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a b s t r a c t

An approach based on geometric invariance and slidingmode ideas is proposed for redundancy resolution
in robotic systems to fulfill configuration and workspace constraints caused by robot mechanical limits,
collision avoidance, industrial security, etc. Some interesting features of the proposal are that: (1) it can
be interpreted as a limit case of the classical potential field-based approach for collision avoidance which
requires using variable structure control concepts, (2) it allows reaching the limit surface of the constraints
smoothly, depending on a free design parameter, and (3) it can be easily added as a supervisory block to
pre-existing redundancy resolution schemes. The algorithm is evaluated in simulation on a 6R planar
robot and on the freely accessible 6R robot model PUMA-560, for which the main features of the method
are illustrated.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The main objective of robot control systems is the tracking of
a reference trajectory, which involves the generation of a control
signal to make the error between the robot position and the
reference zero. In the case of redundant robots, an additional
secondary goal can be achieved by using the redundant degrees
of freedom of the robot [1]. For instance, the redundancy can
be used to avoid critical regions of the robot’s configuration
space (hereafter, C-space) and/or workspace where, for example,
collision might occur or the robot kinematics is singular.

The framework of this research is a redundant robot operating
in a structured environment [2], where the location of the robot,
its operation region—additional constraintsmay be imposed to the
original robotworkspace in order to, for example, avoid the overlap
with theworkspace of other industrialmachines placed close to the
robot—andobstacles to avoid (real obstacles plus security distance)
are known.

The use of artificial potential fields may be a way to address the
problem. The potential field method has been studied extensively
for autonomous mobile robot path planning in the past decades
[3,4]. The basic concept of the potential field method is to fill the
robot C-space/workspace with an artificial potential field in which
the robot is attracted to its goal position and is repulsed away
from the obstacles. There are many different variants based on
this technique. When this technique is implemented as an on-line
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reactive behavior for collision avoidance [5], the robot reference
velocity depends in part on the minimum distance from the robot
position to the obstacles, which represent the constrained space.
However, unless the field is designed to abruptly decay at a short
distance of the obstacle, some regions of the C-space/workspace
close to the boundaries will not be reached because of repulsion.
Furthermore, collisions might occur if the robot approaches the
obstacle at high speed, hence some corrective speed-related terms
would be needed.

This paper proposes an alternative solution to the above prob-
lem as a supervisory block, in which the joint velocities com-
manded to the joint controllers may be different to those provided
by the classical redundancy resolution in order to fulfill C-space
and/or workspace constraints. The basic idea is to define a discon-
tinuous control law inspired by the fact that, in the limit case, as the
repulsion region decreases, a potential field could be characterized
as a discontinuous force: zero away from the obstacle, a big value
when touching its boundary.

Discontinuous control laws, as a particular case of variable-
structure control strategies, have been deeply studied in the
context of sliding-mode control [6,7]. Indeed, many types of
sliding-mode controllers have been developed in the past years for
robotic systems [8–11]. Hence, the objective of this paper is to de-
sign a supervisory loop [12] based on the mentioned discontinuous
field idea and using sliding-mode control theory in order tomodify
the commanded joint velocities so that the robot fulfills the desired
C-space and/or workspace constraints. Sliding-mode-based super-
visory blocks may also be used to handle joint speed limits. For
instance, in [13] the authors discuss this issue for non-redundant
robots.

http://dx.doi.org/10.1016/j.robot.2011.07.008
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The proposed algorithm does only activate when the robot is
about to violate the constraints, modifying the commanded joint
velocities as much as necessary to satisfy all the constraints. It
also allows reaching the limit surfaces smoothly depending on a
free design parameter. The strategy to be presented can be easily
added as an auxiliary block to conventional redundancy resolution
schemes.

The outline of the paper is as follows. Next section introduces
some preliminaries and states the main problem to be addressed,
while Section 3 presents some general concepts on geometric
invariance and sliding regimes. Section4develops the slidingmode
redundancy resolution scheme proposed to fulfill C-space and/or
workspace constraints, while some important remarks about the
methodology application are given in Section 5. The proposed
approach is applied in Section 6 to a six-revolute (6R) planar robot
and to the freely accessible 6R robot model PUMA-560, for which
the main distinctive features of the method are illustrated. Finally,
some concluding remarks are given.

2. Preliminaries and problem statement

Following the standard notation [14], consider a robot system
with q = [q1 · · · qn]T being the robot configuration or n-
dimensional joint position vector and p = [p1 · · · pm]

T being the
robot pose orm-dimensional workspace position vector. A robot is
said to be redundant when the dimension m of the workspace is
less than the dimension n of the C-space, i.e., m < n. The degree
of kinematic redundancy is computed as n − m. For the rest of the
paper it is assumed that the robot at hand is redundant.

