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Abstract. Entanglement criteria for general (pure or mixed) states of systems consisting of two identical
fermions are introduced. These criteria are based on appropriate inequalities involving the entropy of the
global density matrix describing the total system, on the one hand, and the entropy of the one-particle
reduced density matrix, on the other hand. A majorization-related relation between these two density
matrices is obtained, leading to a family of entanglement criteria based on Rényi’s entropic measure.
These criteria are applied to various illustrative examples of parametrized families of mixed states. The
dependence of the entanglement detection efficiency on Rényi’s entropic parameter is investigated. The
extension of these criteria to systems of N identical fermions is also considered.

1 Introduction

The entanglement features exhibited by systems consist-
ing of identical fermions have attracted the attention of
several researchers in recent years [1–17]. Entanglement
in fermion systems has been studied in connection with
different problems, such as the entanglement between elec-
trons in a conduction band [9], the entanglement dynamics
associated with scattering processes involving two elec-
trons [10], the role played by entanglement in the time-
optimal evolution of fermionic systems [11,12], the classifi-
cation of three-fermion states based on their entanglement
features [13], the detection of entanglement in fermion sys-
tems through the violation of appropriate uncertainty re-
lations [14], the entanglement features of fractional quan-
tum Hall liquids [15] and the entanglement properties of
the eigenstates of soluble two-electrons atomic models [16].

The concept of entanglement in systems of indistin-
guishable particles exhibits some differences from the cor-
responding concept as applied to systems consisting of
distinguishable parts. There is general consensus among
researchers that in systems of identical fermions the mini-
mum quantum correlations between the particles that are
required by the antisymmetric character of the fermionic
state do not contribute to the state’s amount of entan-
glement [1–17]. This means that the separable (that is,
non-entangled) pure states of N fermions are those having
Slater rank 1. These are the states whose wave function
can be expressed (with respect to an appropriate single-
particle basis) as a single Slater determinant [3]. On the

a e-mail: arplastino@ugr.es

other hand, the set of mixed non-entangled states com-
prises those states that can be written as a statistical mix-
ture of pure states of Slater rank 1. Here, when discussing
systems of identical fermions, we are considering entan-
glement between particles and not entanglement between
modes.

The problem of determining whether a given quantum
state ρ is separable or entangled is known as “the separa-
bility problem”. It constitutes one of the most fundamen-
tal problems in the theory of quantum entanglement and
is the subject of a sustained and intense research activ-
ity (see [18–25] and references therein). As clearly stated
in a comprehensive recent review article on entanglement:
“The fundamental question in quantum entanglement the-
ory is which states are entangled and which are not” [20].
Besides its intrinsic interest, the development of separabil-
ity criteria also leads to useful quantitative entanglement
indicators: the degree to which a separability criterion is
violated constitutes in itself a valuable quantitative indi-
cator of entanglement. For instance, the well-known nega-
tivity measure of entanglement (which is one of the most
used practical measures of entanglement for mixed states
of systems with distinguishable subsystems) is based upon
the celebrated Peres’ separability criterion [20]. Another
interesting recent example of separability criteria leading
to quantitative indicators of entanglement concerns sep-
arability criteria based upon the violation of appropriate
local uncertainty relations. In fact, it has been shown that
the amount of violation of these uncertainty relations pro-
vides useful lower bounds for the concurrence, which con-
stitutes a quantitative measure of entanglement [26–28].
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In the case of pure states of two identical fermions,
necessary and sufficient separability criteria can be formu-
lated in terms of the entropy of the single-particle reduced
density matrix [4,8,17]. Alas, no such criteria are known
for general, mixed states of two fermions, except for the
case of two fermions with a single-particle Hilbert space
of dimension four, for which a closed analytical expres-
sion for the concurrence (akin to the celebrated Wootters’
formula for two qubits [29]) is known. In general, to de-
termine whether a given density matrix of a two-fermion
system represents a separable state or not is a notoriously
difficult (and largely unexplored) problem. Consequently,
there is a clear need for practical separability criteria, or
entanglement indicators, which can be extended to sys-
tems of higher dimensionality or to scenarios involving
more than two fermions [17].

Entropic separability criteria have played a distin-
guished role in the study of the entanglement-related fea-
tures of mixed states of multipartite systems constituted
by distinguishable subsystems [18–24]. For this kind of
composite quantum system, non-entangled states behave
classically in the sense that the entropy of a subsystem
is always less or equal than the entropy of the whole sys-
tem. If the entropy of a subsystem happens to be larger
than the entropy of the whole system, then we know for
sure that the state is entangled (that is, this constitutes a
sufficient entanglement criterion). This statement can be
formulated mathematically in terms of the Rényi entropic
measures,

S(R)
q [ρ] =

1
1 − q

ln(Tr[ρq]), (1)

leading to the following family of inequalities satisfied by
separable states [18–24],

S(R)
q [ρA] ≤ S(R)

q [ρAB]
S(R)

q [ρB] ≤ S(R)
q [ρAB]. (2)

In the above equations ρAB is the joint density matrix de-
scribing a bipartite system consisting of the subsystems
A and B, and ρA,B are the marginal density matrices de-
scribing the subsystems. The entropic parameter in (1-2)
adopts values q ≥ 1. In the limit q → 1 the Rényi en-
tropy reduces to the von Neumann entropy. Note that the
entropic criteria considered in [18–24] and in the present
work, which depend on the entropies of the total and re-
duced density matrices, are different from those studied
in [25], which involve entropic uncertainty relations asso-
ciated with the measurement of particular observables.

The study of entropic entanglement criteria based
upon the above considerations has been the focus of a
considerable amount of research over the years [18–24]. It
would be interesting to extend this approach to systems
consisting of identical fermions. The aim of this paper is
to investigate entanglement criteria for general (mixed)
states of systems of two identical fermions based upon the
comparison of the entropy of the global density matrix
describing the total system and the entropy of the one-
particle reduced density matrix.

The organization of the paper is as follows. A brief re-
view of entanglement between particles in systems of iden-
tical fermions is given in Section 2. Entropic entanglement
criteria for systems of two identical fermions based on the
von Neumann, the linear, and the Rényi entropies are de-
rived in Section 3. These entropic criteria are applied to
particular families of states of two-fermion systems in Sec-
tions 4 and 5. The extension to systems of N fermions of
the entanglement criteria based upon the Rényi entropies
is considered in Section 6. Finally, some conclusions are
drawn in Section 7.

