
Available online at www.sciencedirect.com
www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engrg. 197 (2008) 1219–1232
Dynamic boundary conditions in computational fluid dynamics

Mario A. Storti *, Norberto M. Nigro, Rodrigo R. Paz, Lisandro D. Dalcı́n

Centro Internacional de Métodos Computacionales en Ingenierı́a (CIMEC), INTEC(CONICET-UNL), Güemes 3450, S3000GLN Santa Fe, Argentina
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Abstract

The number and type of boundary conditions to be used in the numerical modeling of fluid mechanics problems is normally chosen
according to a simplified analysis of the characteristics, and also from the experience of the modeler. The problem is harder at inflow/
outflow boundaries which are, in most cases, artificial boundaries, so that a bad decision about the boundary conditions to be imposed
may affect the precision and stability of the whole computation. For inviscid flows, the analysis of the sense of propagation in the normal
direction to the boundaries gives the number of conditions to be imposed and, in addition, the conditions that are ‘‘absorbing” for the
waves impinging normally to the boundary. In practice, it amounts to counting the number of positive and negative eigenvalues of the
advective flux Jacobian projected onto the normal. The problem is even harder when the number of incoming characteristics varies dur-
ing the computation, and the correct treatment of these cases poses both mathematical and practical problems. One example considered
here is a compressible flow where the flow regime at a certain part of an inlet/outlet boundary can change from subsonic to supersonic
and the flow can revert. In this work the technique for dynamically imposing the correct number of boundary conditions along the com-
putation, using Lagrange multipliers and penalization, is discussed and several numerical examples are presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Deciding how many and which boundary conditions to
impose at each part of an artificial boundary is often a dif-
ficult problem. This decision is made from the number of
incoming characteristics nþ and the quantities known for
each problem. If the number of conditions imposed on
the boundary is in excess they are absorbed through spuri-
ous shocks at the boundary. On the other hand, if less con-
ditions are imposed, then the problem is mathematically ill
posed. Even if the number of imposed boundary conditions
is correct, this does not guarantee that the boundary condi-
tions are non-reflective.
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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When dealing with models in infinite domains an arti-
ficial boundary distant as far as possible from the region
of interest must be introduced. The simplest choice is to
impose a boundary condition, assuming that the flow
far from the region of interest is undisturbed. However,
the boundary condition can be freely chosen so as to give
the best solution for a given position of the boundary.
Boundary conditions that tend to give the solution as if
the domain were infinite are called generally ‘‘absorbing”

(ABC) or ‘‘non reflective” (NRBC). ABC’s tend to give
a better solution for a given position of the artificial
boundary or, in other words, they allow to put the artifi-
cial boundary closer to the region of interest for a given
admissible error. Of course, the advantage of putting
the artificial boundary closer to the region of interest is
the reduction in computational cost. However, in some
cases, like for instance the solution of the Helmholtz
equation on exterior domains, using absorbing boundary
conditions is required since using a non absorbing bound-
ary condition (like Dirichlet or Neumann) may lead to a
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lack of convergence of the problem, because these condi-
tions are completely reflective and therefore, wave energy
is trapped in the domain, producing false resonance
modes.

There are basically two approaches for the design of
ABC’s, global and local. Global boundary conditions are
usually more accurate but expensive. In the limit, a global
ABC may reproduce the effect of the whole external prob-
lem onto the boundary, i.e., even maintaining a fixed posi-
tion of the artificial boundary the ABC may give a
convergent solution while refining the interior mesh. In
general these ABC’s are non-local, i.e., its discrete operator
is a dense matrix. Global boundary conditions exist and are
popular for the simpler linear operators, like potential flow
problems and frequency domain analysis of wave prob-
lems, like the Helmholtz equations for acoustics or the
Maxwell equations [1–7].

The discrete operator for local absorbing boundary con-
ditions is usually sparse but has a lower order accuracy
and, in general, it is needed to move the artificial boundary
condition to infinity while refining meshes in order to make
the whole algorithm convergent. These kind of ABC’s are
popular for more complex non-linear fluid dynamic prob-
lems, like compressible or incompressible, Navier–Stokes
equations or the inviscid Euler equations. An excellent
review has been written by Tsynkov [8].

In order to have an ABC not any nþ conditions must be
imposed at the boundary but exactly those nþ correspond-
ing to the incoming characteristics. This can be determined
through an eigenvalue decomposition problem of the
advective flux Jacobian at the boundary.

In many cases, the number of incoming characteristics
may change during the computation. For instance, in com-
pressible flow it is common that the flow goes from sub-
sonic to supersonic in certain parts of the outlet
boundary. In 3D, this means passing from one imposed
boundary condition to none.

In more complex problems, several combinations of
regimes can be attained: subsonic inlet, supersonic inlet,
subsonic outlet, supersonic outlet. A typical case where
this can happen is the free fall of a blunt symmetrical
object like an ellipse, for instance. If the body starts
from rest, it will initially accelerate and, depending on
the size and relation between the densities of the body
and the surrounding atmosphere, it may reach the super-
sonic regime. As the body falls, even at subsonic speeds,
its angle of attack tends to increase until eventually it
stalls, and then falls towards its rear part, and repeating
the process in a characteristic movement that recalls the
falling of tree leaves. During the falling, the speed of the
object varies periodically, accelerating when the angle of
attach is small and the body experiences little drag, and
decelerating when the angle of attack is large. For a
supersonic fall, the regime may change from supersonic
to subsonic and back during the fall. In addition, if
the problem is solved in a reference frame attached to
the body, the unperturbed flow may come from every
direction relative to the body’s axis. In this way, the
regime and direction of the flow at a given point of
the boundary may change through the whole possible
combinations.

Another example is the modeling of the ignition of a
rocket exhaust nozzle. In this case, the condition at the out-
let boundary changes from rest to supersonic flow as the
shock produced at the throat reaches the exterior
boundary.

