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Topology Optimization of 2D Potential Problems Using Boundary Elements

Adrián P. Cisilino1

Abstract: Topological Optimization provides a power-
ful framework to obtain the optimal domain topology for
several engineering problems. The Topological Deriva-
tive is a function which characterizes the sensitivity of a
given problem to the change of its topology, like opening
a small hole in a continuum or changing the connectivity
of rods in a truss.
A numerical approach for the topological optimization of
2D potential problems using Boundary Elements is pre-
sented in this work. The formulation of the problem is
based on recent results which allow computing the topo-
logical derivative from potential and flux results. The
Boundary Element analysis is done using a standard di-
rect formulation. Models are discretized using linear el-
ements and a periodic distribution of internal points over
the domain. The total potential energy is selected as cost
function. The evaluation of the topological derivative at
internal points is performed as a post-processing proce-
dure. Afterwards, material is removed from the model
by deleting the internal points with the lowest (or highest
depending the nature of the problem) values of the topo-
logical derivate. The new geometry is then remeshed us-
ing a weighted Delaunay triangularization algorithm ca-
pable of detecting “holes” at those positions where inter-
nal points have been removed. The procedure is repeated
until a given stopping criteria is satisfied.
The proposed strategy proved to be flexible and robust. A
number of examples are solved and results are compared
to those available in the literature.

keyword: Topology optimization, Boundary elements,
Potential problems.

Abstract: Introduction

A classical problem in engineering design consists in
finding the optimum geometric configuration of a body
that maximizes or minimizes a given cost function while
it satisfies the problem boundary conditions. The most
general approach to tackle these problems is by means

1 Welding and Fracture Division, Faculty of Engineering, University
of Mar del Plata, Av. Juan B. Justo 4302, 7600 Mar del Plata,
Argentina. Email: cisilino@fi.mdp.edu.ar

of topological optimization tools, which allow not only
to change the shape of the body but its topology via the
creation of internal holes. Topological optimization tools
are capable of deliver optimal designs with a priori poor
information on the optimal shape of the body.

Homogenization methods are possibly the most used ap-
proach for topology optimization [Bensoe and Kikuchi,
1988]. In these methods a material model with micro-
scale voids is introduced and the topology optimization
problem is defined by seeking the optimal porosity of
such a porous medium using one of the optimality cri-
teria. In this way, the homogenization technique is capa-
ble of producing internal holes without prior knowledge
of their existence. However, the homogenization method
often produces designs with infinitesimal pores that make
the structure not manufacturable. A number of varia-
tions of the homogenization method have been investi-
gated to deal with these issues, such as penalization of
intermediate densities and filtering procedures [Sigmund
and Peterson, 1998]. On the other hand, there exist the
so-called level set methods which are based on the mov-
ing of free boundaries [Wang and Wang, 2004; Wang and
Wang, 2006]. The main drawback of level set methods is
that they require of pre-existent holes within the model
domain in order to conduct a topological optimization.

Alternative approaches are the Topological Derivative
(DT ) methods [Novotny, et al., 2003; Ceá, et al., 2000].
The basic idea behind the DT is the evaluation of cost
function sensitivity to the creation of a hole. Wherever
this sensitivity is low enough (or high enough depending
on the nature of the problem) the material can be progres-
sively eliminated. Topological derivative methods aim to
solve the aforementioned limitations of the homogeniza-
tion methods.

A numerical approach for the topological optimization
of 2D potential problems using Boundary Elements is
presented in this work. The formulation of the prob-
lem is based on some recent results by Novotny et al.
[Novotny, et al., 2003] which allow computing the topo-
logical derivative using potential and flux results. The
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Figure 1 : New definition of the DT as proponed by Novotny et al [Novotny et al., 2003]: (a) Original domain with
pre-existing hole ψ(Ωε), (b) Perturbed domain ψ(Ωε+δε)

Boundary Element analysis is done using a standard di-
rect formulation. Models are discretized using linear
elements and a periodic distribution of internal points
over the domain. The total potential energy is selected
as cost function. Afterwards, material is removed from
the model by deleting the internal points with the lowest
(or highest) values of the topological derivate. The new
geometry is remeshed using an Extended Delaunay Tes-
sellation algorithm capable of detecting “holes” at those
positions where internal points and nodes have been re-
moved. The procedure is repeated until a given stopping
criteria is satisfied. The performance of the proposed
strategy is illustrated for a number of examples.

