultaneously maximizing the order completion
times (i.e. the lowest total earliness) and minimizing the overall
tardiness has been used. Weighting coefficients wis and Ni (a rel-
atively large number) were defined similarly to Gupta and Karimi
(2003). For each problem set, Table 1 indicates the selected objective
function and the weighting coefficients used, the processing time
and the changeover time data sets, the order due dates, and the

Table 4
Unit-dependent setup times for problem set # 3 of Example 1.

Unit j 1–7 8–9 10–19 20–21 22 23–24 25

suij 8 1 2.5 6 24 4 5

Table 5
Batch due-dates for problem sets 1 and 2 of Example 1.

Batch ddi

2, 13 500
1 510
3, 12, 15 520
4, 6, 16, 20 530
5, 7, 11 540
8, 9, 14, 19 550
21 560
17 570
10, 22 580
18 600

problem sizes in terms of the number of production orders to be
scheduled. Unit-dependent processing times for all problem in-
stances are shown in Table 2, while sequence dependent changeovers
for problem sets #1 and #2 are depicted in Table 3. Infeasible batch
sequences (i,i′) considered by Gupta and Karimi (2003) were han-
dled by simply assigning to them relatively large changeover times
�ii′ . Since the proposed formulation assumes that processing times
dominate changeover times, a few originally large �ii′ were slightly
reduced but they still prevent from processing batch i′ immediately
after batch i (see Table 3). Specific delivery due dates for the pro-
duction orders to be considered in problem sets # 1 and 2 are listed
in Table 5. Problem set #3 assumes a fixed due date of 500h for
all batches and unit-dependent setup times whose values are given
in Table 4. The largest problem considered in this paper belongs to
problem set #2 and consists of scheduling 22 batches at minimum
tardiness.
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Table 6
Computational results for problem sets 1–3 of Example 1.

Problem set and
number of orders

Solution approach Binary vars, continuous
vars, constraints

Objective function CPU time (s) Nodes Iterations

Problem set 1
5 CBOR Formulation 115, 30, 443 7498.29 0.36 170 683

Gupta and Karimi (M8) 189, 136, 549 7498 0.5a 38 321
Hui and Gupta/Hui et al. 189, 136, 709 7498 87.7 3357 8843

8 CBOR Formulation 202, 48, 1174 12,384.7 12.7 5694 18,847
Gupta and Karimi (M8) 433, 223, 1294 12,386.3 38.6a 4400 33,990
Hui and Gupta/Hui et al. 433, 223, 1790 12,329b 1268.2 14,568 100,000c

10 CBOR Formulation 263, 60, 1852 16,344.5 404.7 121,280 331,729
Gupta and Karimi (M8) 635, 279, 1948 163,44.5 866a 68,550 680,495
Hui and Gupta/Hui et al. 635, 279, 2729 16,120b 1489 8985 100,000c

12 CBOR Formulation 325, 72, 2618 19,526b,d 5000c 1,167,521 4,261,320
Gupta and Karimi (M8) 881, 332, 2711 19,185b,e 5000c – –
Hui and Gupta/Hui et al. 881, 332, 3879 16,004b 1762 6561 100,000c

Problem set 2
10 CBOR Formulation 263, 60, 1852 0 0.41 0 85

Gupta and Karimi (M6) 635, 279, 1948 0 1.1f – –
12 CBOR Formulation 325, 72, 2618 0 1.06 0 213

Gupta and Karimi (M6) 881, 332, 2711 0 2.50f – –
17 CBOR Formulation 500, 102, 5321 0 4.34 70 526

Gupta and Karimi (M6) 1631, 467, 5210 0 45.0f – –
22 CBOR Formulation 708, 132, 9098 0 36.97 150 2377

Gupta and Karimi (M6) 2645, 610, 8658 0 342.0f – –

Problem set 3
5 CBOR Formulation 115, 30, 443 6828.76 0.75 672 2207

Gupta and Karimi (M8) 189, 136, 574 6828.76 0.63 – –
Hui et al. 189, 136, 709 6716.1 24.0 – –
Pinto and Grossmann 161, 167, 511 6151 92.09 1452 –

8 CBOR Formulation 202, 48, 1174 10,986.4 448.9 206,611 623,084
Gupta and Karimi (M8) 433, 223, 1334 10,986.4 973 – –

aBest CPU time for formulation (M8).
bSuboptimal solution.
cResource limit exceeded.
dRelative gap = 0.98%.
eRelative gap = 3.15%.
fBest CPU time among nine formulations of Gupta and Karimi (2003).