For transport of scalars, this behavior may happen if the
transport velocity varies in time and the flow gets reverted
at the boundary. One such situation is when modeling the
transport of a scalar like smoke or contaminant concentra-
tion in a building with several openings under an external
wind. Assume that the concentration of solid particles or
contaminant is so low that its influence on the fluid is neg-
ligible so that the movement of the fluid inside the building
can be solved first and then the transport equation for the
scalar, taking the velocity of the fluid as the transport
velocity. As the flow in the interior fluctuates, the normal
component of velocity at a given opening may reverse its
direction.

The change of the number of imposed boundary condi-
tions at a given point of the boundary is hard to implement
from the computational point of view since it involves the
change of the structure of the Jacobian matrix. The solu-
tion proposed here is to impose these conditions through
Lagrange multipliers or penalization techniques. The main
objective of this paper is to discuss numerical aspects
related to the use of this techniques, to discuss specific
issues relative to the physical problems described above,
and to show some numerical examples.
2. General advective–diffusive systems of equations

Consider an advective diffusive system of equations in
conservative form

oHðUÞ
ot

þ oFc;jðUÞ
oxj

¼ oFd;jðU;rUÞ
oxj

þG: ð1Þ

Here U 2 Rn is the state vector, t is time, Fc;j and Fd ;j are
the advective and diffusive fluxes respectively, G is a source
term including, for instance, gravity acceleration or exter-
nal heat sources, and xj are the spatial coordinates.

The notation is standard, except perhaps for the ‘‘gen-

eric enthalpy function” HðUÞ. The inclusion of the enthalpy
function allows the inclusion of conservative equations in
terms of non-conservative variables. Some well-known
advective diffusive systems of equations may be cast in this
general setting as follows.
2.1. Linear advection diffusion

The heat advection–diffusion equation in terms of tem-
perature can be put in this form through the definitions
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U ¼ T ;

HðUÞ ¼ qCpT ;

Fc;jðUÞ ¼ qCpTuj;

Fd;jðU;rUÞ ¼ �qj ¼ �k
oT
oxj

;

ð2Þ

where U is the state vector, Cp the specific heat, uj a com-
ponent of a given velocity field u, T the temperature (the
unknown field), q the heat flux vector and k the thermal
conductivity of the medium.

2.2. Gas dynamics equations

Gas dynamic equations of a compressible flow can be
put in conservative form with the following definitions:

Up ¼ ½q; u; p�T ;
U ¼ Uc ¼ ½q; qu; qe�T ;
HðUpÞ ¼ U;

Fc;jnj ¼
qðu � n̂Þ

quðu � n̂Þ þ pn̂

ðqeþ pÞðu � n̂Þ

2
64

3
75;

Fd;jðU;rUÞnj ¼
0

T � n̂
T ikukni � qini

2
64

3
75:

ð3Þ

Note that even if the equations are put in terms of conser-
vative variables, the diffusive and convective fluxes are ex-
pressed in term of the primitive variables Up ¼ ½q; u; p�T
and where q is the density, p the pressure, e the specific
total energy, T the Newtonian viscous stress tensor and n̂

the normal vector (outward) to a given surface. However,
the fluxes can be thought as implicitly depending on the
conservative variables, since the relation UcðUÞ is one to
one. Now, the conservation equations can be also thought
in terms of any other set of variables, for instance the prim-
itive variables, if the ‘‘enthalpy function” HðUpÞ ¼ UcðUpÞ
is introduced.
3. Variational formulation

In this section, the variational formulation of the com-
pressible Navier–Stokes equations using SUPG (Stream-
line Upwind Petrov–Galerkin [9,10]) finite element
method and the shock capturing operator [11] is presented.
Consider a finite element discretization of the X into sub-
domains Xe; e ¼ 1; 2; . . . ; nelem. Based on this discretiza-
tion, the finite element function spaces for the trial
solutions and for the weighting functions, Vh and Sh

respectively, can be defined. These function spaces are
selected as subsets of ½H1hðXÞ�ndof when taking Dirichlet
boundary conditions, where H1hðXÞ is the finite dimen-
sional Sobolev functional space over X, and ndof ¼ nsd þ 2
is the number of dof’s in the continuum problem (nsd is
the number of spatial dimensions).
The stabilizing finite element formulation of the quasi-
linear form of (3) is written as follows: find Uh 2 Sh such
that 8Wh 2Vh

Z
X

Wh � oHðUhÞ
ot

þ oFh
c

oxi

� �
dX ¼

Z
X

Wh � oFh
d

oxi
þG

� �
dX;

Z
X

Wh � oHðUhÞ
ot

þ Ah
i

oUh

oxi
�G

� �
dX

�
Z

X

oWh

oxi
� Kh

ij

oUh

oxj
dX�

Z
Ch

Wh �Hh dC

þ
Xnelem

e¼1

Z
Xe

sðAh
kÞ

T oWh

oxk

� oUh

ot
þ Ah

i

oUh

oxi
� o

oxi
Kh

ij

oUh

oxj

� �
�G

� �
dX

þ
Xnelem

e¼1

Z
Xe

dshc

oWh

oxi
� oUh

oxi
dX ¼ 0;

ð4Þ

where

Sh ¼ fUhjUh 2 ½H1hðXÞ�ndof ;UhjXe 2 ½P 1ðXeÞ�ndof ;

Uh ¼ g on Cgg;
Vh ¼ fWhjWh 2 ½H1hðXÞ�ndof ;WhjXe 2 ½P 1ðXeÞ�ndof ;

Wh ¼ 0 on oXgg;

ð5Þ

and where matrices Ai and Kij are defined as

oFa

oxi
¼ oFa

oU

oU

oxi
¼ Ai

oU

oxi
ð6Þ

and

oFd

oxi
¼ oFd

oU

oU

oxi
¼ Kij

oU

oxi
: ð7Þ

The first three terms inside the first two integrals in the var-
iational formulation (4) constitute the Galerkin formula-
tion of the problem and the third integral accounts for
the Neumann boundary conditions. The first series of ele-
ment level integrals in (4) are the SUPG stabilization terms
added to prevent spatial oscillations in the advection-dom-
inated range. The second series of element level integrals in
(4) are the shock capturing terms added to assure the sta-
bility at high Mach and Reynolds number flows, specially
to suppress spurious overshoot and undershoot effects in
the vicinity of discontinuities.