To the author’s knowledge, the only antecedent in the im-
plementation of the Novotny et al. [Novotny, et al., 2003]
approach for the computation of the DT using BEM is a
recent work by Marckzak [Marckzak, 2005]. Both im-
plementations, that due to Marckzak [Marckzak, 2005]
and the one presented in this work use similar procedures
for the computation of the DT at internal points. How-
ever, they differ in the strategy proposed for the creation
of the holes and the model remeshing.

1 Topological Sensitivity Analysis

The original definition of the DT relates the sensitivity
of a cost function ψ(Ω) when the topology of the opti-
mization domain Ω is altered by creating a small hole.
However, the direct application and implementation of
this concept is not straightforward, as it is not possible to
establish a homeomorphism between the domains with
different topologies (domains with and without the hole).

Novotny et al [Novotny, et al., 2003] proposed an alter-

native definition of the DT that overcomes the problem.
They assimilated the creation of a hole to the perturba-
tion of a pre-existing hole whose radius tends to zero (see
Figure 1). Therefore, both topologies of the optimization
domain Ω are now similar and it is possible to establish
a homeomorphism between them. According to this new
definition, the expression for the DT is

DT (x) = lim
ε → 0
δε → 0

ψ(Ωε+δε)−ψ(Ωε)
f (ε+δε)− f (ε)

(1)

where ψ(Ωε) and ψ(Ωε+δε) are the cost function evalu-
ated for the original and perturbed domain, ε is the initial
radius of the hole, δε is a small perturbation of the hole
radius and f is a regularization function. The function f
is problem dependent and f (ε) → 0 when ε → 0.

The new definition of the DT in equation (1) merely pro-
vides the sensitivity of the problem when the size of the
hole is perturbed and not when it is effectively created
(as one has in the original definition of the topological
derivative). However, it is understood that to expand a
hole of radius ε, when ε → 0, is nothing more than cre-
ating it (a complete mathematical proof that establishes
the relation between both definitions of the DT is given
in [Novotny, et al., 2003]). Moreover, the relationship
between the two definitions constitutes the formal rela-
tion between the DT and the shape sensitivity analysis.
The advantage of the novel definition for the topological
derivative given by Eq. (1) is that the whole mathemati-
cal framework developed for the shape sensitivity analy-
sis can now be used to compute the DT .
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Figure 2 : BEM implementation: (a) Problem definition and boundary conditions, (b) Initial BEM model, (c)
Elimination internal points, (d) BEM model remeshing.

2 The Topological Derivative for Linear Potential
Problems

In the present work the DT is applied to the optimiza-
tion of two dimensional linear potential problems. With
this purpose the solution of equation (1) for different
boundary conditions is needed. These results are briefly
presented next following Novotny et al [Novotny, et al.,
2003].

The general potential problem for the temperature field
u governed by Laplace equation k∇2u = 0 is defined on
the domain Ωε and subjected to Dirichlet u = u, Newman
k ∂u

∂n = q and Robin k ∂u
∂n = h(u−u∞) boundary conditions

on complementary portions of its frontier ΓD, ΓN and ΓR

respectively (see Figure 2a). The symbol k stands for
the thermal conductivity while n is the outward normal
to the boundary. Similarly, boundary conditions will be
imposed on the boundary of the holes Γε either in the
potential (Dirichlet), in the flux (Neumann) or even in

both variables (Robin). Thus, the function

g(α,β,γ) = α (u−uε)+β
(

k
∂u
∂n

−qε
)

+ γ
(

k
∂u
∂n

+hε (u−uε
∞)

)
= 0 (2)

with 0 ≤ α,β,γ ≤ 1 and α+β+ γ = 1 takes into account
the prescribed boundary conditions on the holes. Thus
by doing α = 1 and β = γ = 0 the temperature uε is pre-
scribed on the holes, while for β = 1 and α = γ = 0 the
flux qε is prescribed. The symbols uε

∞ and hε are the tem-
perature and the transfer coefficient in the interior of the
holes, respectively, when γ = 1 and α = β = 0 are speci-
fied.

