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Improved atomistic Monte Carlo models based on ab-initio-trained neural networks:
Application to FeCu and FeCr alloys
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We significantly improve the physical models underlying atomistic Monte Carlo (MC) simulations, through
the use of ab initio fitted high-dimensional neural network potentials (NNPs). In this way, we can incorporate
energetics derived from density functional theory (DFT) in MC, and avoid using empirical potentials that are
very challenging to design for complex alloys. We take significant steps forward from a recent work where
artificial neural networks (ANNs), exclusively trained on DFT vacancy migration energies, were used to perform
kinetic MC simulations of Cu precipitation in Fe. Here, a more extensive transfer of knowledge from DFT
to our cohesive model is achieved via the fitting of NNPs, aimed at accurately mimicking the most important
aspects of the ab initio predictions. Rigid-lattice potentials are designed to monitor the evolution during the
simulation of the system energy, thus taking care of the thermodynamic aspects of the model. In addition,
other ANNs are designed to evaluate the activation energies associated with the MC events (migration towards
first-nearest-neighbor positions of single point defects), thereby providing an accurate kinetic modeling. Because
our methodology inherently requires the calculation of a substantial amount of reference data, we design as well
lattice-free potentials, aimed at replacing the very costly DFT method with an approximate, yet accurate and
considerably more computationally efficient, potential. The binary FeCu and FeCr alloys are taken as sample
applications considering the extensive literature covering these systems.
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I. INTRODUCTION

Monte Carlo (MC) methods [1–4] are widespread tools to
describe diffusion-controlled phenomena at the atomic level.
They are suitable to study a wide variety of materials up to
experimentally relevant length and time scales, shedding light
on the resulting microstructural and microchemical evolution
during operational conditions, e.g., under irradiation [5–7].
Generally based on a rigid-lattice approach, they feature an
explicit spatial characterization of the diffusion of lattice
defects and atoms, allowing for a detailed investigation of
the kinetics of formation of fine microstructural features. For
instance, kinetic MC methods (KMCs) have been widely
employed to characterize steels under irradiation [7–9], in
particular the formation of embrittling solute-defect clus-
ters [10–12]. While these methods are in principle well
suited for the investigation of the underlying atomic-scale
mechanisms, the task is extremely challenging due to the
chemical complexity of the reference alloys. Specifically, in
atomistic KMCs (AKMCs), the evolution of the alloy proceeds
through migration events of single defects (vacancies and/or
interstitials) [1,13,14], which are stochastically selected at
each step based on their transition rates. The accuracy of
the latter parameters is thus crucial to ensure the physical
reliability of the model, as they embody both thermodynamics
and kinetics properties of the system being studied.
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Migration rates associated with single point defects are
traditionally computed with several approaches (see, e.g.,
Refs. [15,16] for extensive reviews). Some are based on first-
principles methods such as density functional theory (DFT)
[17,18], while others rely on system-specific interatomic
potentials (IAPs) [2,4]. In any case, suitable mathematical
frameworks are necessary to predict the energies associated
with each atomic configuration, as well as the migration
frequencies associated with each transition event that may
be encountered during the simulation. Such frameworks are
usually cohesive models based on pair-interaction [2,19] or
cluster-expansion methods [18], and supported by limited data
sets of experimental and ab initio properties. Their range
of applicability is thus limited by their intrinsic rigid-lattice
framework and by their poor transferability to new kinds of
configurations beyond their original intended scope. IAPs,
on the other hand, provide a general framework to describe
any stable or metastable configuration, even allowing for the
portability to lattice-free MC models [20–23]. Nevertheless,
their direct “on-the-fly” use as cohesive models in classical
rigid-lattice MC is impractical, because the exact saddle-point
configurations in each transition event are unknown and must
be sought with time-consuming procedures.

In previous works [24–26], we showed how machine-
learning techniques, specifically artificial neural networks
(ANNs), can improve the physical parametrization of AKMC
simulations. Consistently with the above-discussed objectives,
these ANNs were designed to predict the migration energies
associated with single point defects in binary Fe-Cu and Fe-Cr
alloys, as calculated without approximation using a given IAP
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under the embedded atom method (EAM) formalism. This
first-of-a-kind approach maximized the transfer of physical
information across increasing modeling scales within reason-
able computational times, because no static property stemming
from the reference cohesive model needed to be discarded. It
is worth noting that the choice to rely on EAM potentials was
mainly dictated by the necessity of producing large numbers
of migration barriers (tens of thousands) required for an
accurate fitting of the ANNs. On the other hand, developing
IAPs for more complex alloys is a challenging task, and
has to be tailored each time to the specific system under
investigation. Given the inherent simplicity and the limited
variable parameters, the underlying mathematical framework
in EAM-like formalisms is undoubtedly insufficient to encom-
pass the whole set of thermodynamic and kinetic properties
of the alloy. IAPs are therefore always targeted on some
properties, at the expense of others (see, e.g., Ref. [27]). In this
sense, the substitution of IAPs with DFT would considerably
improve the physical reliability of KMC simulations, as
DFT provides a more comprehensive (although not always
necessarily accurate) description of the alloy. The combination
of DFT with powerful ANN-based regression schemes can thus
potentially provide a breakthrough improvement of the KMC
physical models.