Various options for calculating the stabilization param-
eters and defining the shock capturing terms in the context
of the SUPG formulation were introduced in [12]. In this
section some of these options are described. The first one
is the standard SUPG intrinsic time tensor s that was given
in [13] as a slightly modified version of the stabilization
parameters introduced in [9,10,14]. In this case, this matrix
is defined as s ¼ max½0; sa � sd � sd�, with each sx taking
into account the advective and diffusive effects and also
avoiding the duplication of the shock capturing operator
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and the streamline upwind operator. These matrices are
defined as

sa ¼
h

2ðcþ jujÞ I; sd ¼
Pnsd

j¼1b
2
j diagðKjjÞ

ðcþ jujÞ2
I;

sd ¼
dshc

ðcþ jujÞ2
I; ð8Þ

where c is the acoustic speed, h ¼ 2juj
Pnen

a¼1j
�

u � rNajÞ�1 is
the element size computed here as the element length in the
direction of velocity using for its definition the multi-lineal
trial function Na, b ¼ rkUk2

=k rkUk2k and dshc is the
shock capturing parameter defined in the next paragraph.
The s matrix computation is already an open problem be-
cause it is not possible to diagonalize the system of equa-
tions. It follows some heuristics arguments based on the
maximum value of the set of eigenvalues of the advective
Jacobian matrices for the characteristic velocity, some mea-
sure of the element size that may not be very well justified
but is equivalent to any other element size and some mech-
anism able to remove stabilization when physical diffusion
is present.

The design of the shock capturing operator is also an
open problem. Two versions are presented here: an isotro-
pic operator and an anisotropic one, both proposed by
Tezduyar et al. in [15]. A unit vector oriented with the den-
sity gradient is defined as j ¼ rqh=jrqhj and a characteris-

tic length as hJGN ¼ 2
Pnen

a¼1jj � rNaj
� ��1

, where Na is the

finite element shape function corresponding to the node
a. The above cited isotropic shock capturing factor
included in (4) is then defined as

dshc ¼
hJGN

2
uchar

jrqhjhJGN

qref

� �b

; ð9Þ

where uchar ¼ juj þ c is the characteristic velocity defined as
the addition of the flow velocity magnitude and the acous-
tic speed. Here qref is the Gaussian point interpolated den-
sity and b is usually taken in the range 1 6 b 6 2
according to the sharpness of the discontinuity to be cap-
tured as suggested in Ref. [15]. b ¼ 1 was used in this study.

The anisotropic version of the shock capturing term in
(4) is changed as follows

Xnelem

e¼1

Z
Xe

oWh

oxi
jidshcjk

oUh

oxk
dX: ð10Þ

The anisotropic shock capturing term showed good behav-
ior. Nevertheless, for some applications, both terms may be
needed, the isotropic one weighted by a factor close to 0.2
or lower.

4. Absorbing boundary conditions

For steady simulations using time-marching algorithms,
it can be shown that the error going towards the steady
state propagates like waves, so that absorbing boundary
conditions help to eliminate the error from the computa-
tional domain. In fact, it can be shown that for strongly
advective problems absorption at the boundaries is usually
the main mechanism of error reduction (the other mecha-
nism is physical or numerical dissipation in the interior
of the computational domain). It has been shown that in
such cases the rate of convergence can be directly related
to the ‘‘transparency” of the boundary condition [16]. In
general, absorbing boundary conditions are based on an
analysis of the characteristic waves. A key point is to deter-
mine which of them are incoming and which are outgoing.
Absorbing boundary conditions exist from the simplest
first order ones based on a plane wave analysis at a certain
smooth portion of the boundary (as will be described
below), to the more complex ones that tend to match a full
analytic solution of the problem in the external region with
that obtained in the internal region. In this paper the usage
of absorbing boundary conditions is accomplished in situ-
ations where the conditions at the boundary change, so as
the number of incoming and outgoing characteristic waves
varies during the temporal evolution of the problem, or
even when the conditions at the boundary are not well
known a priori.

4.1. Advective diffusive systems in 1D

Consider a pure advective system of equations in 1D,
i.e., Fd;j � 0

oHðUÞ
ot

þ oFc;xðUÞ
ox

¼ 0 in ½0; L�: ð11Þ

If the system is ‘‘linear”, i.e., Fc;xðUÞ ¼ AU, HðUÞ ¼ CU

(A and C do not depend on U), a first order linear system
is obtained

C
oU

ot
þ A

oU

ox
¼ 0: ð12Þ

The system is ‘‘hyperbolic” if C is invertible, C�1A is diag-
onalizable with real eigenvalues. If this is the case, it is pos-
sible to make the following eigenvalue decomposition for
C�1A

C�1A ¼ SKS�1; ð13Þ
where S is real and invertible and K is real and diagonal. If
new variables are defined V ¼ S�1U, then Eq. (12) becomes

oV

ot
þ K

oV

ox
¼ 0: ð14Þ

Now, each equation is a linear scalar advection equation

ovk

ot
þ kk

ovk

ox
¼ 0 ðno summation over kÞ: ð15Þ

vk are the ‘‘characteristic components” and kk are the ‘‘char-

acteristic velocities” of propagation.