The cost function ψ(Ωε) is, in a certain way, arbitrary.
For the case of heat conduction problems the total poten-
tial energy can be adopted. The expression of the total
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potential energy in absence of body loads is

ψ(Ωε) =
1
2

Z
Ωε

k∇u ·∇udΩε +
1
2

Z
ΓR

hu2dΓ

+
1
2

γ
Z

Γε
hεu2dΓε +

Z
ΓN

qudΓ−
Z

ΓR

hu∞udΓ

+β
Z

Γε
qεudΓε − γ

Z
Γε

hεuε
∞udΓε (3)

The cost function (3) can be used to derive the expres-
sion for the DT using equation (1) for the three types of
boundary conditions on the holes. These results are re-
ported in Table 1 following Novotny et al [Novotny, et
al., 2003]. Note that the total potential energy serves as a
measure of the energy in transit within a solid, and as it
will be illustrated in Section 5, it can be used to find the
optimum geometric configuration of heat conductors.

3 Bem Implementation

The idea behind the numerical implementation is to com-
pute the DT using BEM analysis results and the formulas
in Table 1. Next, the topology of the problem domain
is perturbed by creating holes at the positions with ex-
treme values of DT (the selection of maximum or mini-
mum values will depend on the nature of the problem).
The process is repeated until a given stopping criterion is
satisfied.

The evaluation of the DT using the expressions in Table 1
only requires the potential and fluxes to be known at in-
ternal points. These can be easily solved using a standard
BEM formulation (see for example Brebbia et al. [Breb-
bia, et al, 1984]). In the present work BEM models are
discretized using linear elements.

The optimization algorithm can be summarized as fol-
lows (the index j stands for iteration number):

1. Provide an initial domain Ω j=0 and the stopping cri-
terion.

2. Solve the BEM model for the Ω j domain (Figure
2b). Compute the potential u j and flux q j fields at
internal points.

3. Compute the DT (x) using the formulas in Table 1.

4. Select the points with the extreme values of DT (a
few percent of the total number of points)

Table 1 : Topological Derivatives for 2D potential prob-
lems.

Boundary Condition 
TD f

Newman with 0q k u u 2

Newman with 0q
q u 2

Robin 
1

2
2
h u u u 2

Dirichlet 
1

2
k u u

2

log

5. Create holes by removing the points selected in step
4 (Figure 2c).

6. Check stopping criterion. If necessary, make j = j+
1, define a new domain Ω j, remesh the BEM model
(Figure 2d) and go to step 2.

7. At this stage the desired final topology is obtained.

The remeshing of the BEM model after the removal of
internal points is a key issue for the performance of the
optimization algorithm. With this purpose an α-shapes
algorithm is employed [Calvo, et al, 2003]. Alpha shapes
can be viewed as Delaunay triangularization of a point
set weighted by the parameter α. Alpha shapes formalize
the intuitive notion of shape, and for varying parameter
α, it ranges from crude to fine shapes. The most crude
shape is the convex hull itself, which is obtained for very
large values of α. As α decreases, the shape shrinks and
develops cavities that may join to form holes. In this
work the parameter α is selected as the average distance
between the boundary nodes and the internal points of
the BEM model. This is the reason why internal points
are distributed on the model domain using a regular array
(see Figure 2b).

4 Examples

Results for three examples are presented in this section.
In order to assess the performance of the BEM algorithm,
the examples are taken from Novotny et al and the results
compared to those obtained in that work using finite ele-
ment models.
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Figure 3 : Non-symmetric heat conductor: (a) Problem definition and initial BEM discretization, (b) Initial flux
solution, (c) Optimized geometry and flux solution after 20 iterations, (d) Final model geometry and flux solution
(iteration 40)