Computational results for the three problem sets 1–3 are all pre-
sented in Table 6 together with those reported by Gupta and Karimi
(2003), Hui et al. (2000), and Pinto and Grossmann (1995). A rel-
ative gap tolerance of 1e−06 has been adopted and the CPU time
limit was set to 5000 s. For every problem instance a big-M param-
eter H = 1000 was chosen. From Table 6 it follows that the true
optimal schedule for almost every instance of Example 1 has been
discovered. In addition to discovering the optimal schedule or at least
better schedules, a consistent saving in binary variables and what is
more important, a systematic reduction of the CPU time have both
been achieved by assuming the CBOR.

The best schedules found using the new approach for the 10-
and 12-batch instances of problem set # 1, involving sequence-
dependent changeovers and a weighted combination of earliness
and tardiness as the problem objective, are shown in Figs. 2 and 3.
Though the optimal value of the objective function (12,386.3) found
by Gupta and Karimi (2003) for the 8-batch instance of problem set
# 1 is slightly larger than the one found with the proposed formula-
tion (12,384.7), there is not enough information available to confirm
if such a difference really exists. Moreover, sizable savings in CPU
time were achieved for almost every instance of problem set # 1. It
is worth mentioning that: (a) Gupta and Karimi's models were all
solved using CPLEX 7.0 on a Sun Enterprise 250 server with a single
Ultra SPARC II 400-MHz processor having 2GB of RAM, and (b) the
CPU time for the G&K approach is the one associated to their best for-
mulation (M8) among nine alternative models. Although differences
in computer hardware and optimization software make the direct

comparison of CPU times rather unfair, it should be remarked that
the CBOR-based approach usually requires fewer iterations. Further-
more, a highly improved schedule has been found for the 12-batch
instance of problem set # 1 involving a total of 60 tasks by using the
approximate methodology. In less than 8 s the proposed approach
discovers an integer solution with an objective value of 19,469.1 that
is better than the best schedules found by previous approaches (see
Table 6). After 5000 s of CPU time, an improved solution featuring
an objective value of 19,526.0 and a relative gap of only 0.0098 was
generated (see Fig. 3).

Regarding the model size, for the 5-batch problem instance of
set # 1, the best model of Gupta and Karimi (2003) requires 189
binaries, while the proposed formulation includes only 115. This
means a 40% saving in binary variables. Moreover, the number of
continuous variables drops at least four times. Such a reduction in
the model size rises even further with the number of batches to be
scheduled. For the 12-batch instance of problem set # 1, savings in
binary and continuous variables are substantially larger. On average,
the number of binary variables for sets 1 and 2 decreases almost
three times and the number of continuous variables drops by a factor
of 4.5.

A larger improvement in the computational performance with
regards to previous methods was obtained for problem set # 2 fea-
turing sequence-dependent changeover times and the minimum tar-
diness as the problem objective. Comparing with the lowest CPU
time reported for the best G&K model, the computational cost was
reduced by a factor of 10 for problem instances with 17 and 22
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Fig. 2. Optimal schedule found for the 10-batch instance of set # 1 (Example 1).