The relationship between the robot configuration and the robot
pose is highly nonlinear, generically expressed as:

p = l(q), (1)

where the function l is called the kinematic function of the robot
model.

The first order kinematics results in:

ṗ =
∂l
∂q

q̇ = J(q)q̇, (2)

where J(q) is denoted as the m × n Jacobian matrix or simply
Jacobian of the kinematic function. For more details see [14].

Let us denote as pref(t) the workspace reference, which can be
usually expressed in terms of a desired path function v(λ) whose
argument is the so-called motion parameter λ(t) as

pref = v(λ). (3)

2.1. Algebraic problem of redundancy

Since the robot reference is given in the workspace and the
robot control is based on controlling each joint, the inverse kine-
matic problem (IKP) has to be solved. The IKP at the displacement
level is muchmore cumbersome as an infinite number of solutions
may exist for a redundant robot [15]. For that reason, an iteratively
approach at joint rate level is typically used [16]. Firstly, the desired
workspace velocity vector ṗd is computed by a kinematic controller
to make the tracking error zero. Secondly, the desired joint veloc-
ity vector q̇d has to be computed to satisfy the first order kinematic
relation:

ṗd = J(q)q̇d. (4)

In general, in the case of redundant robots an infinite number
of solutions for q̇d satisfying (4) exist. All of them can be obtained
from the singular value decomposition (SVD) [17] of the robot
Jacobian:
J = Um×m6m×nVT
n×n

= [Um×r Um×m−r ]

[
6r×r Or×n−r

Om−r×r Om−r×n−r

] [
V
T
n×rVT

n×n−r

]
, (5)

where the subscripts indicate the dimensions of the matrices; r is
the rank of J, i.e. the number of non-zero1 singular values of the
Jacobian; Oi×j is the null matrix of dimensions i× j; 6 is a diagonal
matrix with non-negative singular values of J on the diagonal in
decreasing order; and U and V are unitary matrices containing the
left and right singular vectors of J, respectively.

The infinite number of solutions q̇d that minimize the square
error of Eq. (4), i.e. ‖ṗd − J(q)q̇d‖

2
2, are given by:

q̇d = V6
−1U

T
ṗd + [V On×r ]b

= JĎ(q)ṗd + B(q)b, (6)

where JĎ is the so-called Moore–Penrose pseudo-inverse of J, B is
an n × n matrix which first n − r column vectors (i.e., V) form
an orthonormal basis for the null space of J and b is an arbitrary
n-dimensional column vector.

The first term in (6) represents the minimum-norm solution or
base solution, while the second term is the homogeneous solution
that gives rise to infinite possible solutions for q̇d depending on the
value of vectorb. Note that the homogeneous solution vanishes (i.e.
B = On×n) when r = n, which is not possible for redundant robots.

If the Jacobian matrix J is full row rank (i.e. r ≥ m) for
a given configuration q, the Moore–Penrose pseudo-inverse is
equivalent to the so-called right pseudo-inverse, i.e. JĎ ≡ JT(J JT)−1.
In such circumstances the solution q̇d given by (6) satisfies
Eq. (4). Otherwise, the robot configuration q is said to be singular
and the desired workspace velocity vector ṗd in general cannot be
achieved. That is, the square error of Eq. (4) given by q̇d in (6) is
non-zero unless ṗd = Uξ , i.e. ṗd lies in the column space of J, which
represents a non-ordinary singularity [18].

The expression (4) can be generalized weighting the equations
by matrix a Wp and weighting joint speeds by the robot inertia
matrix Wq (in order to take into account the joint power require-
ments), that is:

Wpṗd = (WpJW−1
q )q̇d

ṗd = J q̇d. (7)

Therefore, q̇d is computed from the SVD of J by an expression
analogous to that in (6) and then q̇d is computed asW−1

q q̇d.
One common approach in the literature to limit joint speeds is

the damped least-squares inverse [19] which can be easily casted
in the previous formulation by augmenting (7) to include joint
speeds:[
ṗd
0n

]
=

[
J

ρIn

]
q̇d

̇pd =J q̇d, (8)

where 0n is the n-dimensional null column vector, In is the n-
dimensional identity matrix and ρ is the damping factor. Note thatJ has full column rank, i.e. its null space is empty.

2.2. Trajectory tracking scheme with redundancy resolution

Fig. 1 shows the typical kinematic control scheme used for
robotic trajectory tracking with the classical redundancy resolu-
tion [16]. The desired joint velocity vector q̇d is the command to

1 It could be defined a small tolerance belowwhich singular values of J are treated
as zero in order to avoid ill-conditioning.
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Fig. 1. Robotic trajectory tracking control scheme with redundancy resolution.
the robot joint controllers and is obtained from the redundancy
resolution block. The desired workspace velocity vector ṗd is the
input to the redundancy resolution block and is obtained from
the kinematic controller, which closes a loop using the robot state
(q, q̇) and the workspace reference pref. Alternatively, the desired
workspace velocity vector ṗd could also be supplied on-line by an
operator using a joystick and visual feedback of the robot’s posi-
tion.