The application of neural networks is nowadays more and
more common in many fields of science (see, e.g., Ref. [28]),
especially where hidden relationships must be searched among
large amounts of data in complex systems. In the field of mate-
rials modeling, specifically, several methodologies have been
proposed to perform large-scale molecular dynamics (MD)
simulations using ANN-based cohesive models exclusively
fitted on DFT properties. For instance, Behler and co-workers
(see, e.g., Refs. [29–31]) elaborated strategies for constructing
high-dimensional neural network potentials (NNPs). Csányi
and co-workers (see, e.g., Refs. [32,33]) achieved equivalent
goals by developing mathematically different concepts based
on Gaussian approximation networks. The application of these
methods to MC simulations allows for the transfer of accurate
electronic-scale properties to even larger scales than MD, as
suggested in Ref. [34] and achieved in Ref. [35].

Given the central role played by migration barriers in
AKMC simulations, a logical first step is to target their accurate
prediction by means of suited ANNs. This was the approach
pursued in a recent work [36], where the coherent precipitation
of copper in iron was investigated in the framework of a hybrid
KMC model. The latter was powered by an ANN trained on an
extensive database of single-vacancy migration rates obtained
with DFT. This represented an attempt to introduce fully
DFT-based energy functions implemented with ANNs in KMC
simulations. In comparison with our previous works based
on an EAM potential [25], the model led to a considerable
improvement of the time scale matching with thermal-ageing
experiments, but presented two main limitations: the lack of
leverage on thermodynamic properties (which did not allow
for a correction of the faulty DFT solubility limit), and the
limited size of the supercell used for DFT calculations that did
not allow for the treatment of vacancy migration events next
to large solute clusters in the late precipitation stages.

This work aims at addressing these limitations by devel-
oping full NNP cohesive models, in order to go beyond the

exclusive prediction of migration barriers. To this purpose,
two kinds of NNPs are developed. (a) The first is rigid-lattice
NNPs aimed at evaluating the energies associated with stable
configurations, thus providing an accurate thermodynamic
description of the alloy. This contribution may be included
in AKMC models, as well as in Metropolis Monte Carlo
(MMC) calculations [37]. (b) The second is lattice-free
NNPs specifically designed to perform static calculations.
Their intended application is the calculation of equilibrium
and saddle-point energies for MC simulations. As described
in Sec. II, we benefit from the state-of-the-art techniques
proposed by the above-mentioned authors, and we adapt them
to the specific purposes of our study. For this purpose, NNP
training is focused on energy prediction only, since this is the
most essential information to transfer from DFT to atomistic
(kinetic) Monte Carlo models. We demonstrate it in Sec. III
for the binary Fe-Cu and Fe-Cr systems.

II. HIGH-DIMENSIONAL NEURAL
NETWORK POTENTIALS

In this section, we present our method to design DFT-based
high-dimensional neural network potentials (NNPs), targeting
specific properties and qualities as required for rigid-lattice
Monte Carlo models. As already stated, our methodology
is based on the work of Behler, Csányi, and co-authors.
In complement to the already cited references, interested
readers are directed to tutorial reviews in Refs. [38,39] and
references therein for an extensive description of the state of
the art. In these references, NNPs are mostly designed for
the purpose of performing MD simulations, and their fitting is
thus in general achieved including energy- and force-matching
criteria. Considering our target scale (MMC and AKMC), and
specifically the rigid-lattice character of the models, we opt
for an energy-matching strategy. We start, in Sec. II A, by
defining the concepts of rigid-lattice and lattice-free potentials.
The key feature for managing the NNP behavior resides in
a proper choice of the ANN input variables, describing the
atomic structures, as discussed in Sec. II B. Next, NNP fitting is
discussed in Sec. II C. Finally, our strategy to produce adequate
databases of training data is described in Sec. II D.

A. Rigid-lattice and lattice-free potentials

Similarly to any interatomic potential, NNPs provide a
mathematical tool for assigning a total energy and individual
forces to atomic configurations, as functions of the coordinates
in space and the chemical species associated with every
individual particle at play. They are thus fully functional for
static calculations, such as the relaxation towards a nearby
metastable state using conjugate gradients [40], as well as for
the computation of migration energies with the nudged elastic
band method (NEB) [41,42]. Such potentials, henceforth
referred to as lattice-free potentials, imply the knowledge of
the atomic coordinates in any equilibrium and nonequilibrium
configuration, which is unnecessary and incompatible with
atomistic models formulated in a rigid-lattice framework, such
as Monte Carlo methods. However, in order to include the
effect of atomic relaxations, it is convenient to develop specific
types of potentials, henceforth referred to as rigid-lattice
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potentials. They are able to compute the total energy of a given
atomic configuration after relaxation (i.e., with no residual
forces), while receiving as input its rigid-lattice description.
Atomic forces need not to be estimated because they are
inherently assumed to have vanished.