Fig. 3. Best schedule found for the 12-batch instance of set # 1 (Example 1).

batches, respectively. Fig. 4 shows the optimal schedule found for the
22-batch problem instance involving 110 individual tasks. Note that
the scheduling horizon for problem set # 2 is large enough to com-
plete all processing tasks before their due dates and the equipment
units show sizable idle times. Gupta and Karimi (2003) remarked
that problems with minimum tardiness as the scheduling objective
are much easier to solve. This statement is actually true only if the
total tardiness at the optimum is equal to zero and the problem inte-
grality gap is null. In such cases, there are many ways of scheduling
the batches to all meet their promised due-dates as happens in every
instance of problem set # 2. Since the optimal values for the MIP and

the RMIP formulations are both equal to zero, the branch-and-cut
search will stop when the first integer solution with zero tardiness
is discovered. This explains why the computational time for problem
set # 2 is much lower. We expect that our approximate formulation
leads to larger savings in computational requirements for problem
instances with finite tardiness at the optimum (see Examples 2–4).

Our new approach also presents an improved computational per-
formance for problem set # 3 assuming unit-dependent changeovers
as the number of batches increases. For the 8-batch instance the CPU
time is reduced by a half. The optimal objective value for the first
instance of problem set # 3 reported by Hui et al. (2000) and Pinto
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Fig. 4. Optimal schedule found for the 22-batches instance of set # 2 (Example 1).

Fig. 5. Batch plant configuration for Examples 2–4.

and Grossmann (1995) differs from that found by Gupta and Karimi
(2003) and also by our approximate formulation. As remarked by
Gupta and Karimi (2003), such as difference arises because the two
former approaches have considered unit-dependent setup times as
part of the processing times. Doing that, it is equivalent to delaying
the set up of the unit allocated to task (i,s) until the previous task
(i,s−1) on batch i is completed. Besides, Pinto and Grossmann (1995)
defines an approximate number of time slots not enough to find out
the optimal solution.

8.2. Example 2: a large-scale multiproduct batch plant with a strong BS

To further show the effectiveness of the proposed MILP approx-
imate formulation, another multistage batch scheduling problem
involving five processing stages and 12 equipment units has been
tackled. No resource constraints are considered. Fig. 5 shows the
plant configuration where the 12 units have been distributed as fol-
lows: U1–U3 are in stage 1, U4–U5 in stage 2, U6–U7 in stage 3, U8–U10
in stage 4, and U11–U12 in the last stage 5. Eight batches are to be
processed over a time horizon of 100h. Processing times, due-dates,
and unit-dependent setup times data are given in Tables 7 and 8.
Stage III with only two equipment units and performing the longest
operation arises as the process BS with almost no idle time.

In order to compare the computational performance and the qual-
ity of the solution found, Example 2 has been solved using both the
proposed approach and the formulation of Méndez et al. (2001). The
overall tardiness and the makespan were alternatively selected as
the problem goal. Computational results for Example 2 and the re-
maining Examples 3 and 4 were obtained on the same machine than

Example 1 using the same solver (ILOG OPL Studio 3.7, CPLEX 9.0).
The relative gap limit was set to 1e−04 and the resource limit for
CPU time was set to 3600 s. Besides, a big-M parameter of H = 200
was selected for Examples 2–4.

Computational results and statistics are included in Table 9. For
both problem objectives (overall tardiness and makespan) the CBOR-
based model discovers the same optimal solution provided by the
formulation of Méndez et al. (2001) but at much less computational
effort. For instance, the number of binary variables drops to a half of
the previous value and the CPU time is decreased 20 times. This is
because the CBOR-approximate approach requires only 28 sequenc-
ing variables (of a total of 87 binaries) while the formulation of
Méndez et al. (2001) requires 104 for all stages. Fig. 6 shows the
optimal schedule found for Example 2 when the overall tardiness is
minimized.