2 Entanglement between particles
in fermionic systems

The concept of entanglement between the particles in a
system of identical fermions is associated with the quan-
tum correlations exhibited by quantum states on top of
the minimal correlations due to the indistinguishability of
the particles and the antisymmetric character of fermionic
states. A pure state of Slater rank one of N identical
fermions (that is, a state that can be described by one
single Slater determinant) must be regarded as separa-
ble (non-entangled) [2,3]. The correlations exhibited by
such states do not provide a resource for implementing
non-classical information transmission or information pro-
cessing tasks. Moreover, the non-entangled character of
states of Slater rank one is consistent with the possibility
of assigning complete sets of properties to the parts of the
composite system [4]. Consequently, a pure state of two
identical fermions of the form

|ψsl〉 =
1√
2
{|φ1〉|φ2〉 − |φ2〉|φ1〉}, (3)

where |φ1〉 and |φ2〉 are orthonormal single-particle states,
is regarded as separable.

A pure state |ψ〉 of a system of N identical fermions
has Slater rank 1, and is therefore separable, if and only
if

Tr(ρ2
1) =

1
N
, (4)

where ρ1 = Tr2,...,N(ρ) is the single-particle reduced den-
sity matrix, ρ = |ψ〉〈ψ|, n is the dimension of the single-
particle state space and N ≤ n [17]. On the other hand,
entangled pure states satisfy

1
n
≤ Tr(ρ2

1) <
1
N
. (5)

Non-entangled mixed states of systems of N identical
fermions are those that can be written as a mixture of
Slater determinants,

ρsl =
∑

i

λi|ψ(i)
sl 〉〈ψ(i)

sl |, (6)

where the states |ψ(i)
sl 〉 can be expressed as single Slater

determinants, and 0 ≤ λi ≤ 1 with
∑

i λi = 1.
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Systems of identical fermions with a single-particle
Hilbert space of dimension 2k (with k ≥ 2) can be for-
mally regarded as systems consisting of spin-s particles,
with s = (2k − 1)/2. The members {|i〉, i = 1, . . . , 2k} of
an orthonormal basis of the single-particle Hilbert space
can be identified with the states |s,ms〉, with ms =
s − i + 1, i = 1, . . . , 2k. We can use for these states the
shorthand notation {|ms〉, ms = −s, . . . , s}, because each
particular example discussed here will correspond to a
given value of k (and s). According to this angular momen-
tum representation, the antisymmetric joint eigenstates
{|j,m〉, −j ≤ m ≤ j, 0 ≤ j ≤ 2s} of the total angular
momentum operators J2 and Jz constitute a basis for the
Hilbert space associated with a system of two identical
fermions. The antisymmetric states |j,m〉 are those with
an even value of the quantum number j.

A closed analytical expression for the concurrence of
general (pure or mixed) states of two identical fermions
sharing a single-particle Hilbert space of dimension four
(corresponding to s = 3/2) was discovered by Eckert et al.
(ESBL) in [2]. The ESBL concurrence formula is

CF(ρ) = max{0, λ1 − λ2 − λ3 − λ4 − λ5 − λ6}, (7)

where the λi’s are the square roots of the eigenvalues of
ρρ̃ in descending order of magnitude. Here ρ̃ = DρD−1,
with the operator D given by

D =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎠
K, (8)

where K stands for the complex conjugation operator
and (8) is written with respect to the total angular
momentum basis, ordered as |2, 2〉, |2, 1〉, |2, 0〉, |2,−1〉,
|2,−2〉 and i|0, 0〉.

In what follows we are going to consider systems com-
prising a given, fixed number of identical fermions. There-
fore, we are going to work within the first quantization
formalism.

3 Entropic entanglement criteria for systems
of two identical fermions

In this Section we are going to derive the main results
of the present paper. We shall advance new entropic cri-
teria for mixed states of systems constituted by identi-
cal fermions. In Section 3.1 we derive entropic criteria for
mixed states of two fermions (based on inequality (10))
and N fermions (based on inequality (12)) formulated in
terms of the von Neumann entropy, and an entropic cri-
terion for two fermions based upon the linear entropy. In
Section 3.2 we introduce a full family of entropic criteria
based on the Rényi entropy.

3.1 Entanglement criteria based on the von Neumann
and the linear entropies

Let ρ be a density matrix describing a quantum state of
two identical fermions and ρr be the corresponding single-
particle reduced density matrix, obtained by computing
the partial trace over one of the two particles.

If ρ = |ψsl〉〈ψsl|, where |ψsl〉 represents a separable
pure state of the form (3), and

SvN[ρ] = −Tr(ρ ln ρ) (9)

is the von Neumann entropy of ρ, we have that SvN[ρ] = 0
and SvN[ρr] = ln 2. That is, for separable pure states
we have SvN[ρ] − SvN[ρr] = − ln 2. It then follows from
the concavity property of the quantum conditional en-
tropy [30] that, for a separable mixed state ρ of the
form (6), SvN[ρ]−SvN[ρr] ≥ − ln 2. Consequently, all sep-
arable states (pure or mixed) of a system of two identical
fermions satisfy the inequality

SvN[ρr] ≤ SvN[ρ] + ln 2. (10)

Hence, if the quantity

DvN = SvN[ρr] − SvN[ρ] − ln 2 (11)

is positive the state ρ is necessarily entangled. Indeed, in
the particular case of pure states this quantity has been
used as a measure of entanglement in some applications
(see, for instance, [15] and references therein).

The argument leading to inequality (10) can be ex-
tended to the more general case of systems of N iden-
tical fermions. A separable pure state ρ = |ψsl〉〈ψsl| of
N identical fermions (that is, a pure state expressible
as a single Slater determinant) satisfies SvN[ρ] = 0 and
SvN[ρr] = lnN . Therefore, for this kind of state we have
SvN[ρ] − SvN[ρr] = − lnN . The concavity property of
the quantum conditional entropy then implies that for a
mixed state ρ of N fermions having the form (6) we have
SvN[ρ]−SvN[ρr] ≥ − lnN . Consequently, a separable state
of N fermions (that is, a state that can be written as a
statistical mixture of pure states each having the form of
single Slater determinant) satisfies the inequality

SvN[ρr] ≤ SvN[ρ] + lnN. (12)

Consequently, a state of N fermions violating inequal-
ity (12) is necessarily entangled. In the case of pure states
of N fermions this entanglement criteria reduces to one
of the entanglement criteria previously discussed in [17].
The special case of this criterion corresponding to pure
states of two fermions was first analyzed in [4]. That is,
our present result (12) constitutes a generalization to ar-
bitrary mixed states of an inequality that has been pre-
viously known and shown to be useful for the study of
fermionic entanglement in the special case of pure states.
When deriving the inequalities (10) and (12) we have used
the concavity of the quantum conditional entropy. This
property is usually discussed in connection with composite
systems comprising distinguishable subsystems. However,
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within the first quantization formalism, any density ma-
trix of two identical fermions has mathematically also the
form of a density matrix describing distinguishable sub-
systems (in fact, it is just a density matrix that happens
to be expressible as a statistical mixture of antisymmet-
ric pure states). Consequently, any mathematical prop-
erty that is satisfied by general density matrices describing
distinguishable subsystems is also satisfied by the special
subset of density matrices that can describe a system of
identical fermions.

