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Correction of optical distortions in dry
depth profiling with confocal Raman
microspectroscopy
J. Pablo Tomba,∗ María de la Paz Miguel and Claudio J. Perez

We present a generalized approach to obtain improved Raman intensity profiles from in-depth studies performed by confocal
Raman microspectroscopy (CRM) with dry objectives. The approach is based on regularized deconvolution of the as-measured
confocal profile, through a kernel that simulates optical distortions due to diffraction, refraction and collection efficiency on
the depth response. No specific shape or restrictions for the recovered profile are imposed. The strategy was tested by probing,
under different instrumental conditions, a series of model planar interfaces, generated by the contact of polymeric films of
well-defined thickness with a substrate. Because of the aforementioned optical distortions, the as-measured confocal response
of the films appeared highly distorted and featureless. The signal computed after deconvolution recovers all the films features,
matching very closely with the response expected. Copyright c© 2011 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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Introduction

Confocal Raman microspectroscopy (CRM) has widely been
shown to be a valuable tool that combines spatially resolved
measurements with high sensitivity to molecular, environmental
and structural sample features. This natural contrast allows the
mapping of the physicochemical features of several families
of materials without resorting to chemical labeling and with
minimum sample preparation.

One remarkable element of CRM is the capability of in-depth
analyses by optical sectioning, i.e. the nondestructive study of
thin sample slices as a function of depth. This probing mode,
particularly suitable for transparent samples, has naturally found
application, for instance, in the polymer field, being applied in
studies of distribution of species, crystals or inclusions in a wide
variety of matrices.[1 – 7] In theory, depth (or axial) resolution
in confocal conditions is determined by the diffraction-limited
laser focal dimensions, which is typically below 2 µm for most
of the commercial instruments equipped with visible lasers
and high-magnification objectives. However, depth resolution
within the sample may become refraction-limited, particularly
when the laser beam is delivered with dry objectives.[8,9] The
mismatch in refractive indices between air and the sample causes
significant spreading of the laser focal volume, which results in a
dramatic broadening of the depth response as one probes deeper
into the sample. Another undesirable effect is that the depth
scale is artificially compressed, making sample features appear
artificially closer to the microscope objective. Laser refraction
also perturbs the collection efficiency of the confocal system,
causing a continuous reduction in the detected intensity with
focusing depth.[10 – 12] All these effects conspire against data
quality, smearing out important sample details.

In microscopy, the standard way of minimizing the influence
of refraction is the use of immersion objectives with a fluid

whose refractive index matches that of the sample. However,
this strategy is not always viable, as many substrates (e.g.
polymers) do not tolerate the direct contact with the organic
liquids used as coupling fluids, besides the potential problem
of spectral overlapping. A series of instrumental adaptations has
been suggested to avoid sample damage, which includes the use
of double-oil configurations, objectives with cover slip correction
or the reversible application of protective coatings; the reader may
refer to Ref. [13] for further details.

In a different direction, data correction through mathematical
modeling appears as a wise strategy yet to be explored in CRM.
Overall, the core of these methods relies on precise knowledge
on how the depth response is distorted by optical/instrumental
conditions. Recently, Reinecke et al. reported one of the first and
remarkable attempts to obtain Raman intensity depth profiles of
modifiers in polymer films improved by numerical corrections,
where modifier distribution and depth response are obtained by
fitting data to pre-established function, with the help of a sample
with known profile to calibrate the depth response.[14]

We report here a general approach based on regularized
deconvolution, which is designed to recover realistic Raman
intensity depth profiles from distorted measurements carried out
with dry objectives. The strategy does not assume any specific
shape for the recovered profile and uses a simple predictive model
to describe the depth response. We test our approach by probing
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under different instrumental conditions a series of well-defined
planar interfaces generated by contact between polymeric films
of well-defined thickness with a substrate. In this model system,
the genuine undistorted response is exactly known in advance; on
the other hand, the presence of sharp sample features represents
a serious challenge to the precision and reliability of the method.