8.3. Example 3: limited manpower

Example 2 is revisited but this time a limited manpower is avail-
able to operate the set of units running either at stage I (Example 3a)
or stage IV (Example 3b). Again, the overall tardiness and the
makespan were alternatively used as problem objective functions.
The available manpower consists of five workers and the batch man-
power requirements are given at the bottom of Table 8. In order to
handle manpower constraints, it is defined the set Zmanpower = {o1,
o2, o3, o4, o5} comprising five individual unary resource items, each
one featuring a capacity qz = 1, ∀ z ∈ Zmanpower. Computational re-
sults for Examples 3a and 3b using both the proposed approach and
a multistage version of the model of Méndez and Cerdá (2002) are
included in Table 9. The proposed CBOR formulation requires 40
additional binary variables to handle worker assignment decisions
(8 batches×1 stage×5 resource items) in Examples 3a and 3b simi-
larly to the model of Méndez and Cerdá (2002). However, the latter
model should include an additional set of 14 sequencing variables
on stage IV to tackle Example 3b. This is so because some pairs of
batches (i,i′) cannot be allocated to the same unit of stage S4 and
the related sequencing variables Xi,i′ ,s4 were previously omitted in
Example 2. Since the tasks in stage IV now share manpower, such
sequencing variables must be explicitly considered.

For all instances of Example 3 the proposed formulation finds the
best solution satisfying the CBOR in very few CPU seconds. On the
contrary, the CPU time required to solve the model of Méndez and
Cerdá (2002) reaches the limit of 3600 s without proving optimality
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Table 7
Processing times, due dates and unit-dependent setup times for Examples 2–4.

Batch Stage I Stage II Stage III Stage IV Stage V Due date

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

1 8.5 7.2 6.2 18.2 12.4 9.1 11.2 8.2 70
2 10.2 8.4 7.2 15.2 10.5 6.4 70
3 9.5 6.7 8.1 17.1 15.5 10.2 8.2 7.3 80
4 8.4 9.8 4.5 8.1 16.6 10.5 7.1 95
5 9.7 7.4 8.3 12.7 11.8 9.8 8.2 7.2 75
6 8.1 6.3 8.2 12.5 17.8 9.5 8.2 100
7 9.6 8.8 8.5 15.4 11.7 10.5 6.3 70
8 10.8 9.7 8.4 16.4 16.7 10.1 8.3 7.9 80

suj 0.5 0.8 1.0 0.4 0.4 0.4 0.3 1.0 1.2 0.9 0.4 0.3

Table 8
Sequence-dependent setup times (Examples 2–4) and manpower/steam needs (Example 3/4, respectively).

�ii′ B1 B2 B3 B4 B5 B6 B7 B8

B1 1.4 0.7 1.1 1.4 0.7 1.1 0.6
B2 1.5 1.9 0.9 1.0 2.0 1.6 1.6
B3 1.6 0.7 1.5 1.4 1.0 1.9 2.0
B4 1.2 0.7 1.9 0.8 1.1 1.1 0.6
B5 1.1 1.6 0.7 0.6 0.8 1.0 1.7
B6 2.0 1.4 1.8 2.0 0.8 1.5 1.4
B7 1.4 1.5 1.6 0.8 0.7 1.4 1.3
B8 0.8 1.7 1.1 0.7 1.1 0.8 1.2

Manpower 2 3 2 1 3 2 3 2

Steam
Stage I 9.0 7.0 9.0 15.0 12.0 9.0 15.0 8.0
Stage IV 7.0 9.0 12.0 9.0 6.0 18.0 12.0 18.0

Table 9
Computational results for Examples 2–4.

Objective function and solution approach Binary vars, continuous vars, constraints Objective function CPU time (s) Nodes Iterations

Example 2
Overall tardiness
CBOR formulation 87, 88, 370 5.7 2.33 3923 11,035
Méndez et al. (2001) 163, 88, 370 5.7 52.64 95,224 200,264

Makespan
CBOR Formulation 87, 81, 370 94.7 10.41 22,100 61,480
Méndez et al. (2001) 163, 81, 370 94.7 201.84 349,558 1,196,811

Example 3a
Overall tardiness
CBOR formulation 127, 88, 658 6.6 33.92 28,706 86,022
Méndez and Cerdá (2002) 203, 88, 658 25.3a,b 3600c 1,768,052 9,146,099

Makespan
CBOR Formulation 127, 81, 658 94.7 15.14 14,485 68,837
Méndez and Cerdá (2002) 203, 81, 658 95.2a,d 3600c 2,457,606 11,429,900