4.1 Non-symmetric heat conductor

The first example consists in an initial squared domain
with dimensions 10 m ×10 m and prescribed tempera-
tures in the corners as illustrated in Figure 3a. The re-
maining boundary is isolated. The model was discretized
using 160 boundary elements and 1600 internal points.
The goal of the optimization is to diminish the total po-
tential energy (which can be interpreted in this case as a
measure of the heat flux, or even, as a measure of energy
in transit in the body under analysis) in order to improve
the geometry of the heat conductor. In this way, holes
are created with Newman boundary conditions (qε = 0)
where the DT assumes smallest values (first case in Table
1) in order to . Following the reference, 0.5% of surface
of the initial domain was eliminated in each iteration (8
points per iteration) until 20% of the initial domain was
removed (40 iterations). The evolution of the model ge-
ometry and the flux solution are presented in Figures 3b,
c and d. Obtained results are in perfect agreement with

those reported by Novotny et al. Similar results were ob-
tained using a coarser mesh consisting in 80 boundary
nodes and 400 internal points.

4.2 Heat conductor with a initial hole

In this example the topology of a squared heat conduc-
tor containing a initial circular hole of R =2,5 m is im-
proved following the same optimization criterion of the
previous example. The initial external dimensions of the
conductor are 10 m ×10 m with temperatures prescribed
along the central portion of the lateral sides (see Figure
4a). The remaining boundary is isolated. The symme-
try of the problem allows only half of its geometry to be
discretized using 130 boundary elements and 688 inter-
nal points. In this case 1% of the initial model surface
was eliminated in each iteration until 60% of the initial
domain was removed. The evolution of the model geom-
etry together with the flux and DT solutions are presented
in Figures 4b, c and d. It can be observed that the regions
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Figure 4 : Heat conductor with an initial hole: (a) Problem definition and initial BEM discretization, (b) Initial flux
and DT solutions, (c) Optimized geometry, flux and DT solutions after 30 iterations, (d) Final geometry, flux and DT

solutions (iteration 60)

of the lowest flux always correspond to the lowest values
of DT and therefore they are progressively removed from
the model.

4.3 Design of a heat exchanger

This example is devoted to the design of the heat ex-
changer illustrated in Figure 5. The cooling surface is
in the top, with a Robin boundary condition. A peri-
odic prescribed flux is specified to the bottom surface.
The initial model was discretized using 120 boundary el-
ements and 800 internal points. The optimization process
consists in creating holes (cooling channels) in the cen-
tral portion of the wall with prescribed Robin boundary
conditions uε

∞= 25oC and hε= 200 W/(m2 oC). The goal
of the optimization is to diminish the temperature of the
wall, and so the channels are open at the points with the
highest values of DT .

The BEM model was constructed considering the peri-
odic boundary conditions of the problem. Two points

2L

L= 4mL/2…
…

u = 20ºC 

h = 20 W/(m2 ºC) 

q1 = 2000 W/m2

q2 = 20000 W/m2 u = 25ºC 

h = 200 W/(m2 ºC) 

Figure 5 : Geometry and boundary conditions of the heat
exchanger example.

(approximately 0,125% of the initial model surface) were
eliminated in each iteration. The process was completed
in 7 steps.

The evolution of the problem topology and the temper-
ature solution are presented in Figure 6 for the initial
model and after 3 and 7 iterations. It can be observed
that the temperature of the wall effectively diminishes as
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Figure 6 : Design of a heat exchanger: (a) Initial geom-
etry and temperature solution, (b) Optimized geometry
and temperature solution after 3 iterations (c) Final ge-
ometry and temperature solution (7 iterations)

the optimization progresses. Figure 7 illustrates the evo-
lution of the maximum temperature in the wall, which
achieves the limit value Tmax ≈ 173 ˚ C after 5 iterations.
As with the previous examples, the computed results
are in complete agreement with those of the reference
[Novotny, et al., 2003].

5 Conclusions

An effective BEM implementation for the topological
optimization of 2D potential problems was presented in
this work. The problem formulation is based on some
recent results by Novotny et al. [Novotny, et al., 2003]
which allow computing the topological derivative us-
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Figure 7 : Evolution of the maximum temperature in the
wall.

ing potential and flux results. The optimization process
consists in the progressive creation of holes within the
model domain until a given stopping criterion is satis-
fied. The BEM model discretization is updated using a
weighted Delaunay triangularization algorithm. The pro-
posed method proves to be efficient and robust. Its per-
formance is illustrated for a number of examples from
the bibliography.
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