In both rigid-lattice and lattice-free cases, and consistently
with the prerequisites for high-dimensional potentials, the total
energy is decomposed as proposed by Behler and Parrinello
[29] as a summation of contributions from each individual
atom:

E
(Tot)
ANN =

N∑
a=1

E(a). (1)

Here, superscript (a) refers to a particular atom within the N

constituting the studied configuration, and E(a) are the energies
associated to each of them. These individual energies can be
regarded as functions of the local atomic densities:

E(a) = f (ρ(a)). (2)

Here, ρ(a) stands for the local density at the position occupied
by atom (a). Function f is, similarly to the approach of
Behler et al., implemented using a classical form of ANN
designated in the literature as a “multilayer perceptron” [43].
It must thus be specifically defined for every chemical species
involved, e.g.,

E
(Tot)
ANN =

N∑
a=1

E
(X(a))
ANN (ρ(a)). (3)

Here, X(a) denotes the chemical species for atom (a), i.e.,
X(a) = Fe, Cu, Cr, . . . . Functions E

(X(a))
ANN are henceforth called

atomic energy functions (AEFs), providing an estimation of the
energy assigned to every atom of the corresponding chemical
species. Subscript ANN refers to the fact that each AEF is
implemented by an individual ANN.

B. Description of local atomic densities as ANN input variables

We exploit similar ideas to those proposed by Bartók
et al. [44] to expand the local atomic density into symmetry
functions using series expansion in spherical harmonics:

ρ(a)(r,θ,ϕ) =
∞∑

n=1

∞∑
l=0

l∑
m=−l

C
(a)
nlmRn(r)Ylm(θ,ϕ). (4)

Here, (r,θ,ϕ) are spherical coordinates with the origin set at the
position where atom (a) is sitting, Ylm are the Laplace spherical
harmonics functions, and C

(a)
nlm are coefficients determined

below. The terms Rn are series of any radial functions. Here
we choose

Rn(r) = sin

(
nπr

Rc

)
fR(r), (5)

where r is the distance from the origin, n is a positive integer,
and Rc is a given cutoff. The radial shaping factor fR is defined
as

fR(r) =
[
Rc

r

][
0.5

{
1 + tanh

(
−α

r

Rc
+ β

)}]
. (6)

FIG. 1. Radial shaping factors used in this work, i.e., bcc Fe-
based alloys with a0 = 2.831 Å. Dashed curves show the two terms
in Eq. (6), and vertical arrows the distances associated with shells of
nearest neighbors in bcc. Top: Cutting interaction between the 3nn
and the 4nn distances: Rc = 1.75a0 = 4.954 Å, α = 18, and β = 15.
Bottom: Cutting interaction between the 2nn and the 3nn distances:
Rc = 1.6a0 = 4.530 Å, α = 10, and β = 6.5.

Here, square brackets separate the contribution from two
different terms, as illustrated in Fig. 1. The first one introduces
a strong repulsion for short interatomic distances in the
form of a Coulomb potential (energy ∝1/r; force ∝1/r2),
whereas the second one constrains the radial interaction to
fade away near the prescribed cutoff Rc; α and β are calibration
parameters chosen according to the range of distances where
the interaction should be damped.

In the above equations, subscripts n, l, and m are integers
defining the complexity of the expansion. The coefficients C

(a)
nlm

are calculated using

C
(a)
nlm =

∫∫∫
r,θ,ϕ

ρ(a)Rn(r)Ylm(θ,ϕ)r2 sin(θ )dθdϕdr. (7)

Some analytical expression for the atomic density must thus
be provided, e.g., a collection of Dirac deltas sitting on the
nearby atoms. We thus derive

C
(a)
nlm = 1

N
(a)
RC

N
(a)
RC∑

i=1

Rn(ri)Ylm(θi,ϕi). (8)

Here, N
(a)
RC is the number of atoms found within Rc from atom

(a). Invariance with rigid rotations is achieved by performing
the summation in Eq. (8) over the m parameter:

Q
(a)
nl �

l∑
m=−l

∣∣C(a)
nlm

∣∣2
. (9)

Parameters n and l may theoretically vary from 0 to any integer
number as large as necessary for the desired complexity of the
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expansion. In practice, a maximum value for both (denoted
respectively as NMax and LMax) is chosen and a full vector is
thereby defined:

Q̄(a) �
[
Q

(a)
nl

]
(10)

with 1 � n � NMax and 0 � l � LMax. Information about the
chemical species is included with the approach taken by Behler
et al. [33]. Considering the example of a binary FeX alloy,
three distinct Q̄ vectors are combined, each including the
contribution from chemical sub-ensembles in the neighboring
atoms, i.e.,

Q̄(a) �
[
Q

(a)
FeFeQ

(a)
FeXQ

(a)
XX

]
. (11)

Here, Q
(a)
Fe , Q

(a)
X , and Q

(a)
FeX are identical as defined in Eq. (9),

but only consider either Fe atoms, X atoms, or both, respec-
tively. Given NMax and LMax, the number NQ of symmetry
functions (corresponding to the ANN input variables) is thus
given by

NQ = 3NMax(LMax + 1). (12)

C. Potential fitting

Consistently with the usual practice, ANN training requires
regularization, i.e., a mean to either monitor the prediction
capabilities for never seen cases. We use an “early stopping”
approach [43], meaning that a part of the available database
is reserved to define a reference set aimed at following the
evolution through fitting of the average error committed for
new cases. We typically reserve 25% of the available data for
that purpose, while the remaining 75% are used to perform the
fit, minimizing the following objective function:

f (W̄ ) =
T∑

t=1

[
E

(t)
ANN(W̄ ) − E

(t)
DFT

]2
. (13)

Here, superscript (t) refers to each of the cases in the training
set T , and superscript (a) refers to each atom out of N (t) in
case t . The variables for the training problem are the entries
of vector W̄ . The latter represents the combined vector of
all degrees of freedom in all the AEFs, i.e., the numerical
coefficients found in the ANN internal structures whose exact
numerical value must be determined. They are commonly
called “synapses” in the literature [43]. The vector is written,
in case of binary Fe-X alloys, as

W̄ � [W̄FeW̄X]. (14)

Minimizing function f (W̄ ) is a nonlinear optimization prob-
lem, unbounded and unconstrained in its input space. We use
a Levenberg-Marquardt (LM) algorithm, as already used and
detailed in previous works [24–26].