An entanglement criterion for states of two fermions
similar to the one already discussed can be formulated in
terms of the linear entropy,

SL[ρ] = 1 − Tr(ρ2). (13)

Given a quantum state ρ of two fermions, let’s consider
the quantity

c[ρ] = inf
∑

i

pic[|φi〉], (14)

where c[|φi〉] =
√

2
[
1 − Tr[(ρ(i)

r )2]
]
, ρ

(i)
r is the one-

particle reduced density matrix corresponding to |φi〉,
ρ =

∑
i pi|φi〉〈φi|, and the infimum is taken over all

the possible decompositions of ρ as a statistical mixture
{pi, |φi〉} of pure states (note that c[ρ] adopts values in
the range [0,

√
2]). The quantity defined in (14) satisfies

the inequality [31]

c[ρ]2 ≥ 2
[
Tr(ρ2) − Tr

(
ρ2

r

)]
. (15)

If ρ corresponds to a separable state of the two fermions,
we have that ρ =

∑
i pi|ψ(i)

sep〉〈ψ(i)
sep| with c[|ψ(i)

sep〉] = 1 for
all i. Therefore, for a separable state we have c[ρ] ≤ 1
and, from (15), 1 ≥ (c [ρ])2 ≥ 2

[
Tr(ρ2) − Tr

(
ρ2

r

)]
. Con-

sequently, separable states (pure or mixed) of a system of
two identical fermions comply with the inequality,

SL[ρr] ≤ SL[ρ] +
1
2
. (16)

In other words, states for which the quantity

DL = SL[ρr] − SL[ρ] − 1
2

(17)

is positive are necessarily entangled. In the particular case
of pure states of two identical fermions, the positivity of
(17) becomes both a necessary and sufficient entanglement
criterion ([17] and references therein). Moreover, a quan-
tity basically equal to (17) has been proposed as an en-
tanglement measure for pure states of two fermions and
indeed constitutes one of the most useful entanglement
measures for these states [10].

3.2 Entropic entanglement criteria based on the Rényi
entropies

On the basis of the Rényi family of entropies we are going
to derive now a generalization of the separability criterion

associated with inequality (10). We are going to prove
that a (possibly mixed) quantum state ρ of a system of
two identical fermions satisfying the inequality

S(R)
q [ρ] + ln 2 < S(R)

q [ρr], (18)

for some q ≥ 1, is necessarily entangled. Here S(R)
q stands

for the Rényi entropy,

S(R)
q [ρ] =

1
1 − q

ln(Tr[ρq]). (19)

The inequality (18) leads to an entropic entanglement cri-
terion that detects entanglement whenever the quantity

Rq = S(R)
q [ρr] − S(R)

q [ρ] − ln 2 (20)

is strictly positive. In the limit q → 1 the Rényi mea-
sure reduces to the von Neumann entropy and we recover
the entanglement criterion given by inequality (10). When
q → ∞ the Rényi entropy becomes

S(R)
∞ [ρ] = − ln (λmax) , (21)

where λmax is the largest eigenvalue of ρ. In this limit case,
the entropic criterion says that any state satisfying

2λ(ρr)
max < λ(ρ)

max (22)

is entangled, where λ(ρ)
max and λ

(ρr)
max are, respectively, the

largest eigenvalues of ρ and ρr.

3.3 Proof of the entropic criteria based on the Rényi
entropies

The following proof is based on the powerful techniques
related to the majorization concept [32,33] that were intro-
duced to the field of quantum entanglement by Nielsen and
Kempe in [32]. These authors proved that non-entangled
states of quantum systems having distinguishable subsys-
tems are such that the total density matrix is always ma-
jorized by the marginal density matrix associated with one
of the subsystems. In the case of non-entangled states of a
system of identical fermions the total density matrix ρ is
not necessarily majorized by the one-particle reduced den-
sity matrix ρr. However, as we are going to prove, there is
still a definite majorization-related relation between ρ and
ρr that yields a family of inequalities between the Rényi
entropies of these two matrices, which leads in turn to a
family of entropic entanglement criteria.

In our proof of the entropic criterion associated with
the inequality (18) we are going to use the following
fundamental property of quantum statistical mixtures. If
ρ =

∑
i pi|ai〉〈ai| =

∑
j qj |bj〉〈bj | are two statistical mix-

tures representing the same density matrix ρ, then there
exists a unitary matrix {Uij} such that [32,34]

√
pi|ai〉 =

∑

j

Uij
√
qj |bj〉. (23)
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Let us now consider a separable state of two identical
fermions,

ρ =
∑

j

pj

2

(
|ψ(j)

1 〉|ψ(j)
2 〉 − |ψ(j)

2 〉|ψ(j)
1 〉)(〈ψ(j)

1 |〈ψ(j)
2 |

−〈ψ(j)
2 |〈ψ(j)

1 |
)

(24)

where 0 ≤ pj ≤ 1,
∑

j pj = 1 and |ψ(j)
1 〉, |ψ(j)

2 〉 are nor-

malized single-particle states with 〈ψ(j)
1 |ψ(j)

2 〉 = 0. Equa-
tion (24) represents the standard definition of a non-
entangled mixed state of two identical fermions. Notice
that in (24) no special relation between states |ψ(j)

i 〉 with
different values of the label j is assumed. In particular,
the overlap between two states with different labels j is
not necessarily equal to 0 or 1. This, in turn, means that
the overlap between two different members of the family
of (separable) two-fermion pure states participating in the
statistical mixture leading to (24) may be non-zero.

Let us consider now a spectral representation

ρ =
∑

k

λk|ek〉〈ek| (25)

of ρ. That is, the |ek〉 constitute an orthonormal basis of
eigenvectors of ρ and the λk are the corresponding eigen-
values. Then, (24) and (25) are two different representa-
tions of ρ as a mixture of pure states. Therefore, there is
a unitary matrix U with matrix elements {Ukj} such that

√
λk|ek〉 =

∑

j

Ukj

√
pj

2

(
|ψ(j)

1 〉|ψ(j)
2 〉 − |ψ(j)

2 〉|ψ(j)
1 〉
)
.