Experimental

Model planar interfaces were produced by contact between
a flexible polypropylene (PP) film with a rigid, much ticker
poly(methyl methacrylate) (PMMA) piece. The PP film was
maintained in position using holders, which were adjusted to
apply a slight tensile force on the edges of the film. The PMMA
piece had a smooth, carefully polished, convex curvature on the
top, which, combined with the tensile force applied to the film
borders, produced a good film/substrate contact. PP films with
thicknesses of 28, 50 and 80 µm, as measured with a Mitutoyo
micrometer (model 395-271, ±1 µm precision), were used.

Raman spectra were recorded on a Renishaw in-Via Reflex
spectrometer, equipped with a charge coupled device (CCD)
detector of 1024×256 pixels for the spectral and spatial dimensions
(26 µm pixel width), a holographic grating of 2400 groves/mm
and a 50-mW Ar laser (514 nm wavelength) as excitation source.
Confocality is achieved by properly selecting a limited active area
on the spatial CCD dimension and by controlling the aperture of
the spectrometer slit. Two confocal setups were employed: high
confocality (optimum depth resolution), which uses three pixels
of the CCD detector and 20 µm slit width, and regular confocality
(optimum signal), via nine pixels of the CCD detector and 65 µm slit
width. Data were acquired with two Leica metallurgical objectives
with different numerical apertures (NAs): 0.9 (100×) and 0.75
(50×). Depth profiling was carried out by mounting the samples
on a microscope stage with vertical displacement, controlled by
software, with 0.1 µm precision. Raman intensity depth profiles
were measured by recording Raman spectra from different depths
by moving the stage vertically (or axially) in steps of 1 µm.

Modeling and Data Treatment

The core of the numerical corrections based on deconvolution
is the first kind Fredholm integral equation that relates the as-
measured (Im) and true (Ir) intensity profiles:

Im(�) =
∫ ∞

0
B(�, z)Ir(z) dz (1)

where B(�, z) represents the instrumental point spread function
(PSF) which accounts for the contributions to the signal measured
at the point �, from surroundings located at different depths
along the z (axial) coordinate. In depth profiling by CRM, � (or
nominal focus point) is taken as the sample displacement in the
axial direction, as read from the microscope platform scale. Notice
that we have followed the notation used in most of the previous
work on the topic; see, for instance, Ref. [8,10,12].

To build the PSF, we have followed a semiempirical approach
described in an earlier work, which yields a good balance
between precision and simplicity.[15] We highlight here the
integral and rigorous treatment for diffraction/refraction effects
proposed by Sourisseau, but based on a much more complex
and computationally demanding formalism.[16] We focus on axial
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Figure 1. CRM depth responses with dry optics for 0.9 NA (100×) and 0.75
NA (50×) objectives: (1) Lorentzian fits of the measured silicon response for
0.9 NA/high confocality (solid) and 0.75 NA/regular confocality (dashed)
combinations; (2) predicted response at a nominal focusing depth of
40 µm for combinations 0.9 NA/high confocality (solid) and 0.75 NA/regular
confocality (dashed).

contributions, assuming that orthogonal spreading of the laser
beam is minor; however, volume contributions are particularly
important near the sample surface, with important implications in
surface specificity.[17,18] We start with the depth response in the
absence of refraction, characterized by a relatively narrow bell-
shaped function, i.e. Lorentzian, centered at �, and essentially
invariant with focusing depth. We assume that this response,
frequently referred to as diffraction, can be well characterized by a
standard test in CRM: the depth scanning through the surface of a
polished silicon wafer.[8,11,12] Overall, that response depends on the
optical setup used. Curves labeled as (1) in Fig. 1 show normalized
Lorentzian fittings to experimental data obtained with 0.9/0.75 NA
objectives under conditions of high/standard confocality (solid
and dashed lines, respectively). We see that the combination of
high NA objective/high confocality (or small confocal aperture in
pinhole-based instruments) yields a much sharper depth response,
4–5 times narrower, but at the cost of detecting much less Raman
scattering, as discussed below.