D. Reference databases of configurations

NNP fitting requires as primer input a database of represen-
tative atomic configurations for the targeted purpose. The main
concern is the ability to handle new kinds of configurations
that may be encountered during the simulations. In rigid-
lattice MC models, the atomic structure remains in principle
nearly identical through AKMC or MMC simulations (unless
lattice defects form large clusters). Similarly to discussions

FIG. 2. Atomic configurations extracted from DFT-NEB calcu-
lations in this work. Each cubic box with 8 atoms (gray circles)
pictorially depicts a DFT calculation supercell (5a0 × 5a0 × 5a0) for
the case of vacancy migration (dashed circle).

in Refs. [24,25,36], the major concern is thus the occurrence
of new local chemical configurations around migrating point
defects. A valid strategy to build a NNP training database is
thus to gather atomic configurations while performing NEB
calculations, for adequately chosen examples of point-defect
migration events. Typically, the calculation proceeds with the
construction of a chain of transition states from an initial
to a final configuration, as depicted in Fig. 2. The explored
configurations are here categorized in different sets:

Set 1. End states associated with the point-defect migration
events, denoted as state 1 and state 5 in Fig. 2.

Set 2. Saddle-point configurations obtained with NEB (state
3 in Fig. 2).

Set 3. States selected among the many intermediate calcu-
lations performed, including the intermediate NEB images (2
and 4 in Fig. 2), and the relaxation steps from the rigid-lattice
description of the end states (states 1R and 5R in Fig. 2).

Set 1 alone is fully exploitable for designing NNPs in a
rigid-lattice framework, whereas lattice-free potentials require
sets 2 and 3. To our experience, however, using these sets
of training samples only is insufficient to produce fully
satisfactory NNPs. This can be explained by the intrinsic
high degree of correlation that characterizes such a database
(all configurations describe, from an atomic structure point
of view, nearly identical events of point-defect migration).
Additionally, the focus on energy-matching in our fitting
procedure purposely favors very accurate NNPs for describing
the energetics of metastable configurations (given their atomic
coordinates), but may not find these configurations during
a relaxation process. Including an explicit force-matching
criterion in Eq. (13) can improve the NNP quality in that
respect. In the framework of MC modeling, the main interest
for including this component is to ensure that residual forces
vanish for atomic configurations close to metastable states.
From this point of view, the key information to transfer
from DFT to the NNP is that the total energy should always
increase when slightly deviating from a metastable state. To
achieve that goal in the simplest way, and specifically keep
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a full energy-matching strategy, we included a fourth set
in the training database. The latter features configurations
where the atoms are slightly displaced in random directions
from the equilibrium positions describing a metastable state.

Set 4. Configurations randomly departed with small atomic
displacements from state 1, state 3, and state 5, respectively
denoted as state 1*, state 3*, and state 5* in Fig. 2. An
individual displacement vector is applied to all atoms, with
an effective magnitude randomly chosen between 0 and a
maximum value henceforth denoted as D∗

Max.
Obtaining these configurations entails a very small addi-

tional CPU load compared to the rather sizable set of NEB
calculations, because the total energy is obtained with a static
one-step DFT energy calculation.

III. APPLICATIONS TO FeCu AND FeCr ALLOYS

The binary FeCu and FeCr alloys are illustrative cases for
the application of the methodologies exposed in Sec. II. Ample
experience has been gathered in modeling thermal annealing
processes in these systems during the last decades, as well
as irradiation experiments, among others with our AKMC
methodology based on IAPs [24,25]. The added value of
referring to ab initio methods as a source of physics can thus
be thoroughly evaluated.

The section is organized as follows. In Sec. III A, we start by
describing the databases of DFT atomic configurations used
in this work. Then, in Sec. III B, rigid-lattice potentials are
fitted for both alloys, and MMC simulations are performed to
analyze the predicted phase diagrams, thereby performing a
preliminary thermodynamic assessment. Kinetics is included
later in Sec. III C, where thermal-annealing experiments in a
FeCr alloy are simulated by means of AKMC. The rigid-lattice
potential is used to evaluate the equilibrium energies, while
another specifically trained ANN is used for estimating the
activation energies associated with vacancy migration events.
Finally, lattice-free potentials are fitted in Sec. III D for
both systems. The case of FeCr is particularly significant,
because atomic configurations including both vacancies and
self-interstitial atoms (SIAs) are successfully handled within
the same NNP. The latter is then used to extend the database of
single-SIA migration energies, which allows for a considerable
improvement of the accuracy of the kinetic model.