(26)
The single-particle reduced density matrix corresponding
to the two-fermion density matrix (24) is

ρr =
∑

j

pj

2

(
|ψ(j)

1 〉〈ψ(j)
1 | + |ψ(j)

2 〉〈ψ(j)
2 |
)
, (27)

admitting a spectral representation

ρr =
∑

l

αl|fl〉〈fl|. (28)

We now define,

q2j = q2j−1 =
1
2
pj (j = 1, 2, 3, . . .) (29)

|φ2j−1〉 = |ψ(j)
1 〉

|φ2j〉 = |ψ(j)
2 〉 (j = 1, 2, 3, . . .). (30)

Now, since (27) and (28) correspond to two statistical mix-
tures yielding the same density matrix, there must exist a
unitary matrix W with matrix elements {Wil} such that,

√
qi|φi〉 =

∑

l

Wil
√
αl|fl〉 (i = 1, 2, 3, . . .). (31)

Now, equation (26) can be rewritten as

√
λk|ek〉 =

∑

j

Ukj

(√
q2j−1|φ2j−1〉|φ2j〉

− √
q2j |φ2j〉|φ2j−1〉

)
. (32)

Combining (31) and (32) gives

√
λk|ek〉 =

∑

l

⎡

⎣
∑

j

Ukj

(
W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉

)
⎤

⎦

×√
αl|fl〉. (33)

Therefore, since 〈ek|ek′〉 = δkk′ and 〈fl|fl′〉 = δll′ , we have
that

λk =
∑

l

Mklαl, (34)

where

Mkl =

⎛

⎝
∑

j′
U∗

kj′
{
W ∗

2j′−1,l〈φ2j′ | −W ∗
2j′,l〈φ2j′−1|

}
⎞

⎠

×
⎛

⎝
∑

j′′
Ukj′′ {W2j′′−1,l|φ2j′′ 〉 −W2j′′,l|φ2j′′−1〉}

⎞

⎠ .

(35)

We now investigate the properties of the matrix M with
matrix elements {Mkl}. First of all, we have

Mkl ≥ 0, (36)

since the matrix elements of M are of the form Mkl =
〈Σ|Σ〉, with

|Σ〉 =
∑

j

Ukj (W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉) . (37)

We now consider the sum of the elements within a given
row or column of M . The sum of a row yields,

∑

k

Mkl =
∑

j′j′′
δj′j′′

(
W ∗

2j′−1,l〈φ2j′ | −W ∗
2j′,l〈φ2j′−1|

)

× (W2j′′−1,l|φ2j′′ 〉 −W2j′′,l|φ2j′′−1〉
)

=
∑

j

(
W ∗

2j−1,lW2j−1,l +W ∗
2j,lW2j,l

)

=
∑

i

(
W †)

li
Wil = 1, (38)
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while the sum of a column is,

∑

l

Mkl =
∑

j′j′′
U∗

kj′Ukj′′

(
〈φ2j′ |φ2j′′ 〉

[
∑

l

W ∗
2j′−1,lW2j′′−1,l

]

+ 〈φ2j′−1|φ2j′′−1〉
[
∑

l

W ∗
2j′,lW2j′′,l

]

− 〈φ2j′ |φ2j′′−1〉
[
∑

l

W ∗
2j′−1,lW2j′′,l

]

−〈φ2j′−1|φ2j′′ 〉
[
∑

l

W ∗
2j′,lW2j′′−1,l

])

=
∑

j′j′′
U∗

kj′Ukj′′ (〈φ2j′ |φ2j′′ 〉δj′j′′

+〈φ2j′−1|φ2j′′−1〉δj′j′′ )
= 2

∑

j

(
U †)

jk
Ukj = 2. (39)

When deriving the above two equations we made use of
the unitarity of the matrices {Ukj} and {Wil}. Summing
up, we have,

∑

k

Mkl = 1
∑

l

Mkl = 2. (40)

We now define a new set of variables {λ′n} and a new
matrix M ′ with elements M ′

nl, respectively given by,

λ′2k−1 = λ′2k =
1
2
λk (k = 1, 2, 3, . . .) (41)

M ′
2k−1,l = M ′

2k,l =
1
2
Mkl (k = 1, 2, 3, . . .), (42)

and so we have
λ′n =

∑

l

M ′
nlαl. (43)

By construction, then, we have

{λk} = {λ1, λ2, λ3, . . .}
{λ′n} =

{
λ1

2
,
λ1

2
,
λ2

2
,
λ2

2
,
λ3

2
,
λ3

2
, . . .

}
. (44)

Let us now compare the matrices {Mkl} and {M ′
nl}. The

matrix {M ′
nl} has twice as many rows as {Mkl}, but the

rows of {M ′
nl} can be grouped in pairs of consecutive rows

such that within each pair the rows are equal to 1/2 a row
of {Mkl}. It follows that

∑

k

Mkl = 1 =⇒
∑

n

M ′
nl = 1

∑

l

Mkl = 2 =⇒
∑

l

M ′
nl = 1. (45)

Thus, ∑

n

M ′
nl =

∑

l

M ′
nl = 1 (46)

and, therefore, {M ′
nl} is a doubly stochastic matrix. In-

terpreting the λ′n’s and the αl’s as probabilities, it fol-
lows from (43) and (46) that the probability distribution
{λ′n} is more “mixed” than the probability distribution
{αl} [30] (or, alternatively that {αl} majorizes {λ′n} [32]).
This, in turn, implies that for any Rényi entropy S(R)

q with
q ≥ 1, we have

S(R)
q [λ′n] ≥ S(R)

q [αl]. (47)

Thus,

S(R)
q [λ′n] =

1
1 − q

ln

(
2
∑

k

(
λk

2

)q
)

= ln 2 + S(R)
q [λk]. (48)

Therefore, all separable states of the two-fermion system
comply with the inequality S(R)

q [λk] + ln 2 ≥ S
(R)
q [αl] and

since {λk} and {αl} are the eigenvalues of ρ and ρr re-
spectively,

S(R)
q [ρ] + ln 2 ≥ S(R)

q [ρr]. (49)

The above inequality leads to an entanglement criterion
that detects entanglement when the indicator Rq defined
in equation (19) is strictly positive.

3.4 Connection with a quantitative measure
of entanglement

As already mentioned in the Introduction, the develop-
ment of separability criteria often leads to useful entan-
glement indicators. In particular, when the separability
criterion takes the form of an inequality, such that entan-
glement is detected when the inequality is not verified, the
degree of violation of the inequality constitutes an entan-
glement indicator. In the case of the entropic indicators
advanced in the present work, it is indeed a reasonable
expectation that states with larger values of the indica-
tors DvN and Rq tend to be more entangled. In the next
Section we shall illustrate this behaviour in the case of
two-fermion systems with a single-particle Hilbert space
of dimension four, where the exact amount of entangle-
ment can be evaluated analytically.