4.2. Linear 1D absorbing boundary conditions

Assuming kk 6¼ 0, the absorbing boundary conditions
are, depending on the sign of kk,
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if kk > 0 : vkð0Þ ¼ �vk0; no boundary condition at x ¼ L;

if kk < 0 : vkðLÞ ¼ �vkL; no boundary condition at x ¼ 0:

ð16Þ

This can be put in compact form as

PþV ðV� V0Þ ¼ 0; at x ¼ 0;

P�V ðV� VLÞ ¼ 0; at x ¼ L;
ð17Þ

where P�V are the projection matrices onto the right/left-

going characteristic modes in the V basis,

PþV ;jk ¼
1; if j ¼ k and kk > 0;

0; otherwise;

�

Pþ þP� ¼ I:

ð18Þ

It can be easily shown that they are effectively projection

matrices, i.e., P�P� ¼ P� and PþP� ¼ 0. Coming back
to the boundary condition at x ¼ L in the U basis, it can
be written

P�V S�1ðU�ULÞ ¼ 0 ð19Þ

or, multiplying by S at the left

P�U ðU�U0;LÞ ¼ 0; at x ¼ 0; L; ð20Þ

where

P�U ¼ SP�V S�1 ð21Þ

are the projection matrices in the U basis. These conditions
are completely absorbing for 1D linear advection system of
Eq. (12).

The rank of Pþ is equal to the number nþ of positive
eigenvalues, i.e., the number of right-going waves. Recall
that the right-going waves are incoming at the x ¼ 0
boundary and outgoing at the x ¼ L boundary. Conversely,
the rank of P� is equal to the number n� of negative eigen-
values, i.e., the number of left-going waves (incoming at
x ¼ L and outgoing at the x ¼ 0 boundary).

4.2.1. Numerical example. 1D compressible flow

The solution of 1D compressible flow in 0 6 x 6 L ¼ 4
is considered. The undisturbed flow has a Mach number
Fig. 1. Temporal evolution of axial velocity in 1D gas dynamic
of 0.5 and at t ¼ 0 there is a perturbation in the form of
a Gaussian as follows

Uðx; t ¼ 0Þ ¼ Uref þ DUeðx�x0Þ=r2

; ð22Þ

where qref ¼ 1, uref ¼ 0:5, pref ¼ 0:714, (Maref ¼ 0:5)
Dq ¼ Dp ¼ 0, Du ¼ 0:1, R ¼ 1, x0 ¼ 0:8 and r ¼ 0:3. The
evolution of this perturbation is simulated using N ¼ 50
equal-spaced finite elements (h ¼ L=N ¼ 0:08) with SUPG
stabilization and Crank–Nicholson temporal scheme with
Dt ¼ 0:05 (CFL number � 0:84). As the flow is subsonic
two conditions at inlet and one at outlet must be imposed.
The results using standard (p ¼ pref ) and absorbing bound-
ary conditions at outlet (x ¼ L) are compared. In both
cases, non-absorbing conditions (q ¼ qref and u ¼ uref )
were imposed at inlet (x ¼ 0). Fig. 1 shows the evolution
in time (in the form of an elevation view) of the velocity
Fig. 2 when using the condition p ¼ pref at outlet, while
Fig. 3 shows the results when using first order linear
absorbing boundary conditions based on the unperturbed
state. It can be seen that without absorbing boundary con-
dition the perturbation reflects at both boundaries. Even
after t ¼ 40 a significant amount of perturbation is still in-
side the domain. At this point the perturbation has re-
flected four times at the boundaries. When using the
absorbing boundary condition the perturbation is almost
completely absorbed after it hits the outlet boundary. Note
that the absorption is performed in two steps. First the per-
turbation splits in two components, one propagating
downstream an another upstream. The first hits the outlet
boundary and is absorbed, the other travels backwards, re-
flects at the inlet boundary and then travels to the outlet
boundary, where it hits at t ¼ 4:5. This shows that in 1D
it is enough with only one absorbing boundary to have a
strong dissipation of energy.
4.3. Multidimensional problems

For multidimensional problems a simplified 1D analysis
can be done in the normal direction to the local boundary
and with the flux Jacobian A in Eq. (13) replaced with its
projection onto the exterior normal n̂, as follows
s problem without absorbing boundary condition at outlet.



Fig. 2. Temporal evolution of axial velocity in 1D gas dynamics problem with absorbing boundary condition at outlet.
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P�n ðU�UÞ ¼ 0;

P�n ¼ SnP
�
VnS�1

n ;

ðP�VnÞjk ¼
1; if j ¼ k and kj < 0;

0; otherwise;

�

C�1An ¼ SnKnS�1
n ; ðKn diagonalÞ;

An ¼ Alnl:

ð23Þ

These conditions are perfectly absorbing for perturba-
tions reaching the boundary normal to the surface. For
perturbations not impinging normally, the condition is
partially absorbing, with a reflection coefficient that in-
creases from 0 at normal incidence to 1 for tangential
incidence.
4.4. Absorbing boundary conditions for non-linear problems

If the problem is non-linear, as the gas dynamics or shal-
low water equations, then the flux Jacobian A is a function
of the state of the fluid, and then the same happens for the
projection matrices P�. If it is assumed that the flow is
composed of small perturbations around a reference state
Uref , then the projection matrix at the state Uref can be
computed

PðUrefÞ�n ðU�UrefÞ ¼ 0: ð24Þ

However, as long as the fluid state departs from the refer-
ence value the condition becomes less and less absorbing.
4.4.1. Numerical example. Varying section compressible 1D

flow

Consider a one-dimensional flow in a tube with a con-
traction of 2:1. The inlet Mach number is 0.2 and the var-
iation of area along the tube axis is