A. Databases of DFT data used in this work

The databases of DFT data used in this work are obtained
from static relaxations and NEB calculations performed with
the Vienna ab initio simulation package (VASP) [45–47].
The calculations are made on a plane-wave basis, with the
pseudopotentials derived within the projector-augmented wave
(PAW) method [48,49]. The Perdew-Burke-Ernzerhof (PBE)
parametrization [50] of the generalized-gradient approxima-
tion (GGA) is employed to represent the exchange-correlation
function. All calculations are spin polarized, with a Vosko-
Wilk-Nusair (VWN) spin interpolation of the correlation
potential [51], and the Brillouin zone is sampled within a
Monkhorst-Pack scheme. The standard full-core potentials
available in the VASP library are employed for Fe, Cu, and
Cr atoms, with a plane-wave cutoff energy set to 300 eV.

The simulation volume consists of 5 × 5 × 5 supercells in a
body-centered cubic structure (i.e., 250 atomic sites), with full
periodic boundary conditions. Both the end-state relaxations
and the NEB calculations are at constant volume, where the
cell shape is restrained but atomic relaxations are allowed.
The total ionic relaxation energies are converged with a
tolerance of 1 meV, whereas the NEB calculations, performed
with 3 images and the climbing-image algorithm [41,42], are
converged when the residual force on each atom is below 20
meV/Å. For the end-state relaxations, a 3 × 3 × 3 k-point
grid is employed to perform numerical integration in the
reciprocal space. On the other hand, for improved efficiency,
the NEB calculations are performed using a reduced k-point
grid (2 × 2 × 2), and the actual migration energy path is
then recalculated by doing a one-step energy calculation with
the full 3 × 3 × 3 k-point mesh, not allowing for any ionic
relaxation of the images obtained with the reduced grid. This
accelerated procedure assumes that the atomic configurations
of the NEB images are not greatly affected by the choice of the
k-point mesh; however, the associated energy is undoubtedly
k-point dependent and is therefore recalculated with one quick
additional ionic step. It was checked for a few sample cases
that the difference between this accelerated procedure and a
full k-point NEB calculation is always smaller than 1 meV. It
is worth noticing that because of this procedure the residual
forces on each atom in the intermediate images might be higher
than the minimum achievable by the optimization algorithm.
Such residual forces are anyway never greater than 30 meV/Å.
Finally, the energy calculations for configurations slightly
departed from the metastable states are performed in a single
ionic step, with the same setup parameters and a full 3 × 3 × 3
k-point mesh.

Data for the FeCu alloy is taken from Ref. [36]: it
is a collection of 2000 vacancy migration energies in a
changing local atomic environment sampled in representative
configurations of the early coherent stages of Cu precipitation.
Next, another group of 2000 cases of single-vacancy migration
in concentrated FeCr alloys has been generated, by following
a selection procedure analogous to that described in Ref. [24].
Solute Cr atoms were allocated in random solid solution,
with varying concentrations between 2% and 50%. Last, a
third group of 5600 cases of single-SIA migration has been
calculated in FeCr alloys of similar composition. Following
our work in Ref. [52], three kinds of migration events were
considered: from a dumbbell 〈110〉 orientation, the SIA
migrates towards a first-nearest-neighbor (1nn) position and
performs a pure translation or a 60◦ rotation-translation to a
symmetrically equivalent 〈110〉 orientation.

The amount of atomic configurations collected in each of
the above-listed sets is summarized in Table I. Furthermore,
a small set of additional configurations was included to char-
acterize fundamental Fe properties, such as perfect supercells
with varying lattice parameters around the DFT equilibrium
value (a0 = 2.831 Å), or a detailed NEB description of single-
vacancy migration in pure Fe. Finally, it is worth mentioning
that the target for energy fitting has been systematically
converted, for convenience, into a formation energy of the
supercell assumed to be, without loss of generality,

E∗ = E
(t)
DFT − [−8.2NFe − 3.6NCu − 9.5NCr]. (15)
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TABLE I. Summarizing description of the DFT database of atomic configurations used in this work.

Number of CPU time Number Number Number
NEB calculations (h) in Set 1 in Set 2 in Set 3 Number in Set 4

FeCu, vacancy 2000 9 million 4000 2000 12000 4768
D∗

Max = 0.1a0; 0.07a0

FeCr, vacancy 2000 10 million 4000 2000 12000 6000
D∗

Max = 0.07a0; 0.05a0

FeCr, SIA 5600 30 million 11200 5300 33000 24000
D∗

Max = 0.05a0; 0.015a0

The coefficients above, given in units of eV, are close to
the cohesive energy per atom of each pure element obtained
with the same DFT parameters. This somewhat arbitrary
normalization does not affect the NNP accuracy, but is more
suitable for ANN training because the energy variations among
configurations are largely reduced.

In Fig. 3, we compare the predicted values for the end-state
energy differences and the migration energies with the predic-
tions from the EAM potentials used in Refs. [24,25]. In the case
of the FeCu system, the EAM potential (described in Ref. [53])
appears to perform predictions that are well correlated with the
DFT values. The prediction of the end-state energy difference,
which governs thermodynamics, is more satisfactory than
that of the migration energies. It was thoroughly described
in Ref. [36] that an AKMC model fed with the DFT-based
migration energies significantly improved the prediction of
kinetics for the precipitation of Cu in Fe. Concerning the FeCr
system, the predictions from the EAM potential (described in
Ref. [54]) are clearly uncorrelated with DFT. Even though the
implications on the quality of AKMC predictions cannot be
anticipated, Fig. 3 proves that empirical interatomic potentials
and DFT provide very different descriptions of the physical

FIG. 3. Comparison of the (left) end-state energy differences and
(right) migration energies found by NEB using DFT or the EAM
potentials.

properties of this alloy. The improvements in the simulation of
microstructure evolution brought by our model are evaluated
later in Sec. III C.