Now we shall discuss two general aspects of the connec-
tion between the abovementioned entanglement indicators
and a quantitative measure of entanglement. First of all,
it is worth emphasizing that in the case of pure states,
the indicators DvN and DL themselves coincide (up to
unessential multiplicative constants) with useful quanti-
tative measures of entanglement for fermion systems that
have already been applied to the study of fermionic entan-
glement. In particular, let us focus on the indicator DvN of
a two-fermion system, which is based on the von Neumann
entropies of the total and single-particle density matrices,
ρ and ρr. For a pure state |Φ〉 of the two-fermion system we
have ρ = |Φ〉〈Φ| and SvN[ρ] = 0. Consequently, in this case
we have DvN = SvN[ρr]− ln2. As already mentioned, this
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quantity constitutes a quantitative entanglement measure
for pure states,

ε[|Φ〉] = SvN[ρr] − ln2. (50)

The extension of this quantitative entanglement measure
to mixed two-fermion states ρ is obtained via the standard
convex roof construction,

ε[ρ] = inf
∑

i

pi ε[|Φi〉], (51)

where the infimum is taken over all the possible mixtures
{pi, |Φi〉} of pure states |Φi〉 (with weights pi, 0 ≤ pi ≤
1,
∑

i pi = 1) generating the mixed state under consid-
eration, ρ =

∑
i pi|Φi〉〈Φi|. Now, given a particular de-

composition ρ =
∑

i pi|Φi〉〈Φi| of the two-fermion state ρ,
let ρ(i) = |Φi〉〈Φi| be the total density matrix correspond-
ing to the pure state |Φi〉 and ρ

(i)
r be the corresponding

single-particle reduced density matrix. Then, using the
concavity property of the quantum conditional entropy
(see Sect. 3.1) one obtains,

DvN[ρ] = SvN[ρr] − SvN[ρ] − ln2
≤
∑

i

pi

[
SvN[ρ(i)

r ] − SvN[ρ(i)] − ln2
]

(52)

which implies that

DvN[ρ] ≤ inf
∑

i

pi

[
SvN[ρ(i)

r ] − SvN[ρ(i)] − ln2
]

= ε[ρ],

(53)
which leads to an inequality directly linking the entropic
indicator DvN[ρ] with the quantitative entanglement mea-
sure ε[ρ],

ε[ρ] ≥ DvN[ρ]. (54)

Summing up, the entropic indicator DvN[ρ] provides a
lower bound for the quantitative entanglement measure
ε[ρ]. In the case of pure states of a systems of two fermions
this lower bound is saturated and the inequality (54) be-
comes an equality.

4 Two-fermion systems with a single-particle
Hilbert space of dimension four

In this and the next sections we are going to illustrate our
entanglement criteria by recourse to examples of fermion
systems with a single-particle Hilbert space of low dimen-
sionality. In this section we are going to focus on sys-
tems of two fermions with a single-particle Hilbert space
of dimension four. This case is of considerable relevance
both from the conceptual and the practical points of view,
and has been the subject of various recent research ef-
forts [2,8,14]. It is the fermionic system of lowest dimen-
sionality admitting the phenomenon of entanglement and
it has profound physical and mathematical relationships
with the celebrated two-qubits system of paramount im-
portance in quantum information science [2]. It is worth

mentioning that, in spite of its low dimensionality, this
system is of considerable complexity, its generic (mixed)
state depending on 35 (real) parameters. This system can
be realized when one has spin- 1

2 particles confined by an
external potential well such that, within the range of en-
ergies available in the experimental setting, there are only
two relevant eigenfunctions, Ψa(x) and Ψb(x) [2] corre-
sponding, for instance, to the ground and first excited
states of the confining potential. In such a scenario, the
relevant single-particle Hilbert space is spanned by the
single-particle states |Ψa,+〉, |Ψa,−〉, |Ψb,+〉, |Ψb,−〉 (here
we use standard, self-explanatory notation, the ± signs
corresponding to the spin degree of freedom).

Now we are going to apply our above-derived entropic
entanglement criteria to some parametrized families of
states of two fermions with a single-particle Hilbert space
of dimension four. In this case there is an exact, analytical
expression for the state’s concurrence. It is then possible
to compare the range of parameters for which entangle-
ment is detected by the criteria with the exact range of
parameters for which the states under consideration are
entangled. As mentioned in Section 2, in this case the two-
fermion states can be formally mapped onto the states of
two s = 2

3 spins. The antisymmetric eigenstates |j,m〉 of
the total angular momentum operators J2 and Jz con-
stitute then a basis of the system’s Hilbert space. These
states are |0, 0〉, |2,−2〉, |2,−1〉, |2, 0〉, |2, 1〉 and |2, 2〉.

4.1 Werner-like states

First we are going to consider a family of states consisting
of a mixture of the maximally entangled state |0, 0〉 and a
totally mixed state. These states are of the form,

ρW = p|0, 0〉〈0, 0|+ 1 − p

6
I (55)

where 0 ≤ p ≤ 1, and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m| (56)

is the identity operator acting on the six-dimensional
Hilbert space corresponding to the two-fermion system.
Evaluation of the concurrence shows that these states are
entangled when p > 0.4. For these states we have,

DvN[ρW ] = ln 2 +
5
6
(1 − p) ln

(
1 − p

6

)

+
1
6
(1 + 5p) ln

(
1
6
(1 + 5p)

)

DL[ρW ] = − 7
12

+
5p2

6

R2[ρW ] = ln
(

1 + 5p2

3

)

R∞[ρW ] = ln
(

1 + 5p
3

)
. (57)
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The minimum values pmin of the parameter p such that
for p > pmin the entanglement indicators DvN, DL, R2

and R∞ are positive (and thus entanglement is detected
by the corresponding criteria) are given in the following
table (that is, in each case, entanglement is detected when
p is larger than the listed value):

DvN > 0 DL > 0 Rq = 2 > 0 Rq→∞ > 0

pmin ≈0.809
√

0.7 ≈ 0.837 ≈0.632 0.4

The entanglement detection efficiency of the entropic cri-
terion based upon Rényi entropy increases with q. Indeed,
in the limit q → ∞ the Rényi entropic criterion detects all
the entangled states within the family of states (55). The
behaviour of the minimum value of p for which entangle-
ment is detected as a function of the entropic parameter
q is depicted in Figure 1.