The redundancy resolution used in Fig. 1 is given by (6), which
means that the robot is required to track the desired workspace
velocity vector ṗd as primary task, while a secondary goal can
be achieved by properly choosing vector b to be projected into
robot self-motions, i.e. b changes the robot configuration but does
not change the robot pose. In general, this arbitrary vector can be
expressed as a function of the robot state, i.e. b(q, q̇).

Assumption 1. It will be assumed the kinematic framework, i.e. the
dynamics given by the joint controllers is negligible compared to
the dynamics of the workspace reference pref, which implies that
the actual joint velocity vector q̇ is approximately equal to the
desired joint velocity vector q̇d.

To fulfill the previous assumption, the values of the motion
rate parameter λ̇ of the workspace reference pref and its derivative
λ̈ have to be bounded in order to limit the radial and tangential
acceleration of the workspace reference, respectively.

2.3. Redundancy resolution schemes in the literature

Several redundancy resolution schemes (RRS) have been devel-
oped in the literature to select performance vector b, which can be
considered as a virtual force that attempts to push the configura-
tion of the robot away from a critical region. The most common
approach is the gradient projection method (GPM) [1], which min-
imizes a configuration-dependent scalar, the performance index s,
by means of its gradient2vector:

b = −ks∇s(q), (9)

where ks is an arbitrary constant.
It is important to remark that, only the robot configuration q

is used in the GPM, as opposed to the approach proposed in this
work, in which joint speeds q̇ are also considered, see Section 4.1.

Different options have been proposed in the literature for
the selection of performance index s. For instance, the weighted
square distance to a reference configuration qref is used in [1] as
performance index:

s =
1
2
(q − qref)

TWs(q − qref), (10)

2 The gradient of a scalar function f (x1, . . . , xn) is denoted ∇f where ∇ is the

vector differential operator, i.e. ∇f =


∂ f
∂x1

. . .
∂ f
∂xn

T
.

where Ws is a diagonal weighting matrix. Thus, joint-limit avoid-
ance is achieved by selecting qref = (qmax + qmin)/2 and Ws =

diag(2/(qi max − qi min)), were qmin and qmax are the lower and up-
per joint limits, respectively. Alternatively, collision avoidance is
achieved by selecting a reference configuration qref away from the
obstacles.

Similar indexes of quadratic forms in the robot configuration q
have been considered in the literature together with the robotma-
nipulability [20] or the condition number of the Jacobianmatrix [21]
in order to avoid singular configurations. Furthermore, a perfor-
mance index based on artificial potential fields [5] could also be con-
sidered to keep the robot away from the obstacles.

2.4. Problem statement

We consider now that the robotic system to be controlled is
subjected to C-space constraints given by
ΦCS(q) = {q|σi(q) ≤ 0}, i = 1, . . . ,N, (11)
where σi is a function of the robot configuration3 q that is positive
if and only if the ith-constraint is not fulfilled. Note that, σi(q) =

0 represents the boundary of the ith-constraint. For instance, a
constraint σplane = nT

plane(q − qplane) ≤ 0 would indicate that the
boundary of the C-space is a plane with normal vector nplane and
passing through point qplane.

In order for some smoothness assumptions to hold in the solu-
tion later proposed in this work, the functions σi need to be twice
differentiable around the boundary given by σi(q) = 0 and their
gradients ∇σi around this boundary should not vanish. For non-
differentiable constraints, there are techniques in literature [22]
that may be used to enclose such non-smooth regions by smooth
mathematical objects with an arbitrary degree of precision.

The main control goal can therefore be stated as to generate
a joint velocity vector q̇d to be sent to the robot joint controllers
so that the desired workspace velocity vector ṗd is tracked using
the non-redundant degrees of freedom of the robot, while the
remaining redundant degrees of freedom are used to implement
a classical RRS together with a supervisory block to guarantee that
q belongs to the allowed C-space ΦCS given by (11).

3. Development of the theoretical framework

In order to address the above control problem from a general
framework, we present in this section some important concepts
on geometric invariance and sliding regimes. In particular, we
study the necessary conditions to confine a dynamical system to
an invariant region of the state-space, and we then explore the
relationship between these conditions and the resulting dynamics
of a system operating in sliding mode (SM), i.e. when the system
input consists of a high frequency discontinuous signal.