B. Thermodynamic modeling with rigid-lattice potentials

As presented in Sec. II A, rigid-lattice potentials are
convenient tools for following the evolution of the total energy
associated with the studied alloy during MMC or AKMC
simulations where static relaxation is not formally applied.
The atomic system under investigation is constantly described
in a rigid-lattice framework, and so are the input variables to
the ANN potentials. Rigid-lattice potentials for both the FeCu
and the FeCr alloys were obtained. Their prediction accuracy
is very satisfactory, as shown in Fig. 4 and summarized in
Table II. The FeCr potential was fitted including all available
cases, i.e., those involving a single vacancy and also those
involving a single SIA.

Figure 5 shows the phase diagrams of both systems, as
obtained with the aforementioned NNPs by means of MMC

FIG. 4. Accuracy of prediction by the rigid-lattice NNPs of the
supercell formation energy [defined in Eq. (15)]. δ is the mean
absolute error of prediction, reported in Table II.
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TABLE II. Summary of ANN potentials fitted in this work: architectures and residual errors of predictions measured on the respective
reference sets. H stands for the number of hidden nodes in the ANN (in one single hidden layer), and W stands for the number of adjusting
parameters (synapses). R2 is Pearson’s correlation coefficient.

ANN description Residual mean absolute errors of prediction

Input Configuration Atomic Migration
variables Architecture energies forces 	E energies

FeCu Rc = 1.6a0 H = 3 0.191 meV/atom Non- 42.4 meV Non-
rigid lattice NMax = 3 W = 304 R2 = 0.99 applicable R2 = 0.98 applicable

LMax = 10
NQ = 99

FeCr Rc = 1.75a0 H = 3 0.312 meV/atom Non- 68.5 meV Non-
rigid lattice NMax = 5 W = 367 R2 = 1.0 applicable R2 = 0.88 applicable

LMax = 7
NQ = 120

FeCu Rc = 1.6a0 H = 3 0.171 meV/atom 46.7 meV/Å 26.4 meV 31.2 meV
lattice-free NMax = 5 W = 502 R2 = 1.0 R2 = 1.0 R2 = 0.99 R2 = 0.98

LMax = 10
NQ = 165

FeCr Rc = 1.75a0 H = 3 Single vacancy cases:
lattice-free NMax = 5 W = 502 0.345 meV/atom 79.3 meV/Å 48.8 meV 59.9 meV

LMax = 10 R2 = 1.0 R2 = 0.96 R2 = 0.90 R2 = 0.85
NQ = 165

Single SIA cases:
0.302 meV/atom 71.2 meV/Å 54.1 meV 60.2 meV

R2 = 1.0 R2 = 0.94 R2 = 0.92 R2 = 0.89

simulations in the transmutation ensemble. The methodology
here followed is fully analogous to that described in Ref. [55].
The phase diagram of the FeCr system is remarkably consistent
with the experimental data revision by Bonny et al. [56]: no
Cr clustering is expected to occur at any temperature, unless
the Cr concentration exceeds about 9 at.%. As is discussed in
more detail in Ref. [57], the expected discrepancy at larger
concentrations can be attributed to the lack of magnetic and
vibrational entropy in the rigid-lattice MMC model.

On the other hand, the solubility limit in the FeCu alloy is
underestimated with respect to the previous EAM-based work
[58] as well as to the theoretical estimates in the coherent
bcc Fe/bcc Cu system, obtained with the ATAT method [53].
However, this discrepancy is consistent with the excessive Cu
precipitation observed in Ref. [36], which can be ascribed to
the faulty DFT prediction of the Cu solution energy in Fe by
the PBE functionals [17,59].

C. Kinetic modeling with AKMC

As a test application, we present the simulation of a thermal-
annealing experiment in a Fe 20 at.% Cr alloy at 500 ◦C. The
simulation starts from a random solid solution constituted by
a bcc Fe matrix with 20% Cr, and a single vacancy. We are
inspired by Kang and Weinberg [60] to split the associated
migration barrier into two separate contributions as follows:

E(mig) = 	E
(Tot)
ANN

2
+ E

(act)
ANN. (16)

Here, 	E
(Tot)
ANN is the contribution from the difference in energy

between the end states associated with each vacancy jump.
Subscript ANN marks that the 	E is evaluated with the rigid-

lattice NNP obtained in Sec. III B. The remaining activation
energy E

(Tot)
ANN is then predicted by an independent ANN, trained

on the basis of the end-state relaxation (set 1) and the saddle-
point (set 2) databases. The methodology followed to design
this ANN is thoroughly described in Ref. [24]. The accuracy
of prediction achieved with the obtained ANN is illustrated in
Fig. 6.