4.2 θ-state

As second illustration we consider the following pure state,

|ψ〉 =
sin θ√

2

[∣∣∣∣−
3
2

3
2

〉
−
∣∣∣∣
3
2
− 3

2

〉]
+

cos θ√
2

×
[∣∣∣∣−

1
2

1
2

〉
−
∣∣∣∣
1
2
− 1

2

〉]
, (58)

for which

DvN[|ψ〉〈ψ|] = − ln 2 − cos2θ ln
(

cos2θ
2

)

− sin2θ ln
(

sin2θ

2

)

DL[|ψ〉〈ψ|] = cos2θ sin2θ. (59)

Thus, both DvN and DL = 0 for θ = 0, π
2 , π and both

quantities are positive for all other values of θ in the in-
terval [0, π]. We also have S(R)

q [ρ] + ln 2 < S
(R)
q [ρr] for all

θ ∈ (0, π), θ �= π
2 . Therefore, comparing this with the con-

currence, one sees that all entangled states are detected.

4.3 Gisin-like states

As a final example let us consider the parametrized family
of mixed states given by,

ρG = p|0, 0〉〈0, 0|+ 1 − p

2
(|2,−2〉〈2,−2|+ |2, 2〉〈2, 2|),

(60)
with 0 ≤ p ≤ 1. In this case we have,

DvN[ρG] = (1 − p) ln(1 − p) + p ln(2p)

DL[ρG] =
1
4
(−1 − 4p+ 6p2

)

R2[ρG] = ln(1 − 2p+ 3p2)

R∞[ρG] =

{
ln(1 − p) 0 ≤ p ≤ 1

3

ln(2p) 1
3 ≤ p ≤ 1.

(61)

q
5 10 15 20

m
in

im
al

 p

Fig. 1. Minimum p-value for which entanglement is detected
in the case of the state ρW defined in equation (55) (dashed
line) and ρG given by equation (60) (solid line).

The critical p values at which the entropic criteria based
on the indicators DvN, DL, R2 and R∞ begin to detect
entanglement are listed in the table below:

DvN > 0 DL > 0 Rq =2 > 0 Rq→∞ > 0

pmin ≈0.773 2+
√

10
6 ≈ 0.860 ≈0.667 0.5

From the evaluation of the concurrence it follows that the
Gisin-like states are entangled for p > 0.5. Thus, once
again, the Rényi-based entropic criterion based on the in-
dicator Rq→∞ detects all the entangled states in the fam-
ily (60). The behaviour of the minimum value of p for
which entanglement is detected as a function of the en-
tropic parameter q is depicted in Figure 1.

We shall now illustrate the fact that the quantities
DvN, DL and Rq involved in the entanglement criteria
advanced here can also be regarded as entanglement indi-
cators, in the sense that states exhibiting large values of
these quantities tend to have higher entanglement. Two-
fermion states with a single-particle Hilbert space of di-
mension four allow for the illustration of this, because
in the case of these systems we have a closed analyti-
cal expression for the amount of entanglement of mixed
states [2],

E[ρ] = h

(
1 +

√
1 − CF [ρ]2

2

)
,

h(x) = −x log2 x− (1 − x) log2(1 − x), (62)

where the concurrence CF was defined in equation (7).
In Figure 2 we compare, for two parametrized families
of mixed states, the behaviour of the entanglement mea-
sure with the behaviour of the abovementioned quanti-
ties. Note that in order to compare the entanglement mea-
sure with our entanglement indicators, the logarithms in
the entanglement indicators are taken to the base 2 in
Figure 2.

It transpires from Figure 2 that for these families
of states the indicators associated with our entropic en-
tanglement criteria do indeed tend to increase with the
amount of entanglement exhibited by these states.
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Fig. 2. (Color online) Entanglement measure (thick line) and entanglement indicators R∞ (solid line), R2 (dash-dotted
line), DvN (dotted line) and DL (dashed line) for the states (a) ρW defined in equation (55) and (b) ρG given by equation (60).
The logarithms in the entanglement indicators are taken to the base 2.

5 Two-fermion systems with a single-particle
Hilbert space of dimension six

Two identical fermions with a four-dimensional single-
particle Hilbert space (the simplest fermionic system ad-
mitting the phenomenon of entanglement) constitutes the
only fermion system for which an exact analytical formula
for the concurrence has been obtained. It is thus of interest
to apply the entropic entanglement criteria to systems of
higher dimensionality, for which such an expression for the
concurrence is not known. Here we are going to consider a
system consisting of two identical fermions with a single-
particle Hilbert space of dimension six. The Hilbert space
of this system is 15-dimensional. The generic (mixed) state
of this system depends on 224 (real) parameters. The en-
tanglement features of mixed states of this system are (up
to now) basically “terra incognita”. Here we are going to
identify, for some parametrized families of mixed states,
the range of values of the relevant parameters for which
the states are entangled.

Using the angular momentum representation, the two-
fermion system considered in this Section can be mapped
onto a system of two spins with s = 5

2 . It is useful to
introduce the following notation,

|m1m2| =
1√
2

[|m1〉|m2〉 − |m2〉|m1〉] . (63)

We are going to study three particular families of mixed
states of the form

ρi = p|ϕi〉〈ϕi| + 1 − p

15
I, (64)

where 0 ≤ p ≤ 1 and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m|+
4∑

m=−4

|4,m〉〈4,m|

(65)
is the identity operator acting on the 15-dimensional
Hilbert space describing the two-fermion system, and |ϕi〉
is an entangled two-fermion pure state. We consider three

particular instances of |ϕi〉. In each case we provide the
expressions for the indicators DvN, DL, R2 and R∞, and
give the minimum values pmin of the parameter p such
that for p > pmin entanglement is detected by the criteria
based on the positivity of the entanglement indicators.

The first illustration corresponds to

|ϕ1〉 =
1√
3

[∣∣∣∣
5
2

3
2

∣∣∣∣+
∣∣∣∣
1
2
− 1

2

∣∣∣∣−
∣∣∣∣−

3
2
− 5

2

∣∣∣∣

]
, (66)

for which

DvN[ρ1] = ln 3 +
14
15

(1 − p) ln
(

1 − p

15

)

+
1
15

(1 + 14p) ln
(

1
15

(1 + 14p)
)

DL[ρ1] =
1
15
(−9 + 14p2

)

R2[ρ1] = ln
(

1
5
(1 + 14p2)

)

R∞[ρ1] = ln
(

1
15

(1 + 14p)
)

+ ln 3, (67)

resulting in

DvN > 0 DL > 0 Rq =2 > 0 Rq→∞ > 0

pmin ≈0.767 3√
14

≈ 0.802 ≈0.535 2
7 ≈ 0.286

The second example is given by

|ϕ2〉 = −2
3

∣∣∣∣
5
2

3
2

∣∣∣∣−
2
3

∣∣∣∣
1
2
− 1

2

∣∣∣∣+
1
3

∣∣∣∣−
3
2
− 5

2

∣∣∣∣ , (68)
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with,

DvN[ρ2] =
1
45

(
−45 ln2 + 42(1 − p) ln

(
1 − p

15

)