3 The constraints could also be defined in terms of any other vector related to the
robot configuration, e.g. the Cartesian position p̄j = [xj yj zj]T of a point j of the
robot, i.e. σi(p̄j) = σ ′

i (q). Also, the approaching speed to those constraints can be
incorporated in the framework, see Section 4.1.
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3.1. Geometric invariance

Consider the following dynamical system
ẋ = f(x, d) + g(x)u
y = h(x), (12)

where x ∈ X ⊂ Rn′

is the state vector, d ∈ D ⊂ Rn′

an unmeasured
disturbance or model uncertainty, u ∈ U ⊂ Rm′

the control input
vector (possibly discontinuous), f : R2n′

→ Rn′

a vector field
defined in X


D, g : Rn′

→ Rn′
×m′

a set ofm′ vector fields defined
in X , and h : Rn′

→ Rb a vector field defined in X .
The variable y denotes the system output vector, which has

to be bounded so as to fulfill user-specified constraints φi. The
corresponding bounds on y are given by the set:

Φ(x) = {x|φi(y) ≤ 0}, i = 1, . . . ,N. (13)

Since the setΦ specifies the region of the state space compatible
with the bounds on output y, the goal is then to find a control
input u such that the region Φ becomes invariant (i.e., trajectories
originating in Φ remain in Φ for all times t), while y is driven as
close as possible to its desired value yref.

To ensure the invariance of Φ , the control input u must
guarantee that the right hand side of the first equation in (12)
points to the interior of Φ at all points in the boundary of Φ ,
denoted by ∂Φ , defined as:

∂Φ =

N
i=1

∂Φi, ∂Φi = {x ∈ Φ | φi(y) = 0}. (14)

For later developments, the following assumption will be
needed.

Assumption 2. It will be assumed that all φi functions are differ-
entiable in the boundary ∂Φi.

The previous assumption will allow computing the gradient
vectors ∇φi.

Mathematically, the invariance ofΦ is ensured by an input such
that, for all i, φ̇i ≤ 0 when φi(y) = 0, i.e., a condition on the dot
product between the gradient of an active constraint with respect
to the state and the time derivative of the state:

φ̇i(x, d,u) = ∇φT
i ẋ = ‖∇φi‖ ‖f + gu‖ cos θ

= ∇φT
i f + ∇φT

i gu

= Lf φi + Lgφiu ≤ 0, ∀x ∈ ∂Φi, i = 1, . . . ,N, (15)

where θ is the angle between vectors ∇φi and ẋ, while Lf φi and
Lgφi denote the Lie derivatives of φi(y) in the direction of vector
field f(x, d) and in the direction of the set of vector fields g(x),
respectively. Note that, Lgφi is an m′-dimensional row vector.

The previous condition is geometrically depicted in Fig. 2 for
n′

= 2, and may be written in standard form as:

inf
u

{φ̇i(x, d,u) ≤ 0, ∀x ∈ ∂Φi}, i = 1, . . . ,N, (16)

which is known as implicit invariance condition [23].
Solving (15) for u gives rise to the explicit invariance condition

for system (12) and a particular constraint φi. The set of feasible
solutions of (15), will be:

Ui(x, d)

=


u ∈ {U|Lf φi + Lgφiu ≤ 0} : x ∈ ∂Φi and Lgφi ≠ 0T

m′

empty : x ∈ ∂Φi and Lgφi = 0T
m′ and Lf φi > 0

u = free : x ∈ ∂Φi and Lgφi = 0T
m′ and Lf φi ≤ 0

u = free : x ∈ Φ�∂Φi,

(17)
Fig. 2. Geometrical interpretation of invariance condition cos(θ) ≤ 0.

where 0m′ denotes the m′-dimensional null column vector and,
evidently, the first set corresponding to Lgφi ≠ 0T

m′ is always non-
empty.4

Note that, the control u in the interior of Φ can be freely
assigned. Particularly, u = 0m′ could be taken so that the system
evolves autonomously throughout the interior of Φ . Then, the
control action becomes active onlywhen some constraint becomes
active, i.e. when the state trajectory reaches the boundary ∂Φ

trying to leave the set Φ . Then, the invariance condition will hold
if the intersection


i Ui(x) for all constraints of the solution sets

Ui(x) is not empty.

3.2. Geometric invariance via sliding regimes

We can make the set Φ invariant by means of the following
variable structure control law

u =

0m′ if max
i

{φi(y)} < 0

uSM otherwise,
(18)

where uSM is arbitrarily chosen from


i Ui(x), if non-empty.
The above control law leads to a sliding regime [6] (i.e., control

signal u switches between 0m′ and uSM with a theoretically infinite
frequency) on the boundary of the constraint set, which can be
described by {x | maxi {φi(y)} = 0}.