We include the influence of on-axis laser refraction at the
air/sample interface on the original diffraction response by
following the treatments developed by Everall and Batchelder.
Using simple geometric optics, Everall quantified the deviation of
the laser beam when it is focused at �, by calculating the true
point of focus on the z-axis where it is directed, as a function of n
(sample refractive index), NA and m (normalized distance across
the lens in radial direction)[8]:

z = �

[
m2 NA2(n2 − 1)

1 − NA2 + n2

]0.5

(2)

Equation (2) predicts that the degree of deviation depends on
the position of the ray with respect to the optical axis (m) and
that the laser beam illuminates a region instead of a single point;
the span of this region (depth of focus, z(m=1) - z(m=0)) is also
predicted to increase as one focuses deeper into the material.
Assuming that the laser beam illuminates a circular pupil in the
microscope lens with a Gaussian radial intensity distribution,
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Everall found a simple expression for the illuminated region,
I(m) = mI0 exp(−2m2), which, combined with Eqn (1), yields, for a
ray originally directed at �, the true laser illumination distribution
over z.[8,13] In the collection path, part of the Raman scattering
that originates from the illuminated region is blocked by the
confocal aperture, which restricts the sampled region. To model
the effect, we follow the description by Batchelder, who added
a factor of collection efficiency (�) to the expression for the
illuminated region derived by Everall; details of the calculation of
� as a function of �, n, NA and the size of confocal aperture can
be found elsewhere.[10] The well-documented overestimation in
the decay rate predicted by Batchelder is corrected here through
a renormalization from independent experiments on thicker PP
films with similar transparency, as detailed elsewhere.[12,15] Curves
labeled as (2) in Fig. 1 show the predicted depth responses that
result from the combined effects of diffraction and refraction.
Calculations correspond to 0.9/0.75 NA objectives in conditions of
high/standard confocality, for a nominal focusing depth of 40 µm.
We see that depth responses lie much deeper than the point
where the laser beam was originally focused (�) and that they
span over much wider regions than the original diffraction-limited
response shown by curves (1).

In order to obtain the true (or corrected) Raman response
from Eqn (1), Im(�) and Ir(z) are discretized as two vectors
Im = [Im(�1), Im(�2) . . . Im(�n1 )]T and Ir = [Ir(z1), Ir(z2) . . . Ir(zn2 )]T

in such a way that Eqn (1) can be written as

Im = B Ir (3)

where B is an (n1 × n2) matrix, whose values depend on the
expressions used for PSF and on the quadrature formula used in
the discretization.

Direct least squares solution of Eqn (3) implies the minimization
of the functional J(Ir) = |Im − B Ir|2 with respect to Ir , which
yields Ir = (BTB)−1 BT Im as solution. However, because of
the ill-conditioning characteristics of this type of problems, the
solution Ir shows dramatic oscillations, which make it practically
useless. To minimize distortions in order to recover a meaningful
profile, we resort to regularizing the solution via the so-called
Philips–Thikonov technique.[19] The method introduces a penalty
function (q) and a regularization parameter (γ ) to the original
formulation in such a way that the functional to be minimized
turns out as J(Ir) = |Im − B Ir|2 + γ q (Ir). The function q must be
large for oscillatory solutions and small for smooth ones. Usually,
q is selected as the sum of the squares of the second differences
of Ir

[19,20]; in this work, we have introduced a slight modification
given by the parameters γ i, whose significance will be discussed
below. The explicit form of q used is then given by

q(Ir) =
n2−1∑

j=2

(2γ j−1Irj − Irj−1 − Irj+1 )2 = IT
r KT �K Ir (4)

where the last term on the right-hand side corresponds to the
matrix form notation. In this form, K is a tridiagonal matrix, with
elements ‘2’ in the main diagonal and ‘−1’ in the other two, while
�, a diagonal matrix, only contains the ‘γ i ’ elements. With the
inclusion of the penalty function, the solution for the minimization
problem is now given by

Ir = (BTB + γ KT �K)−1BT Im (5)

The γ parameter determines the amount of regularization
(smoothing) on the solution sought. With γ = 0, no regularization

is applied and Eqn (5) yields the highly noisy least squares solution;
with γ > 0, abrupt oscillations in the solution are suppressed. One
important point is that regularization may mask important sample
features, such as, abrupt changes of intensity in edges, interfaces
or phase transitions. In order to avoid this effect, we ponder
the relative amount of regularization along the z coordinate via
the � matrix. The elements of � make regularization strong
where the signal is presumed to be smooth and weak where the
signal changes rapidly, i.e. edges, interfaces and transitions. Thus,
the diagonal elements of �, γ 1, γ 2, . . . , γ n2, are sampled from