AðxÞ ¼ A0 1� C
tanhðx� Lx=2Þ

Lc

� �
; ð25Þ

where A0 is some (irrelevant) reference area, C is a constant
given by C ¼ ða� 1Þ=ðaþ 1Þ, a ¼ Ain=Aout is the area ratio
and Lc ¼ 0:136 is a parameter controlling the width of the
transition. Variables q and u are imposed at the inlet and
consider different outlet conditions, namely

� non-absorbing, p ¼ cnst,
� absorbing linear (see (20)), and
� absorbing non-linear (see (24)).
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Figs. 3 and 4 show the evolution in time of the state vec-
tor increment (kDUk) for different absorbing and non-
absorbing boundary conditions. Note that the absorbing
linear condition behaves worst than the non-absorbing
one, due to the fact that the state at the boundary has
departed from the initial state, with which the projectors
have been computed. This does not happens with the
absorbing non-linear condition since it uses always the last
computed state for the computation of the projection
matrices.

4.5. Riemann based absorbing boundary conditions

Suppose that for a small interval t 6 t0 6 t þ Dt the state
UðtÞ is taken as the reference state, then, during this inter-
val P�ðUðtÞÞ is taken as the projection operator onto the
incoming characteristics and the absorbing boundary con-
ditions are

P�ðUðtÞÞ ðUðt0Þ �UðtÞÞ ¼ 0: ð26Þ

But regarding the equivalent expression (19) it can be writ-
ten as

ljðUÞ � dU ¼ 0; if kj < 0; ð27Þ

where lj is the jth left eigenvalue of the normal flux Jaco-
bian. Note that, as lj is a function of U, this is a differential
form on the variable U. If it happens that this is a exact dif-
ferential, i.e.,

lðUÞ ljðUÞ � dU ¼ dwjðUÞ ð28Þ

for some non-linear function wj and an ‘‘integration factor”
lðUÞ, then it can be imposed

wjðUÞ ¼ wjðUrefÞ ðfor wj an incoming char:Þ ð29Þ

which would be an absorbing boundary condition for the
whole non-linear regime. The functions wj are often re-
ferred as ‘‘Riemann invariants” (RI) for the flux function.

For the 2D shallow water equations, the Riemann invar-
iants are well known (see Ref. [17]). For 1D channel flow,
Riemann invariants are known for a few channel shapes
 1e–16
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Fig. 4. Rate of converge of 1D gas dynamics problem in full non-linear
regime with different kind of absorbing boundary conditions.
(rectangular and triangular). For general channel sections
they are not known and in addition there is not a general
numerical method for computing them. They could be
computed by numerical integration of Eq. (28) along a
path in state space, but the integration factor is not known.

Riemann invariants are known for the shallow water
equations

w� ¼ u � n̂� 2
ffiffiffiffiffi
gh

p
; ð30Þ

and for channel flow they, are known only for rectangular
and triangular channel shapes. For the triangular case, RI
are

w� ¼ u � n̂� 4
ffiffiffiffiffi
gh

p
: ð31Þ

For the gas dynamics equations, the well known Riemann
invariants are invariant only under isentropic conditions,
so that they are not truly invariant. They are

w� ¼ u� 2c
c� 1

: ð32Þ
4.6. Absorbing boundary conditions based on last state

While integrating the discrete equations in time, the
state of the fluid in the previous state can be taken as the
reference state

P�ðUnÞ ðUnþ1 �UnÞ ¼ 0: ð33Þ
It is clear that the assumption of linearization is well justi-
fied, since in the limit of Dt! 0 it should be Unþ1 � Un. In
fact, (33) is equivalent, for Dt! 0 to (27), so that if
Riemann invariants exist, then this scheme preserves them
in the limit Dt! 0 and Dx! 0. This strategy is called
ULSAR (for Use Last State As Reference).

However, if this scheme is used in the whole boundary,
then the flow in the domain is only determined by the initial
condition, and it can drift in time due to numerical errors.
Also, in a steady state of a certain regime, there is no way
to guarantee that the regime will be obtained. For instance,
to obtain the steady flow around an aerodynamic profile at
a certain Mach number, the initial state with a non per-
turbed constant flow at that condition can be stated, but,
it cannot be assured that the final steady flow will preserve
that Mach number. In practice, a mix of the strategies are
often used, with linear boundary conditions imposed at
inlet regions and absorbing boundary conditions based
on last state on the outlet regions.

4.6.1. Numerical example. ULSAR strategy keeps RI

constant

Consider a 1D compressible flow example, as in Section
4.2.1, with qref ¼ 1, uref ¼ 0:2, pref ¼ 0:714, (Maref ¼ 0:2),
Dq ¼ Dp ¼ 0, Du ¼ 0:6, R ¼ 1, x0 ¼ 0:5L ¼ 2 and r ¼ 0:3.
Note that this represents a perturbation in velocity that
goes from Ma = 0.2 to 0.8, so that full non-linear effects
are evidenced. The evolution of this perturbation is simu-
lated using N ¼ 200 equal-spaced finite elements
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(h ¼ L=N ¼ 0:08) with SUPG stabilization and Crank–
Nicholson temporal scheme with Dt ¼ 0:02 (CFL number
� 1:2). The values are dimensionless by selecting L, qref

and uref as reference values for length, density and velocity.
Absorbing boundary conditions based on the ULSAR
strategy are applied at both ends x ¼ 0; L. The values of
the Riemann invariants (32) are computed there and they
are plotted in Fig. 5. It can be seen that the incoming RI
(the right going wþ) is kept approximately constant at the
left boundary x ¼ 0 and the same happens, mutatis mutan-

dis, at the other boundary x ¼ L. Convergence history is
shown in Fig. 6. Note that absorption is very good, despite
the full non-linear character of the flow.
4.7. Imposing non-linear absorbing boundary conditions