3.2.1. Single active constraint
If the constraint Φi is considered, then a sliding regime around

the boundary x ∈ ∂Φi will establish if the following inequalities
are locally satisfied around ∂Φi:

φ̇i =


Lf φi > 0 if φi(y) < 0
Lf φi + LgφiuSM < 0 otherwise. (19)

On the one hand, the first inequality in (19) is locally satisfied
whenever the system tries by itself to leave the set Φ . Thus, the
switching law (18) does not seek for sliding mode (SM), but it
becomes active if the process is at the boundary of the allowed
region and about to leave it. On the other hand, the second
inequality of (19) implies that for a sliding regime to be established
on the boundary ∂Φi,

Lgφi = ∇φT
i g ≠ 0T

m′ , (20)

must hold locally on the manifold φi(y) = 0. The necessary condi-
tion (20) for SM,which is known as the transversality condition [24],
imposes that the slidingmanifoldmust have unitary relative degree

4 If a control action u ∈ {U|Lf φi + Lgφiu ≤ −γ } for some arbitrarily chosen
positive constant γ were applied when the state is strictly outsideΦ , finite-time
convergence to Φ can be achieved [7]. This is helpful when dealing with initial
conditions out of the desired workspace.



L. Gracia et al. / Robotics and Autonomous Systems 60 (2012) 1–15 5
with respect to the discontinuous action, i.e., its first-order time
derivative (φ̇i) must explicitly depend on u. If this is not the case,
an auxiliary subset Φ�

⊂ Φ which satisfies this condition should
be properly defined [24].

For only one active constraint φi and Lgφi ≠ 0T
m′ , theminimum-

Euclidean-norm control action uSM in Ui(x) is given by a vector
parallel to LgφT

i :

uSM min i = −LgφT
i

Lf φi

LgφiLgφT
i
. (21)

Therefore, for only one active constraint it is proposed to use
the following expression for the control action uSM:

uSM = −LgφT
i u

+, (22)

where u+ is a positive constant to be chosen high enough to
establish a SM on the boundary ∂Φi, i.e., the second inequality
in (19) must hold whenever the first inequality in (19) is locally
satisfied. To fulfill that, the scalar factor u+ must be:

u+ >
max(Lf φi, 0)
LgφiLgφT

i
= uφi . (23)

Once the switching SM is established on the boundary ∂Φi by
the control actionuSM in (22), the continuous equivalent control [6]
is obtained as ueq = uSMmin i, which according to (17) is the control
required to keep the system just on the boundary manifold ∂Φi.
Consequently, the sliding regime generated by switching law (18)
produces the minimal value uφi (without explicit knowledge of
it) for the continuous equivalent of u+ in order to achieve the
invariant condition φ̇i ≤ 0. Moreover, the necessary condition
(20) for SM on boundary ∂Φi guarantees that the invariant control
exists in (17) for ith-constraint.

3.2.2. Multiple active constraints
In case several constraints (say h constraints) are active, a

function vector φ and its time derivative φ̇ composed of all
active constraints should be considered in (15), so the geometric
invariance constraints can be kept holding if the linear system of
inequalities:

Lf φ + Lgφ u ≤ 0h, (24)

which actually describes


i Ui(x) for i indexing only the h active
constraints, admits a solution. Indeed, the non-active constraints
admit a free u, hence only the active ones should be considered
in the control law computation. Of course, such set of active
constraints changes with time.

In the spirit of the discussion for the above one-constraint case,
one of such control laws could be given by the solution to:

uSM = argminu
uTu|Lgφu ≤ −1h u+


, (25)

where 1h is the h-dimensional column vector with all its compo-
nents equal to one and u+ is again a positive constant to be chosen
high enough to establish a SM on the boundary ∂Φ . In particular,
the proposition below provides a lower bound for u+ in (25).

Proposition 1. One set of sufficient conditions for a ‘‘collective’’ slid-
ing mode to arise in the intersection of h active constraints whose
derivative function vector is given by:

φ̇ = Lf φ − Mzu+, (26)

where zi = 1 if φi ≥ 0 and zi = 0 if φi < 0, is that matrix M is
positive definite and

u+ >

h−
i=1

(max(Lf φi, 0))/eigmin


M + MT

2


. (27)
Proof. Let V = zT φ be a Lyapunov function candidate. Partition
vector φ into two subvectors φ = [φaT φh−aT

]
T, assuming that SM

occurs in the manifold given by φa
= 0a, whereas the components

of vector φh−a are greater than zero.
According to the continuous equivalent control [6], vector za

must be replaced by the function zaeq such that φ̇
a

= 0a. Because
φa

= 0a in SM, the time derivative of V results in:

V̇ =
d
dt

(zTφ) =
d
dt

[
zaeq
1h−a

]T [
φa

φh−a

]

=

[
żaeq
0h−a

]T [ 0a

φh−a

]
+ zTφ̇ = zTφ̇. (28)

Replacing vector φ̇ with its value from (26), it is obtained:

V̇ = zTLf φ − zTMzu+. (29)

The components of vector z range from 0 to 1, hence the upper
bound of the first term in (29) is given by zi = 1 if Lf φi > 0 and
zi = 0 if Lf φi < 0, that is:

zTLf φ ≤

h−
i=1

(max(Lf φi, 0)). (30)

Assuming that u+ > 0, the second term in (29) is negative if
matrixM is positive definite, in which case the upper bound of this
term is given by:

− zTMzu+
= −zT

M + MT

2
zu+

≤ −eigmin


M + MT

2


‖z‖2

2u
+, (31)

where

‖z‖2 ≥ 1 ∀φ ≠ 0h, (32)

because if vector φh−a is not empty at least one component of
vector z is equal to 1.