γ i = 1 − e−(i−zγ )2
/

2σ2
γ , where zγ is the row of � that corresponds

to the maximum change of the reconstructed signal. σγ measures
how fast regularization increases to both sides of the center zγ ,
or point of maximum change. Thus, for i = zγ , regularization is
null, while for values of i far from zγ the elements of � tend to 1,
allowing maximum regularization.

In the treatment of real data, the regularization conditions
are chosen as follows. To find the center of the regularization
function (zγ ), we identify the points of maximum change in the
original signal, measured on the � scale, from its first derivative.
To place zγ on the z scale, those values are multiplied by a factor
that accounts for the apparent compression shown by � due to
refraction. This correction factor can be obtained by simulating
the apparent position of a known sample feature via Eqn (1); for
a material with n = 1.5 scanned in air, a value of 1.7 was found,
which agrees with experimental observations.[13] For σγ , we found
that values between 10 and 20 usually yielded good results. To
find the optimum amount of regularization, i.e. the value for γ ,
we follow the well-established generalized cross validation (GCV)
technique, whose details are given elsewhere.[21] GVC computes a
lower bound for γ according to each experiment as the one that
minimizes the following function:

V(γ ) = |(I − Z) Im|2

|Trace (I − Z)|2 (6)

where Z = B (BTB + γ H)BT and I is the identity matrix.

Results and Discussion

Figure 2(a)–(c) shows the raw Raman intensity profiles of a
50-µm thick PP film, as depth-scanned through air for several com-
binations objective/confocality as indicated. To construct these
profiles, we applied methods of analysis based on processing the
complete Raman spectrum, i.e. linear decomposition or compo-
nent analysis,[22] which yields data much less noisy and more
suitable for our analysis than those obtained by plotting the inten-
sity of a single band. The abscissa scale corresponds to the nominal
focusing depth �, as determined from the microscope stage posi-
tion, where the zero corresponds to the PP film outer surface. The
confocal profiles of Fig. 2 show the typical features of depth profil-
ing experiments with dry objectives. Raman intensity starts from a
value near zero when the focal volume is in air, and rapidly increases
when it passes through the sample surface and is finally well within
the sample. Fine details of this increase reflect the different com-
binations of objective/confocality employed. Once the nominal
focus point is within the sample, Raman intensity progressively
decreases till it reaches the interface with the PMMA substrate. The
planar PP/PMMA interfaces, which should appear as a sharp tran-
sition, are shown instead as an artificially broadened region. The
apparent film thicknesses obtained from any of these experiments
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Figure 2. As-measured Raman intensity profiles for the 50-µm thick PP
film, for the instrumental combinations objective/confocality indicated in
each plot.

are roughly two times smaller than those expected on the basis of
its nominal value. Notice that, as seen on the intensity axis (y), the
experiment that used the 0.75 NA/regular conditions yielded ten
times more Raman scattering than the 0.9 NA/high combination.

These raw confocal profiles were deconvoluted with the
proposed methodology to obtain the corrected response Ir . To find
the solution of Eqn (3) via Eqn (4), we need Im and PSF as inputs.
The series of n1 nodal values for each �i that constitutes Im were
taken as each of the points of the experimental intensity profile,
as acquired. The number of nodal zi values at which the corrected
signal is evaluated, n2, was taken as equal to n1. As the compression