− 5(3 − 2p) ln
(

3 − 2p
18

)
− 10(3 + p) ln

(
3 + p

18

)

+3(1 + 14p) ln
(

1
15

(1 + 14p)
))

DL[ρ2] = −3
5

+
121p2

135

R2[ρ2] = − ln(9 + 2p2) + ln
(

9
5
(1 + 14p2)

)

R∞[ρ2] = − ln
(

1 − p

6
+

2p
9

)
+ ln

(
1
15

(1 + 14p)
)
− ln 2,

(69)

and

DvN > 0 DL > 0 Rq = 2 > 0 Rq→∞ > 0
pmin ≈0.788 9

11 ≈ 0.818 ≈0.557 12
37 ≈ 0.324

As a third instance we tackle,

|ϕ3〉 =
1√
2

[∣∣∣∣
5
2

3
2

∣∣∣∣+
∣∣∣∣
1
2
− 1

2

∣∣∣∣

]
, (70)

leading to,

DvN[ρ3] = − ln 2 − 1 − p

3
ln
(

1 − p

6

)
− 2 + p

3
ln
(

2 + p

12

)

+
14
15

(1 − p) ln
(

1 − p

15

)
+

1 + 14p
15

× ln
(

1
15

(1 + 14p)
)

DL[ρ3] = −3
5

+
17p2

20

R2[ρ3] = − ln(2 + p2) + ln
(

2
5
(1 + 14p2)

)

R∞[ρ3] = − ln
(

1 − p

6
+
p

4

)
+ ln

(
1
15

(1 + 14p)
)
− ln 2,

(71)

and
DvN > 0 DL > 0 Rq =2 > 0 Rq→∞ > 0

pmin ≈0.825 2
√

3
17 ≈ 0.840 ≈0.590 8

23 ≈ 0.348

For the above three cases, the behaviour of the minimum
value of p for which entanglement is detected, as a function
of the entropic parameter q, is depicted in Figure 3.

6 Systems of N identical fermions

Let us consider the general case of N fermions with single-
particle Hilbert space of general (even) dimension n > N .

q
5 10 15 20

m
in

im
al

 p
 

Fig. 3. Minimum value of p, as a function of the entropic
parameter q, for entanglement detection in the states (64) with
|ϕ1〉 (solid line), |ϕ2〉 (dashed line) and |ϕ3〉 (dash-dotted line).

The dimension of the Hilbert space associated with the
N -fermion system is then d = n!

(n−N)!N ! . The Rényi-based
entropic criterion for two fermions that we derived in Sec-
tion 3 can be extended to the case of N fermions. Ac-
cording to the extended criterion a state ρ of N identical
fermions satisfying the inequality

S(R)
q [ρr] > S(R)

q [ρ] + lnN, (72)

for some q ≥ 1 is necessarily entangled, where ρr is the
single-particle reduced density matrix. This criterion can
be derived following a procedure that is a straightforward
generalization to the case ofN fermions of the one detailed
in Section 3.3 for the case of two fermions. One starts with
a state of the N fermions that is a statistical mixture of
pure states, each one represented by a single Slater deter-
minant. Then one considers two equivalent representations
for the total density matrix ρ: the spectral one, and the
abovementioned one as a mixture of separable pure states.
On the other hand, one considers two equivalent represen-
tations for the single-particle reduced density matrix ρr:
again, the spectral one, and the one derived from the rep-
resentation of the total state as a mixture of separable
states. The two representations for ρ and the two ones
for ρr are then related via appropriate unitary transfor-
mations according to equation (23). Following the same
steps as in Section 3.3 it is then possible to obtain a ma-
jorization relation connecting ρ and ρr, which finally leads
to the inequality (72).

As an illustration of the entanglement criterion based
on the inequality (72) let us consider a family of states of
a system of N fermions having the form

p |Φ〉〈Φ| + (1 − p)
d

Id, (73)

where 0 ≤ p ≤ 1, Id is the identity operator acting on the
N -fermion Hilbert space, and the single-particle Hilbert
space has dimension n = kN , with k ≥ 2 integer when
N is even and for N odd k ≥ 2t (t ≥ 1 integer). We also
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assume that the (pure) N -fermion state |Φ〉 is of the form

|Φ〉 =
1√
k

(
|1, 2, . . . , N | + |N + 1, N + 2, . . . , 2N |+ . . .

+ |(k − 1)N + 1, (k − 1)N + 2, . . . , kN |
)
, (74)

where |i1, i2, . . . , iN | denotes the Slater determinant (as
in Eq. (63)) constructed with N different members
{|i1〉, . . . , |iN 〉} of an orthonormal basis {|1〉, . . . , |n〉} of
the single-particle Hilbert space. The single-particle, re-
duced density matrix associated with the (pure) state |Φ〉
corresponds to the totally mixed (single-particle) state,
1
nIn, where In is the identity operator corresponding to
the single-particle Hilbert space. On the basis of the Rényi
entropic criterion corresponding to q → ∞ we identify
as entangled the states of the form (73) satisfying the
inequality,

lnn+ ln
(
p+

(1 − p)
d

)
− lnN > 0 (75)

and hence entanglement is detected for

p >
N (n− 1)! − (n−N)!N !

n! − (n−N)!N !
. (76)

With N fixed, we find that the efficiency of the entan-
glement criterion grows as the dimension of the single-
particle states, n, increases (that is, pmin decreases
with n).

6.1 Full multi-particle entanglement:
the case of systems of three fermions

When studying entanglement criteria for composite sys-
tems with more than two distinguishable subsystems a
new problem arises: how to distinguish states exhibiting
full multipartite entanglement from those that, although
being entangled, are such that a subset of the parts con-
stituting the system is disentangled from the rest of the
system. A problem somewhat similar to this one also arises
in the case of systems of N identical fermions with N > 2,
although in the fermionic case this problem is much more
subtle than in the case of distinguishable subsystems [5].
Although the analysis of this problem is beyond the scope
of the present work, we shall now discuss it (in connection
with our entropic entanglement criteria) for the case of
systems of three identical fermions.

In the case of three fermions, a separable pure state
(Slater determinant) is of the form

|φsl〉 = |φ1, φ2, φ3| =
1√
6

[|φ1〉|φ2〉|φ3〉
− |φ1〉|φ3〉|φ2〉 − |φ2〉|φ1〉|φ3〉 + |φ2〉|φ3〉|φ1〉
+ |φ3〉|φ1〉|φ2〉 − |φ3〉|φ2〉|φ1〉

]
, (77)

with |φ1〉, |φ2〉, φ3〉 being three orthonormal single-particle
states. A general, separable mixed state is a state that can
be expressed as a statistical mixture of states like (77).