From (30)–(32), the upper bound of the time derivative of the
Lyapunov function V results in:

V̇ ≤

h−
i=1

(max(Lf φi, 0)) − eigmin


M + MT

2


u+. (33)

Therefore, if u+ fulfills (27) the Lyapunov function decays at a
finite rate, it vanishes and collective SM in the intersection of the
h active constraints occurs after a finite time interval. That is, the
origin φ = 0h is an asymptotically stable equilibrium point with
finite time convergence. �

According to Proposition 1, the scalar factor u+ in (25) must be:

u+ >

h−
i=1

(max(Lf φi, 0)) = uφ, (34)

to satisfy sufficient conditions for collective sliding mode.
Computing solution (25) on-line might be impractical so,

trying to solve the Least-Squares problem Lgφu = −1h u+ via
the Moore–Penrose pseudo-inverse may be a more reasonable
solution for implementation at a fast-enough rate, giving:

uSM = −LgφĎ1hu+, (35)

which requires SVD computations (see Section 2.1) and where u+

is a high-enough scalar fulfilling (34) so if Lgφ is full row rank,
sufficient conditions for collective sliding mode are satisfied.

In this case, (20) must be now changed to the ‘‘multiple-
constraint’’ transversality condition of Lgφ having full row rank,
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which indeed covers the previous single-constraint case (a one-
row matrix is full rank if there exists a non-zero element).

A third option can be considered which does not involve
computing any inverse, SVD or solution to linear equations, even if
there would be no major problem in doing that with moderately-
sized problems in modern computers. Such option consists in
generalizing (22) to:

uSM = −LgφT1hu+, (36)

where:

u+ >

h−
i=1

(max(Lf φi, 0))


eigmin(LgφLgφ
T) = uφ, (37)

i.e., its value depends on the inverse of the minimum singular
value of Lgφ. As before, if the multiple-constraint transversality
condition is fulfilled, sufficient conditions for collective sliding
mode are satisfied.

Note that in numerical implementations, computation of uSM
should be implemented at a fast enough frequency to approximate
the ideal continuous-time behavior [7] and the active constraints
will be all those in which φi(y) > 0 (discrete-time sliding modes
are not attained at φi(y) = 0 but only approximately, in a band
around zero whose width depends on sampling period, see [7]).
Indeed, the column vector 1h in (25), (35) and (36) could be
replaced by a weighted unit vector whose ith-component is a
function of φi. Thus, the unfulfilled constraints with higher value
φi have greater impact on control action uSM and, therefore, the
minimum value of u+ required for SM may be reduced.

As in the previous single-constraint case, once the switching
SM is established on the boundary ∂Φ by the control action uSM, a
continuous equivalent control [6] is obtained which is the control
required to keep the system just on the boundary manifold ∂Φ .
Consequently, the sliding regime generated by switching law (18)
produces such equivalent control without explicit knowledge of
it, with a reasonably low computational cost; this is a distinctive
advantage of sliding-mode strategies.

4. The proposal

4.1. Redundancy resolution scheme

We are interested in exploiting the exact approximation to
the constraint boundary that allow variable structure laws such
as (18) to deal with the control problem stated in Section 2. In
particular, we will employ the ideas of Section 3 to perform an on-
line robotic redundancy resolution so that C-space limits given by
Eq. (11) are fulfilled. The objective of this redundancy resolution
is to instantaneously modify the desired joint velocity vector q̇d
which is sent to the joint controllers of the robot when there is a
risk of violating a given constraint.

In particular, the RRS proposed in this research, see Fig. 3,
consists of the combination of two signals:

b = bc + bSM, (38)

where bc is the performance vector of a classical RRS, see Sec-
tion 2.3, and bSM is a discontinuous signal generated by a super-
visor block proposed in this work to fulfill C-space constraints. It
is important to remark that, in contrast to classical RRS, the men-
tioned supervisor block takes into account not only joint positions
but also joint speeds, as discussed below.

At this point it is important to consider the following rationale.
Approaching the constraints at high speed is impractical because
collisions might occur if the joint accelerations q̈ required to
slow down the motion of the robot toward the constraint
boundary cannot be achieved by the robot actuators due to power
limitations [25]. This is of particular significance in mechanical or
Fig. 3. Redundancy resolution scheme of the proposal.