effect of the true coordinate is more roughly by a factor of 2, i.e.
1-µm interval in the � scale is equivalent to about 2 µm in z, nodal
values in the z coordinate were spaced by steps of 2 µm. Discrete
values of PSF in the z domain for each �i value were calculated
as described above, starting from the diffraction contribution
(Lorentzian fittings of the silicon experiment), which is further
distorted via convolution with the models that simulate refraction.
The integrals for these calculations were solved by Simpson’s rule
with 0.1-µm steps. We took n = 1.50 for the polymer medium and
NA values of 0.9 and 0.75 for each of the objectives; the radius
of confocal apertures were taken as 1.0/3.0 µm (0.9 NA objective)
and 2.0/6.0 µm (0.75 NA objective) for conditions of high/regular
confocality, respectively.[10] The regularization parameters were
chosen as follows. Two points of maximum change, i.e. values
for zγ , were selected in correspondence with the air/sample
(zγ = 0 µm) and PP/PMMA (zγ ∼ 50 µm) interfaces. These values
were obtained from the first derivative of the raw profile and
translated to the z domain as explained earlier. σγ in the range
10–20 µm yielded good results although the recovered profile was
not found to be very sensitive to this parameter. The application
of the GCV method yielded a lower bound for γ in the range 2–10;
representative curves for V(γ ) are shown in Fig. S1 (Supporting
Information). Overall, these values are a rather good estimation of
γ and provide a nice quality of data reconstruction. However, in
some cases, somewhat better results were obtained with larger γ

values (10–100 range), which is not surprising, as GVC tends to
slightly underestimate the optimum amount of regularization.[20]

Figure 3(a)–(c) shows the corrected Raman intensity profiles
of PP, that is, the elements of Ir . Notice that the depth scale is
now labeled as z, the true axis coordinate. We have also included
boxcar functions representing the expected (true) profile. We see
that the main film features are very well recovered: the air/PP and
PP/PMMA interfaces are now very sharp and connected by a region
of fairly constant intensity, with minimum spurious oscillations
that are typical of the problem inversion. Overall, we see that
the recovered signal matches those expected and represented
by the boxcar functions very closely, and that the film thickness,
determined as the range of depths between interfaces, matches
very well with the nominal value, i.e. 50 µm. Remarkably, the same
good agreement is seen for all the instrumental configurations,
including experiments carried out in technically poor confocal
conditions, i.e. 0.75 NA/regular combination.

Conclusions

This work has shown that it is possible to use mathematical
corrections to obtain realistic Raman depth profiles from data
highly distorted by optical aberrations, preserving the highly
convenient noncontact features of the probing technique. The
strategy requires a minimum set of inputs, some of them operative
and others obtained from independent experiments; the last point
basically avoids detailed modeling of the particular optical setup
of each instrument, for the benefit of a more generalized approach.
As no assumptions are made about the nature of the profile to be
processed, it can be used to correct any other type of transitions,
for instance, diffusion profiles with sharp features. We have also
seen that the quality of the reconstructed data does not depend
much on the acquisition conditions, which allows measurements
in poor confocal conditions without loss in precision, an important
aspect also pointed out by other researchers.[14]

One limitation of the methodology is the assumption of
uniform refractive index for the sample, which might limit
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Figure 3. Corrected Raman intensity profiles for the PP film obtained after
regularized deconvolution of the data in Fig. 2. Inputs: Lorenztian fits as
indicated in Fig. 1 (1), n = 1.50, NA values of 0.9 and 0.75 for 100× and 50×
objectives, respectively; radius of confocal apertures of 1.0/3.0 µm (0.9 NA)
and 2.0/6.0 µm (0.75 NA) for high/regular confocality respectively; σγ in
the range 10–20 µm; γ = 10 for 0.9 NA/high and 0.75 NA/high; γ = 102

for 0.9 NA/reg. The dotted lines represent boxcar functions with widths of
49.0 (a), 49.5 (b) and 49.0 (c) µm.

the analysis of complex, heterogeneous substrates with large
variations in that property. However, there exists a vast range
of transparent materials susceptible to be depth-profiled (e.g.

polymers) with n values narrowly distributed around 1.5. The
use of the methodology to trace the distribution of species (i.e.
additives, modifiers) in a host matrix can be safely carried out,
assuming that the presence of those species does not change
the average refractive index appreciably. Although the results
found are encouraging, and could be extended to the other films
examined but not shown here, we believe that an even better
quality of data reconstruction can be achieved using more refined
approaches to describe optical aberrations, which are able to
model, for instance, off-axis contributions.

Supporting information

Supporting information may be found in the online version of this
article.
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