Example 3b
Overall tardiness
CBOR Formulation 127, 88, 658 5.9 6.70 5339 25,502
Méndez and Cerdá (2002) 217, 88, 658 32.5a,b 3600c 1,619,341 10,342,110

Makespan
CBOR Formulation 127, 81, 658 94.7 13.30 12,218 59,906
Méndez and Cerdá (2002) 217, 81, 658 95.6a,e 3600c 1,720,312 10,264,947

Example 4
Overall tardiness
CBOR Formulation 223, 173, 1667 5.7 47.45 12,657 113,183
Méndez and Cerdá (2003) 313, 173, 1667 45.4a,b 3600c 1,053,097 8,998,133

Makespan
CBOR Formulation 223, 166, 1667 94.7 39.81 12,290 87,005
Méndez and Cerdá (2003) 313, 166, 1667 96.9a,f 3600c 1,081,428 8,605,495

aSuboptimal solution.
bBest possible solution = 0.0, relative gap = 1.0 (100%).
cResource limit exceeded.
dRelative gap = 0.17.
eRelative gap = 0.25.
fRelative gap = 0.32.
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Fig. 6. Minimum-tardiness schedule found for Example 2.

Fig. 7. Best minimum-tardiness schedule for Example 3a.

in all cases and for each problem goal being considered. When the
minimum overall tardiness is the problem objective, the latter ap-
proach finds very poor feasible solutions with a relative gap of 100%

at the time limit. Instead, the CBOR-optimal solution features a much
lower objective value, i.e. almost four times lower for Example 3a
and six times smaller for Example 3b. As the model of Méndez and
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Fig. 8. Minimum-makespan schedule found for Example 4.

Cerdá (2002) does not end up with the optimal solution, it cannot be
ensured that the schedules found through our approximate model
are the optimal ones. For the minimum makespan problem, the best
solution reported for Example 2 is still the optimal one and, there-
fore, the CBOR-based formulation was able to discover the optimal
schedule for Examples 3a and 3b. In contrast, the model of Méndez
and Cerdá (2002) fails to find the optimal solution within the CPU
time limit. The best CBOR-based solution for Example 3a (with the
minimum tardiness as the scheduling objective), including the as-
signment of individual workers to tasks at stage I, is shown in Fig. 7.

8.4. Example 4: limited steam flow for multistage steam requirements

Example 2 is revisited again but now the limiting manufacturing
resource is the steam flow rather than the manpower. A steam pool
is available to carry out the processing tasks at stages I and IV all
requiring heating steam. The overall tardiness and the makespan

were adopted as alternative objective functions. Table 8 shows the
batch steam requirements in ton/h at stages I and IV. The maximum
steam flow is 30 ton/h and it has been divided into five elements of
variable size. Therefore, five steam resource items have been defined.
Since the two stages share the same manufacturing resource, the
sequencing constraints for Case 2 introduced in Section 7 are to be
used.

Computational results found using both the proposed formulation
and the previous approach of Méndez and Cerdá (2003) are included
in Table 9. For both problem objectives, the same optimal value found
in Example 1 has been encountered. Therefore, the steam resource is
merely a capacity-constrained resource and the solutions provided
by the proposed approach are consequently the optimal ones. Com-
pared with the model size for Example 2, the proposed formulation
requires 80 extra allocation variables and 56 additional sequenc-
ing variables to order each pair of tasks sharing the same resource
and belonging to different stages. Besides, the resource element
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capacities �z and the related amounts of resource assigned to tasks
(�isz) increase the number of continuous variables. Despite that, the
best CBOR-solution for both objective functions has been found in a
very low CPU time. In contrast, the approach of Méndez and Cerdá
(2003) could not discover the optimal solution in either case within
the time limit of 3600 s. Moreover, it provides a very poor feasible
solution when the minimum total tardiness is the problem objective.

Fig. 8 shows the minimum-makespan schedule for Example 4.
The optimal capacities found for the steam resource items and their
assignment to processing tasks at stages I and IV as well as the steam
usage profile along the time horizon are also depicted in Fig. 8.