Fig. 4. Supervisor block proposed to fulfill C-space constraints.

robotics systems in which the inertia is large. Hence, the actual
constraint space (11) will be modified to also include the speed of
movement in the following way:

Φ∗

CS(q, q̇) =


[qTq̇T

]
T
|φi(q, q̇) = σi(q) + K

dσi(q)

dt

= σi + K∇σ T
i q̇ ≤ 0


, i = 1, . . . ,N, (39)

where σi(p) is the original ith workspace constraint and K is the
constraint approaching parameter, which is a free design parameter
that determines the rate of approach to the boundary of the
constraints. Thus, expression (39) introduces an additional degree
of freedom necessary to reach the limit in a controlled fashion.
That is, the term K σ̇i is used to anticipate when the robot is
about to violate the ith-constraint in order to initiate an early
corrective action, which will increase the numerical stability of
the redundancy resolution algorithm. Note that σ̇i = ∇σ T

i q̇. Thus,
for low speeds or small K values Φ∗

CS ≈ ΦCS given by (11). Note
also that K may take different values for different constraints, if so
wished.

4.2. Sliding-mode supervisor to fulfill C-space constraints

In order to apply the theoretical framework of the previous
section a dynamic system will be constructed whose state is x =

[qT bT
SM]

T; its output vector is y = [qT q̇T
]
T; its disturbance input

are the performance vector bc of a classical RRS and the desired
workspace velocity vector ṗd (which tends to the time derivative
of theworkspace reference ṗref as the tracking error tends to zero);
and a control input vector uwill also be crafted in such a way that
φ̇i directly depends on u (transversality condition), i.e., the second
derivative of q should explicitly depend on the input. Note that the
dimensions of this dynamic system are n′

= b = 2n andm′
= n.

To take advantage of the SM features described above, the
supervisor block of Fig. 4 is proposed. The signalbSM is generated by
passing the discontinuous signal u through a low-pass filter. This
filter must be of first-order for q̈d, see (6) and (38), to explicitly
depend on u:

ḃSM = −αbSM + αu, (40)

with the scalar α being the filter cutoff frequency. Naturally, α
should be taken for the filter to be faster than the dynamics of the
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desired workspace velocity vector ṗd, in order to avoid degrading
the tracking performance.

The dynamic system described above is given by equations (6)
and (40),which yield, by the kinematic framework assumption q̇ ≈

q̇d made in Section 2.2, the following state space representation:

ẋ =

[
On B
On −αIn

]
x +

[
JĎṗd + Bbc

0n

]
+

[
On
αIn

]
u

y =

[
In On
On B

]
x +

[
0n

JĎṗd + Bbc

]
, (41)

where On and In denote the null matrix and the identity matrix of
dimensions n × n.

For the proposed approach, the variable structure control law
in (18) is considered.

Using the above state space representation (41), the Lie
derivatives of φi are given by:

Lgφi = ∇φT
i g =


∇σ T

i + K q̇THi K∇σ T
i B
 [On

αIn

]
= αK∇σ T

i B (42)

Lf φi = ∇φT
i f = [∇σ T

i + K q̇THi K∇σ T
i B]

[
q̇

−αbSM

]
= (1 − αK)∇σ T

i q̇ + K q̇THiq̇ + αK∇σ T
i (JĎṗd + Bbc), (43)

where Hi denotes the Hessian matrix of second-order partial
derivatives of σi. Note that the last term of Lf φi depends on the
disturbance ṗd and bc .

From the above definitions and assumptions, the values of
α, K , ∇σi andB are not zero5 and, thus, the transversality condition
(20) for only one active constraint is written as:

∇σ T
i B ≠ 0T

n, (44)
which means that the projection of gradient ∇σi onto the null
space of J must be non-zero, i.e. the null space of J must not be
tangent to the boundary of the ith-constraint.

For multiple active constraints, the control action uSM is
computed using (25) or (35) or (36) depending on the computation
time requirements (see Section 3.2) with Lgφ = αK∇σTB, where
∇σ contains the gradient vectors ∇σi of all active constraints.
The multiple-constraint transversality condition is that matrix
∇σTB has to be full row rank; in practice, to avoid numerical ill-
conditioning, this condition is satisfied when the smallest singular
value of thismatrix is larger than a predetermined small threshold.

Note that although Eqs. (34) and (37) and (42)–(43) propose
a lower bound for u+ to be used in (25), (35) and (36), the
selection of this scalar factor can be made in a simple manner by
choosing a high-enough constant. In this way, fast computation
can be achieved. This is a distinctive advantage of sliding-mode
algorithms [7], as discussed below.