In this section, the integration of the absorbing bound-
ary conditions in a numerical code is discussed. For linear
systems, the discrete version of Eq. (12) is of the form

C
Unþ1

0 �Un
0

Dt
þ A

Unþ1
1 �Unþ1

0

h
¼ 0;

C
Unþ1

k �Un
k

Dt
þ A

Unþ1
kþ1 �Unþ1

k�1

2h
0; k P 1;

ð34Þ
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Fig. 6. Convergence history when using with ULSAR ABC’s.
where Un
k is the state at grid point k at time tn ¼ nDt. It is

assumed a constant mesh step size of h, i.e., xk ¼ kh, and
the boundary located at the mesh node x0 ¼ 0. Several sim-
plifications were assumed here, no source or upwind terms,
and a simple discretization based on centered finite differ-
ences was used. Alternatively, it can be thought as a pure
Galerkin FEM discretization with mass lumping. Also,
backward Euler differencing in time is used.

If the projector onto incoming waves PþU has rank
nþ ¼ n, then PþU ¼ I and the absorbing boundary condi-
tion reduce to U ¼ Uref (being Uref a given value or Un

0

for ULSAR). This happens for instance in a supersonic
inlet for gas dynamics or an inlet boundary for linear
advection. In this case it is replaced the balance equation
for the boundary node (the first equation in (34)) with
the absorbing condition U ¼ Uref , keeping the balance
between equations and unknowns.

Conversely, if the projector onto incoming waves PþU
has rank nþ ¼ 0, then PþU ¼ 0 and the absorbing boundary
condition reduce to not imposing anything. This happens
for instance in a supersonic outlet for gas dynamics or an
outlet boundary for linear advection. In this case the
absorbing condition U ¼ Uref is discarded. Again, the num-
ber of equations and unknowns is maintained.

The case is more complicated when 0 < nþ < n. It can-
not be added the absorbing condition (either (20), (29) or
(33)), because the boundary balance equation cannot be
discarded or maintained.

There are at least two strategies for imposing this non-
linear boundary conditions. One possibility is to replace
the boundary balance equation for the outgoing waves
with a null first derivative condition. Then a discrete ver-
sion can be generated with finite difference approximations.
(This requires, however, a structured mesh at least near the
boundary.) The other is to resort to the use of Lagrange
multipliers or penalization techniques. One advantage of
using Lagrange multipliers or penalization is that not only
the boundary conditions coefficients can easily be changed
for non-linear problems, but also the number of imposed
boundary conditions. This is important for problems where
the number of incoming characteristics cannot be easily
determined a priori, or for problems where the flow regime
is changing from subsonic to supersonic, or the flow
reverts. In the rest of this section the second strategy will
be described in detail.

In the base of the characteristic variables V, (34) can be
written as

Vnþ1
0 � Vn

0

Dt
þ K

Vnþ1
1 � Vnþ1

0

h
¼ 0;

Vnþ1
k � Vn

k

Dt
þ K

Vnþ1
kþ1 � Vnþ1

k�1

2h
¼ 0; k P 1:

ð35Þ

For the linear absorbing boundary conditions (20) it
should be imposed

PþV ðVrefÞðV0 � VrefÞ ¼ 0; ð36Þ
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while discarding the equations corresponding to the incom-
ing waves in the first rows of (35). Here Uref=Vref is the state
about which the linearization is done.
ρ
p

slip condition
4.7.1. Using Lagrange multipliers

This can be done, via Lagrange multipliers in the follow-
ing way

PþV ðVrefÞðV0 � VrefÞ þP�V ðVrefÞVlm ¼ 0;

Vnþ1
0 � Vn

0

Dt
þ K

Vnþ1
1 � Vnþ1

0

h
þPþV ðVrefÞVIm ¼ 0;

Vnþ1
k � Vn

k

Dt
þ K

Vnþ1
kþ1 � Vnþ1

k�1

2h
¼ 0; k P 1;

ð37Þ

where VIm are the Lagrange multipliers for the imposition
of the new conditions. On one hand, if j is an incoming
wave (kj P 0), then the equation is of the form

vj0 � vref0 ¼ 0;

vnþ1
j0 � vn

j0

Dt
þ kj

vnþ1
j1 � vnþ1

j0

h
þ vj;Im ¼ 0;

vnþ1
jk � vn

jk

Dt
þ kj

vnþ1
j;kþ1 � vnþ1

jk

2h
¼ 0; k P 1:

ð38Þ

Note that, due to the vj;Im Lagrange multiplier, it can be
solved for the vjk values from the first and last rows, while
the value of the multiplier vj;Im ‘‘adjusts” itself in order to
satisfy the equations in the second row.

On the other hand, for the outgoing waves (kj < 0), the
equations is

vj;Im ¼ 0;

vnþ1
j0 � vn

j0

Dt
þ kj

vnþ1
j1 � vnþ1

j0

h
¼ 0;

vnþ1
jk � vn

jk

Dt
þ kj

vnþ1
j;kþ1 � vnþ1

jk

2h
¼ 0; k P 1:

ð39Þ

So that the solution coincides with the unmodified original
FEM equation, and the Lagrange multiplier is vj;Im ¼ 0.