The obtained results from the AKMC simulation are
illustrated in Fig. 7. The evolution in time of the Cr cluster
density and average radius is compared with the experimental
observations by atom probe tomography (APT) by Novy
[61,62] and Jacquet [63], as well as those by small-angle neu-
tron scattering (SANS) by Bley [64]. The AKMC simulation
time is rescaled in order to compensate for the higher vacancy
concentration in the simulation box (40a0 × 40a0 × 40a0)
compared to the real thermal-equilibrium value. This was
performed assuming that the vacancy formation energy in the
alloy is, on average, 1.85 eV. Our results previously obtained in
Ref. [24] with an IAP are also shown for comparison. It is worth
noting that the cluster populations obtained in Ref. [24] and in
this work are analyzed with a new algorithm that attempts to
reproduce more realistically the stochastic nature of the APT
experimental technique, as is described in the Appendix. The
results shown in Fig. 7 highlight that the present DFT-based
model deviates significantly from our previous IAP-based
predictions: the average cluster radius is smaller, while the
cluster density remains globally in agreement. Both series
seem in fact to lie at the edges of the range of experimental
values, and both could thereby be judged as equally acceptable.
However, our present model shows full consistency with the
series of Novy and Bley, for what concerns both the average
radius and the cluster density. Furthermore, Novy et al. [61,62]
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FIG. 5. Phase diagrams predicted with the rigid-lattice NNPs
obtained in this work. Bottom: FeCu case. The dashed line shows
a calculation with the ATAT method for the bcc/bcc coherent phase
in Ref. [53]. The prediction with the EAM potential is taken from
Ref. [58]. Top: FeCr case. The dashed line is a review of experimental
evidence by Bonny et al. in Ref. [56].

criticized the validity of the APT measurements by Jacquet
[63], and argued for a more likely consistency of their results
with the SANS measurements by Bley et al. [64]. As of today,
this statement is generally well accepted, and Jacquet’s data are
normally discarded [65]. Our current DFT model is therefore
in better agreement with the experimental evidence than the
previous IAP model. Finally, our results are also in excellent
agreement with the AKMC simulations by Martinez et al.
[66], which were supported by a DFT-based pair-interaction
energy model that explicitly accounted for some entropic
contributions (namely to the mixing and vacancy activation
energies).

D. Lattice-free potentials fitting and application

In this section, lattice-free potentials are designed for FeCu
and FeCr alloys. In contrast with the rigid-lattice application
in Secs. III B and III C, all sets of data described in Sec. II D
are included in the fit. The obtained results are illustrated in
Fig. 8 and summarized in Table II. The predictions of the total
energies are in excellent agreement with DFT. Additionally,
we observe the following: (a) Predictions of atomic forces
appear to be highly correlated with the DFT forces, even
though this information was not explicitly included in the
fit. This shows that our energy-matching strategy, with the
inclusion of small random perturbations, is able to transfer

FIG. 6. ANN quality of prediction for the activation energy
associated with vacancy migration in FeCr alloys. Only points from
the reference set are shown. The residual mean absolute error of
prediction is 48.3 meV (R2 = 0.90) for the jumping Fe case, and
32.9 meV (R2 = 0.86) for the jumping Cr case.

information about the kinetics of the system to the potential,
while being originally mainly focused on static properties.
(b) Globally, as summarized in Table II, all NNPs obtained here
are relatively light (i.e., containing fewer free parameters, or
“synapses”) compared to those reported for other applications
(see, e.g., Ref. [30]). Also, the residual mean absolute error on
the total-energy prediction is significantly under 1 meV/atom,
which is comparable to the best prediction accuracies achieved
in other works [38]. This is likely due to the purpose-specific
target of our application, i.e., the focus on point-defect-driven
microstructure evolution.

FIG. 7. Prediction with AKMC of a thermal annealing experi-
ment on an Fe 20% Cr alloy at 500 ◦C. Both results obtained in this
work (labeled AKMC-DFT) and in Ref. [24] (labeled AKMC-SEAM)
are shown. APT experimental data are taken from Novy [61,62],
Jacquet [63], and Bley [64].
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FIG. 8. Accuracy of prediction achieved by the lattice-free NNPs
designed for the FeCu and FeCr systems. Reference values are taken
from the databases of configurations described in Sec. II D, and
formation energies are defined in Eq. (15). The figures for the latter
are split into the vacancy migration events and the SIA migration
events. δ is the mean absolute error of prediction, reported in Table II.

Finally, we test the predictive capabilities of computing
point-defect migration energies using no previous knowledge
of the metastable states involved in the transitions. For that
purpose, we used the obtained lattice-free NNPs to perform
NEB calculations and recompute the DFT migration barriers
originally included in the training database (see Table I). Prior
to the NEB calculation, the end states were systematically
departed from the ideal rigid-lattice positions, and a full static

FIG. 9. Comparison of the end-state energy differences (left) and
NEB migration energies (right), found using DFT or the NNPs. δ is
the mean absolute error of prediction, reported in Table II.

FIG. 10. ANN quality of prediction for the migration energy
associated with single-SIA migration in FeCr alloys. Target values
were obtained with the NNP. The residual mean absolute error of
prediction is 39.1 meV (R2 = 0.89).

relaxation was performed. Comparison between the predicted
energy differences and migration energies is illustrated in
Fig. 9, and summarized in Table II. Clearly, we see that
our NNP’s succeeded in mimicking the relevant aspects of
DFT for our modeling, because all crucial properties of the
studied migration events (i.e., the energy difference between
end states and the migration energy) are faithfully reproduced
on average. Errors on some individual cases may be regarded as
relatively large, but this is of no concern, because the objective
of these potentials is to predict the average behavior of the
alloy, which depends on a large number of migration events.
We can thus fairly confidently state that these potentials may be
used to evaluate new cases in order to enhance the capabilities
of producing training samples by DFT, in terms of larger
amounts of cases within small computational efforts, as well
as larger simulation cells. As a matter of fact, the originally
calculated 5600 cases of single-SIA migration events in FeCr
alloys were not sufficient to achieve a kinetic model, with a
performance as satisfactory as the one shown in Fig. 6 for the
single-vacancy case. Thanks to the lattice-free NNP, however,
we were able to extend this database to 30 000 new cases with
a very limited CPU cost, achieving a much more accurate
model, as illustrated in Fig. 10.