Now, let us consider a pure state of three fermions of the
form,

|Ψ〉 =
∑

1<i<j

cij |1, i, j| , (78)

where |1, i, j| stands for the Slater determinant con-
structed with the three normalized and orthogonal single-
particle states |1〉, |i〉, |j〉, and {|k〉, k = 1, 2, . . .} is a
single-particle orthonormal basis. Now, in general, pure
states of the above form are entangled in the sense that
they cannot be written as one, single Slater determi-
nant (that is, they are not “fully separable”). However,
these states are special because they are a superposition
of Slater determinants each of them involving the single-
particle state |1〉. This means that it is physically sensible
to say that when the system is in a state like (78) one
of the particles is in the state |1〉 (although it does not
make sense to ask which particle is in the state |1〉). Con-
sequently, according to the analysis made in [4], where
separability is associated to the possibility of assigning
complete set of properties to the constituting particles,
the state (78) can be regarded as describing a physical
situation where one of the particles is disentangled from
the other two. The same considerations apply to mixed
states that are a mixture of states like (78) (each one in-
volving the same “privileged” single-particle state |1〉).

The above discussion raises the following question: can
the entropic entanglement criteria advanced here be used
to discriminate between entangled states that are mix-
tures of states of the form (78) (having one “disentan-
gled” particle in a given, single-particle state |1〉), on the
one hand, and entangled states that cannot be expressed
as (78) (or cannot be written as statistical mixtures of
states like (78)) on the other hand? To address this prob-
lem let us first notice that, as can be verified after some
algebra, the single-particle, reduced density matrix ρr cor-
responding to states of the form (78) (or to mixtures of
such states) always has its largest eigenvalue equal to 1

3 .
This implies that S(R)

∞ (ρr) = ln 3. Consequently, if a three-
fermion state satisfies the (strict) inequality

R∞ = S(R)
∞ (ρr) − S(R)

∞ (ρ) − ln 3 > 0, (79)

which implies S(R)
∞ (ρr) − ln 3 > S

(R)
∞ (ρ) ≥ 0, one then

knows for sure that this state is entangled and that
it cannot be written as a statistical mixture of states
like (78) (all with the same “privileged” single-particle
state |1〉). In other words, for three-fermion systems, the
entropic entanglement criterion based on the Rényi en-
tropy with q → ∞ is not just a sufficient entanglement cri-
terion, but also a sufficient criterion for full, three-particle
entanglement.

To illustrate the above discussion we choose the min-
imum single-particle dimension compatible with three-
fermion entanglement, namely the single-particle Hilbert
space of dimension six. As examples of entangled three-
fermion states that do not exhibit full three-particle
entanglement, let us consider the following family of

http://www.epj.org
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Fig. 4. (Color online) Entanglement indicators (a) DvN and (b) R2 for the state (80).

states,

ρ = p|φ〉〈φ| + (1 − p)ρmix, (80)

where

|φ〉 = cos θ|1, 2, 3| + sin θ|1, 4, 5|, (81)

ρmix is a mixture (with equal weights) of the projec-
tors corresponding to the ten Slater states containing a
“1”, that is, |1, 2, 3|, |1, 2, 4|, |1, 2, 5|, |1, 2, 6|, |1, 3, 4|, . . . ,
|1, 5, 6|, where |1〉, |2〉, . . . , |6〉 are normalized and mutu-
ally orthogonal single-particle states that form a basis for
the single-particle state space. It is clear that one par-
ticle is in the state |1〉 whereas the other two particles
are entangled (although it does not make sense to ask
which particle is in the state |1〉), which means this is
a multipartite system that is neither fully separable, nor
fully entangled in the sense that all three particles are
entangled. In order to evaluate the entanglement indi-
cators DvN, R2 and R∞, one has to find the eigenvalues
of ρ and ρr. These are, {0, . . . , 0, 1−p

10 , . . . ,
1−p
10 ,

1+9p
10 } and

{ 1
3 ,

p cos2θ
3 + 2

15 (1 − p), p cos2θ
3 + 2

15 (1 − p), p sin2θ
3 + 2

15 (1 −
p), p sin2θ

3 + 2
15 (1 − p), 2

15 (1 − p)} respectively. In this case
R∞ = ln(1+9p

10 ) ≤ 0 and consequently full three-particle
entanglement is (correctly) not detected. However, the en-
tanglement indicatorsDvN andR2 do detect entanglement
and Figures 4a and 4b show the results. Hence entan-
glement is detected for this multipartite state where not
all particles are entangled with each other. However, full
multi-particle entanglement is (correctly) not detected.

Summing up, we have seen that the entropic criterion
based on the Rényi entropy S(R)

∞ is, in the three-fermion
case, also a sufficient criterion for full three-particle en-
tanglement. Incidentally, this is another manifestation of
the fact that the most powerful entropic entanglement
criterion based upon the Rényi entropy corresponds to
the limit q → ∞. The case of N -fermion systems with
N ≥ 4 is much more complex and certainly deserves fur-
ther research. Previous experience with composite quan-
tum systems with distinguishable subsystems (see [35] and
references therein) suggests that in this case, besides the
entropies of the single-particle reduced density matrix,

the entropies ofM -particle reduced density matrices (with
2 ≤M < N) are going to be necessary to tackle this prob-
lem.

7 Summary

In the present work new entropic entanglement criteria
for systems of two identical fermions have been advanced.
These criteria have the form of appropriate inequalities in-
volving the entropy of the density matrix associated with
the total system, on the one hand, and the entropy of the
single-particle reduced density matrix, on the other hand.
We obtained entanglement criteria based upon the von
Neumann, the linear, and the Rényi entropies. The crite-
rion associated with the von Neumann entropy constitutes
a special instance, corresponding to the particular value
q → 1 of the Rényi entropic parameter, of the more gen-
eral criteria associated with the Rényi family of entropies.
Extensions of these criteria to systems constituted by N
identical fermions were also considered.

We applied our entanglement criteria to various illus-
trative examples of parametrized families of mixed states,
and studied the dependence of the entanglement detection
efficiency on the entropic parameter q. For the two-fermion
states we considered, the entanglement criterion improves
as q increases and is the most efficient in the limit q → ∞.

In the three-fermion case we have seen that the en-
tropic criterion based on the Rényi entropy S

(R)
∞ is also

a sufficient criterion for full three-particle entanglement.
Incidentally, this is another manifestation of the fact that
the most powerful entropic entanglement criterion based
upon the Rényi entropy corresponds to the limit q → ∞.
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