Coming back to the U basis, it can be written

PþU ðUrefÞ ðU0 �UrefÞ þP�U ðUrefÞUIm ¼ 0;

C
Unþ1

0 �Un
0

Dt
þ A

Unþ1
1 �Unþ1

0

h
þ CPþU ðUrefÞUIm ¼ 0;

C
Unþ1

k �Un
k

Dt
þ A

Unþ1
kþ1 �Unþ1

k�1

2h
¼ 0; k P 1:

ð40Þ
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Fig. 7. Problem geometry.
4.7.2. Using penalization

The corresponding formulas for penalization can be
obtained by adding a diagonal term scaled by a small reg-
ularization parameter � to the first equation in (40)

� �UIm þPþU ðU0 �UrefÞ þP�U UIm ¼ 0;

C
Unþ1

0 �Un
0

Dt
þ A

Unþ1
1 �Unþ1

0

h
þPþU UIm ¼ 0;

ð41Þ
where, for the moment, the dependence of the projectors
on Uref is dropped. Eliminating UIm from the first and sec-
ond rows it is obtained

C
Unþ1

0 �Un
0

Dt
þ A

Unþ1
1 �Unþ1

0

h
þPþU ðP�U þ �IÞ

�1 PþU ðU0 �UrefÞ ¼ 0: ð42Þ

Now, using projection algebra it can be shown that

ðP�U þ �IÞ
�1 ¼ 1

�
PþU þ

1

1þ �P
�
U

� �
; ð43Þ

so that the last term in (42) reduces to PþU ðU0 �UrefÞ and
the whole equation is

C
Unþ1

0 �Un
0

Dt
þ A

Unþ1
1 �Unþ1

0

h
þ 1

�
CPþUðU0 �UrefÞ ¼ 0:

ð44Þ
Here 1=� can be thought as a large penalization factor.

4.8. Viscous compressible subsonic flow over a parabolic

bump

In order to evaluate the absorption of waves impinging
at fictitious boundaries a 2D test consisting of a compress-
ible subsonic flow over a parabolic bump at Maref ¼ 0:5 is
considered (see Fig. 7). The idea is to assess how the length
from bump trailing edge to the fictitious outflow (Lout)
affects the predicted forces and their time evolution. Two
set of simulation were carried out. One set considering
non-absorbent boundary conditions where variables are
imposed as specified in Fig. 7. At inlet wall the imposed con-
ditions are q ¼ qref ¼ 1, u ¼ uref ¼ Maref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpref=qref

p
¼ 0:5

and v ¼ 0. At the outflow boundary pressure is imposed,
i.e., p ¼ pref ¼ 1=c, where c ¼ 1:4. The second set of simula-
tions is considering ULSAR non-reflecting conditions at
channel inlet and outlet. Initial state for both set of prob-
lems is U ¼ ðqref ; uref ; 0; prefÞ. Parameters in Fig. 7 are:
Lin ¼ 1:4, Lbump ¼ 2, hbump ¼ 0:1 and Lout ¼ 1; 2; 4; 8. The
values are dimensionless by selecting L, qref and uref as ref-
erence values for length, density and velocity.
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Figs. 8 and 9 show how ULSAR conditions produce the
wave absorption at fictitious boundaries.
5. Dynamically varying boundary conditions

5.1. Varying boundary conditions in external aerodynamics

During a flow computation the number of incoming
characteristics nþ may change. This can occur due to a flow
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subsonic flow (Minf<1)

subsonic incoming
rho,u,v

p
subsonic outgoing

rho,u,v,

Fig. 10. Number of incoming/outgoing charac
regime changing (i.e., from subsonic to supersonic) or due
to a flow sense changing (flow reversal). A typical case is
the external flow around an aerodynamic body as shown
in Fig. 10. Consider first a steady subsonic flow. The flow
is normally subsonic at the whole infinite boundary, even
if some supersonic pockets can develop at transonic speeds.
Then the only two possible regimes are subsonic inlet
(nþ ¼ nd þ 1, nd is the spatial dimension) and subsonic out-
let (nþ ¼ 1). By looking at the projection of the unper-
turbed flow velocity u1 onto the local normal n̂ it can be
settled whether the boundary is inlet or outlet. For the
steady supersonic case the situation is very different. A
bow shock develops in front of the body and forms a sub-
sonic region which propagates downstream. Far down-
stream the envelope of the subsonic region approaches a
cone with an aperture angle equal to the Mach angle for
the undisturbed flow. Now, the inlet region is supersonic
and the outlet one is both, subsonic and supersonic. The
point where the flow at outlet changes from subsonic to
supersonic may be estimated from the Mach angle, but it
may be very inaccurate if the boundary is close to the body.
Having a boundary condition that can automatically adapt
itself to the whole possibilities can be of great help in such a
case. Now, consider the unsteady case, for instance a body
slowly accelerated from subsonic to supersonic speeds. The
inlet part will change at some point from subsonic to super-
sonic. At outlet, some parts will change also from subsonic
to supersonic, and the separation between both parts will
change its position, following approximately the instanta-
neous Mach angle.
5.2. Aerodynamics of falling objects

An interesting case is the aerodynamics of a falling body
[18–22]. Consider, for simplicity, a two-dimensional case of
an homogeneous ellipse in free fall (Fig. 11). As the body
accelerates, the pitching moments tend to increase the angle
of attack until it stalls (A). Then, the body starts to fall
towards its other end, and accelerates while its main axis
aligns with gravity (B). As the body accelerates the pitching
moment grows until it eventually stalls again (C). The pat-
tern is repeated during the downfall. This kind of falling
supersonic flow (Minf>1)

p

M>1
M<1

bow shock

p

supersonic outgoing

subsonic outgoing

(no field imposed)

teristics changing on an accelerating body.
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mechanism is typical of slender bodies with relatively small
moment of inertia like a sheet of paper and is called
‘flutter’. However, depending on several parameters, but
mainly depending on the moment of inertia of the body,
if it has a large angular moment at (B), it may happen that
it rolls on itself, keeping always the same sense of rotation.
This kind of falling mechanism is called ‘tumble’ and is a
typical pattern for thicker and massive objects. For massive
objects (like a ballistic projectile, for instance) tumbling
may convert a large amount of potential energy in the form
of rotation, causing the object to rotate at very large
speeds. As the body falls it accelerates and can reach super-
sonic speeds. This depends on the density of the body rel-
ative to the surrounding atmosphere, its dimensions and
shape. As the weight of the body goes with / L3, being
L the characteristic length, while the drag force goes with
/ L2, larger bodies tend to reach larger limit speeds and
eventually reach supersonic regime.