9. Conclusions

An approximate continuous-time formulation for the short-term
scheduling of multiproduct, multistage batch facilities with resource
constraints that relies on the so-called constant-batch-ordering rule
(CBOR) has been developed. The CBO Rule is a novel concept in-
troduced in this paper from bottleneck resource considerations and
some empirical evidence. It simply states that two batches should be
processed in the same order at every stage whenever both have been
allocated to the same resource item. By using the global precedence
notion to formulate the problem, a unique sequencing variable will
be enough to control the relative ordering of a pair of batches over
the whole processing structure. This leads to a substantial saving in
0–1 variables and a significant reduction in CPU time. If the same
batch ordering in certain stages is not attractive, the CBOR assumes
that a pair of alternative machines or resource items to separately
process them will always be available. The CBOR rule seems better
suited for scheduling problems where the processing time change
pattern along the task sequence is roughly similar for all production
orders. Three different types of objective functions were applied:
overall earliness, total tardiness and makespan. Despite the best pro-
duction schedule not necessarily satisfies the CBO-Rule, optimal or
near-optimal solutions to several instances of two large-scale multi-
stage batch scheduling examples without resource constraints were
discovered at low computational cost. Comparison with the results
obtained using two of the most efficient sequential methodologies
available in the literature (Méndez et al., 2001; Gupta and Karimi,
2003) show a substantial reduction in the CPU time, especially for
problems with a large number of batches and the overall tardi-
ness as the objective function. The CBOR-based problem represen-
tation has also been extended to account for resource constraints.
Unary and finite renewable resources other than equipment units
were considered. Additional constraints controlling the allocation of
unary/finite resource items to batches and the ordering of batches at
every resource item were presented. A decomposition scheme was
embedded in the CBOR-formulation to convert finite resources into
a set of unary resource items with capacities defined by the model.
In this way, a unified treatment of unary and finite resources has
been obtained. Different instances of two multistage batch schedul-
ing problems with some limitations in the available manpower or
steam flow were tackled. The results were favorably compared with
those obtained using the general precedence approach of Méndez
and Cerdá (2002, 2003). Therefore, the CBOR has proven to be an ex-
cellent assumption even for resource-constrained multistage batch
scheduling.

Notation

Indices

i,i′ batch
j,j′ equipment unit
r resource
s,s′ stage

sf, s� first and last processing stages
z resource item

Sets

I batches
J units
Jis units where task (i,s) can be allocated
Js units that belong to stage s
J(j)s+1 units at stage s+1 physically connected to unit j ∈ Js
R discrete/continuous renewable resources
R� subset of unary discrete resources

R� subset of finite discrete/continuous resources
Ris resources required to run task (i,s)
S stages
Zr available items of resource r

Parameters

ddi due date for batch i
H length of the scheduling horizon
ptij processing time of batch i at unit j
qz capacity of unary resource item z
Qr availability of finite resource r ∈ R
rti release time of batch i
ruj ready time of unit j
suij setup time of batch i in unit j
�i tardiness weight for batch i
�isjr rth resource requirement for task (i,s) when allocated to

unit j
�isr rth resource requirement for task (i,s)
�ii′j sequence-dependent setup time between batches i and i′

in unit j

Binary variables

Wisz binary variable denoting that resource item z has been al-
located to task (i,s)

Xii′ binary variable denoting that batch iis run before (Xii′ = 1)
or after (Xii′ =0) batch i′at any stage where both batches are
allocated to the same resource (constant-batch-ordering
principle)

Xis,i′s′ binary variable denoting that stage sof batch iis run before
(Xis,i′s′ = 1) or after (Xis,i′s′ = 0) stage s′of batch i′

Yij binary variable denoting that batch i is allocated to unit j

Continuous variables

Cis completion time of batch i at stage s
MK makespan
Sis starting time of batch i at stage s
Ti tardiness of batch i
�isz amount of resource item z allocated to batch i at stage s
�z capacity of discrete/continuous finite resource item z
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