IV. CONCLUDING AND SUMMARIZING REMARKS

In this work, we have taken a few steps towards the objective
of relying exclusively on large databases of ab initio properties
to reproduce the thermodynamic and kinetic properties of an
alloy during atomistic Monte Carlo (AMC) simulations. Our
strategy relies on high-dimensional neural-network potentials
(NNP) fitted on point-defect migration energies evaluated with
density functional theory (DFT), thus targeting the specific
needs of rigid-lattice models. With respect to traditional
atomistic MC approaches, neural networks allow for an
efficient exploitation of massive amounts of DFT calculations,
thanks to the high-dimensional mathematical structure they
provide. This can be regarded as the most accurate way to
transfer physical information from the ab initio to the Monte
Carlo scale. With respect to our previous work [36] where
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DFT-trained neural networks were used to predict vacancy
migration barriers in kinetic Monte Carlo simulations, the
NNPs developed here ensure a more accurate parametrization,
as they predict not only the energy barrier of a defect migration
event, but also the energy associated with metastable and
saddle-point states. This opens the possibility to perform
metropolis Monte Carlo simulations and therefore allows
for a preliminary thermodynamic assessment of the system,
which is not possible if only migration barriers are predicted.
Moreover, splitting the prediction of the end-state energies
from that of the saddle-point energies with independent ANNs
enables the user to choose independent strategies or methods
to address thermodynamic and kinetic properties separately,
providing the necessary leverage to correct issues such as
the incorrect solubility limit of Cu in Fe [36]. In addition,
the lattice-free potentials allow for an extension of the DFT
capabilities: it has been shown how they can be used as
numerical tools to mimic the DFT framework and efficiently
perform large amounts of NEB calculations. This leads to
the creation of much richer migration-barrier databases that
are necessary for treating more complex cases, such as SIA
migration or multicomponent alloys. Lastly, the lattice-free
potentials can also potentially solve the DFT cell-size problem
encountered in the previous work. For instance, obtaining data
from larger simulation cells would allow for cases of defect
migration next to large solute clusters to be included in the
training databases.

A systematic and efficient introduction of DFT databases
in the parametrization of AMC models in place of traditional
interatomic potentials is highly desirable, as it would greatly
simplify the application to complex alloys and would ensure a
level of physical accuracy as close as possible to that provided
by first-principles methods. For instance, the application here
presented to FeCr thermal-annealing simulations has shown
that the NNP-based parametrization has greatly improved
the match with the experimental data with respect to the
previous EAM results. In conclusion, this work gives a
substantial contribution to the ongoing effort of employing
high-throughput computational techniques in the modeling
of microstructure evolution, which can support the linking
of first-principles calculations with higher-scale methods.
Ensuring the best possible transfer of physics across modeling
scales is indeed necessary to achieve fully reliable multiscale
models that can aid understanding and predicting materials
behavior in a wide range of applications and conditions.
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APPENDIX: APT-LIKE CLUSTER ANALYSIS

One way to assess the results obtained by atomistic Monte
Carlo (MC) models is to compare them with experimental
observations by atom probe tomography (APT). However, it
is delicate to perform in practice. On the one hand, the atomic
system is described with full details in the MC model: any
defects in the microstructure, such as clusters of solute atoms
(even very small ones), are unequivocally identifiable. On the
other hand, even if APT allows for a very accurate atomic-level
characterization of real materials, it cannot achieve an equally
perfect description: about half of the atoms are unavoidably
undetected, and the spatial coordinates of the other atoms
are significantly distorted. These effects should be taken
into account while analyzing the results of our atomistic
kinetic Monte Carlo (AKMC) model, in order to realistically
reproduce the nonperfect efficiency of detection of solute
clusters by APT.

Inspired by collaborative discussions with colleagues
[65,67], we established an algorithm to mimic the APT while
analyzing our AKMC results. It can be briefly summarized
as follows. (a) In order to account for the APT detection
accuracy, 60% of the atoms in the simulation cell are chosen at
random and discarded. (b) Since large distortions in the atomic
coordinates are inherently induced by the measurement,
especially in the plane perpendicular to the sample main axis
(very thin needle), the remaining atoms in the simulation cell
are randomly displaced along that plane. The displacement
magnitude follows a Gaussian distribution with a full width
at half maximum (FWHM) as large as 0.75 nm, while a
smaller value (0.1 nm) is applied in the direction of the
sample axis. (c) Finally, clusters are identified by searching
for groups of neighboring atoms, with a cutoff distance of
1.75a0 = 4.954 Å. The cluster radii are calculated with the
Guinier formula. In summary, this procedure mimics the
dissolution of small clusters of solute atoms at the beginning
of the APT measurement, as well as the average increase of
cluster size due to the APT-induced local displacements.
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