The falling of a body can be modeled in several ways. In
order to avoid the use of deforming meshes, a fixed mesh
attached to the body can be used. Then, it is possible to
perform the computation in a non-inertial frame moving
with the body or using an inertial frame with a moving

but not deforming mesh. In the first case ‘‘inertial forces”

(Coriolis, centrifugal) must be added, while in the second
case convective terms must take into account the mesh
velocity as in the ‘‘Arbitrary Lagrangian Eulerian (ALE)”

formulation. In this example the second strategy was used.
The computation of the flow is linked to the dynamics of

the falling object. The strategy is a typically staggered fluid/
solid interaction process [23–26]. First, a standard predic-
tor is applied in order to obtain a guess for the position
of the body at tnþ1. Then, the fluid solver updates the state
of the fluid from tn to tnþ1 including the ALE terms. Then,
A

B

C

B

D

flutter tumble

Fig. 11. Falling ellipse.
with the state of the fluid at tnþ1 the forces exerted by the
fluid on the body are computed and the equations for the
rigid motion of the body are solved (six degrees of freedom,
accounting for two linear position and velocities, rotation
angle and its derivative).

Coming back to the boundary conditions issue, added
the fact that the body can accelerate and decelerate, and
going back and forth from subsonic to supersonic speeds,
it must be taken into account that the angle from which
the unperturbed flow impinges on the body varies with
time. So, as the body can rotate arbitrarily, the flow can
impinge from any direction relative to the boundary.

5.2.1. Numerical example. Ellipse falling at supersonic speed

As an example consider the fall of an ellipse with the fol-
lowing physical data

� a ¼ 1, b ¼ 0:6 (major and minor semi-axes, eccentricity

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

q
¼ 0:8),

� m ¼ 2:885 (mass of body),
� g ¼ 2:5 (gravity),
� r ¼ 1 (radius of inertia),
� c:m: ¼ ð�0:15; 0:0Þ (center of mass),
� qa ¼ 1 (atmosphere density),
� p ¼ 1 (atmosphere pressure),
� c ¼ 1:4 (gas adiabatic index c ¼ Cp=Cv),
� Rext ¼ 10 (radius of the fictitious boundary),
� uini ¼ ½0; 0; 1:39; 0; 1:3; 0� (ellipse initial state (position

and velocity) [x; y; h; u; v; _h]).

These values are dimensionless by selecting a, qa and c0

as reference values for length, density and velocity, so that
the non-dimensional quantities are q0a ¼ 1, p0 ¼ 1=c,
u0 ¼ 0:5 (in the following the prime indicating non-dimen-
sional quantities is dropped). A coarse estimation of the
C

B

A

Fig. 12. Computed trajectory of falling ellipse.
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limit speed v can be obtained by balancing the vertical
forces on the body, i.e., the drag on the body (F aero), the
weight and the hydrostatic flotation

F aero þ W þ F float ¼
1

2
CDqav2A� qsgV þ qagV ¼ 0; ð45Þ

where V ¼ pab is the volume of the body (the area in 2D)
and A ¼ 2b the area of the section facing the fluid (length in
2D). CD ¼ 0:2 is an estimation for the drag coefficient of
the body and qs ¼ m=V ; qa the densities of solid and atmo-
sphere respectively. For the data above, this estimation
Fig. 13. Ellipse falling at supersonic speeds. Colormaps of Mach number. Top
(t ¼ 10). Stations in the trajectory refer to Fig. 12. Results are shown in a non
gives a limit speed of v ¼ 4:6 approximately. The speed
of sound of the atmosphere is c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
cp=qa

p
¼ 1:18, so that

it is expected that the body will reach supersonic speeds.
Of course, if the body does reach supersonic speed, then
the drag coefficient will be higher and probably the average
speed will be lower than that one estimated above.

The initial conditions are the ellipse starting at velocity
(0,�1.39), null angular velocity, and an angle of its major
axis of 80� with respect with the vertical. The fluid is ini-
tially at rest. The computed trajectory until t ¼ 50 time
units is shown in Fig. 12. The computed trajectory is shown
left: station A (t ¼ 3:75), top right: station B (t ¼ 6:25), bottom: station C
-inertial frame attached to the ellipse.
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in a reference system falling at velocity v ¼ ð�0:5; 0:5Þ (this
is done in order to reduce the horizontal and vertical span
of the plot). Fig. 13 show colormaps of Mach number at six
instants, in the inertial frame fixed to the fluid. The instants
are marked as A;B;C and identified in the trajectory. Note
that as the ellipse rotates, each part of the boundary exper-
iments all kind of regimes and the absorbing boundary
condition copes with all of them. Note also that the artifi-
cial boundary is located very near to the body, the radius of
the external circle is 3.25 times the major semi-axis of the
ellipse (in the case simulated with the minor external
radius, i.e., Rext ¼ 5).

In Fig. 14, the velocities of the ellipse are shown in order
to evaluate the absorption of ULSAR conditions when
waves reach boundaries as the ellipse falls and tumble/flut-
ter when the fictitious boundary (exterior circle) is located
at Rext ¼ 5 m and Rext ¼ 10 m and the size of finite elements
remain constant.
6. Conclusions

Absorbing boundary conditions reduce computational
cost by allowing to put the artificial exterior boundary clo-
ser to the region of interest. Extension to the non-linear
cases can be done either by using Riemann invariants or
by using the state at the previous time step as reference
state for a linearized boundary condition. In complex sim-
ulations, the number of incoming characteristic waves may
vary during the computation or may not be known a priori.
In those cases, absorbing boundary conditions can be
imposed with the help of Lagrange multipliers or penaliza-
tion techniques.
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