Indeed, from the potential field approach point of view, the
value u+ is interpreted as the repulsion of the discontinuous field.
This SM approach has the advantage that the magnitude ‖bSM‖2
of the ‘‘repulsive force’’ (correcting action) required to avoid the
constrained space given by Φ∗

CS (39) is robustly auto-regulated to
the continuous equivalent control [6]. This magnitude could also
be computed at each sample analytically using (43), but it would
require muchmore computational power than, plainly, setting the
scalar u+ to a big number which, due to the equivalent-control
principle, computes the required quantity by a high-frequency
switching law without explicit knowledge of the Hessian matrices
Hi, the joint velocity vector q̇, the desired workspace velocity
vector ṗd, the performance vector bc , etc.

5 If the chosen value of K had been zero, i.e., no speed limitations were desired,
then the low-pass filter should have been removed, and the state x would only
include q, in order to fulfill (20). Details omitted for brevity.
Fig. 5. Supervisor block proposed for minimum-amplitude auto-regulation.

4.3. Minimum-amplitude auto-regulation

The amplitude of the control action uSM of the constraint
supervision algorithm in Fig. 4 is given by u+. Although the value
of u+ can be chosen in a conservative manner setting it to a big
number, as discussed above, when the sampling time Ts of the
robotic system at hand is not small enough, it is advisable to
use the minimum possible value of u+ in order to minimize the
‘‘chattering’’ effects due to the time-discretization, see Section 4.7.
In this sense, the minimum value of u+ required for SM, i.e. uφ ,
could be reduced on-line in order to use a small value of u+ without
loosing the sliding regime. To achieve this goal, the values of ṗd
(desired workspace velocity vector) and bc (performance vector of
a classical RRS), which are responsible for the necessity of control
action uSM, have to be reduced whenever the SM of the constraint
supervision algorithm is not working properly.

In numerical implementations, the SM is not working properly
when some constraint is repeatedly unfulfilled in consecutive time
steps (i.e. for active constraints the sign of φi must immediately
switch from positive to negative), whichmeans that the term Lgφu
is not dominating over the term Lf φ in (24).

Therefore, it is proposed to use the minimum-amplitude auto-
regulation shown in Fig. 5 in order for uφ to be less than the
programmed value of u+. This algorithm is also based on a
switching law and SM theory. The discontinuous signal uAR is equal
to 0 at sample time k if some constraint is repeatedly unfulfilled, i.e.
∃i|φi(k) > 0 andφi(k−1) > 0, and equal to 1 otherwise. The signal
fAR is generated by passing discontinuous signal uAR through a low-
pass filter. This filtermust be of first-order to have aunitary relative
degree between φi and the discontinuous action uAR, as required
by SM theory [24] (see Section 3.2). Finally, the signal fAR acts as a
‘‘scale factor’’ to ṗd and bc in order to reduced uφ .

If the workspace reference pref(λ) is known, instead of scaling
ṗd (which is the output of the kinematic controller), it could be
scaled the motion rate parameter λ̇ (which acts as an input to the
kinematic controller) in order to directly stop the reference and,
thus, avoid tracking errors. See Section 6.1 for an example.

4.4. Blocking situation

If the invariant condition φ̇ ≤ 0 for all active constraints cannot
be achieved by control vector u, i.e. no solution of (24) exists, the
robot motion must be stopped (i.e. q̇d must be set to zero) to avoid
violating some constraint(s), giving rise to a blocking situation. For
instance, such situation arises when the transversality condition
(20) of an active constraint i is not satisfied and Lf φi > 0.

If the minimum-amplitude auto-regulation algorithm de-
scribed in Section 4.3 is used, the scale factor fAR is self-regulated to
zero when a blocking situation is found because some active con-
straint is permanently unfulfilled. In this case, in general, the value
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Fig. 6. Example of blocking situation for a 3R planar robot.

of control action uSM must also be set to zero to completely stop
the robot motion.

Another supervisor block could be used to set q̇d and/or uSM
to zero by checking if, for instance, some constraint has been
repeatedly unfulfilled for a certain number of consecutive time
steps or, alternatively, if the value of some constraint function φi
has exceeded a certain predetermined threshold.

In order to illustrate the blocking situation, it is considered an
open-chain planar mechanism composed by four links (the first of
them is fixed) connected serially by three revolute joints, i.e. a 3R
planar robot. For the configuration q = [2π/3 7π/6 0]T of this
robot depicted in Fig. 6, the Jacobian matrix J and matrix B result
in:

J = L
[
−

√
3/2 + 1 1 1/2

−1/2 +
√
3

√
3

√
3/2

]
(45)

B =

 0 0 0
−1/

√
5 0 0

2/
√
5 0 0

 , (46)

where the same length L is considered for the three moving links.
Only constraint 1 above the robot has become active and its

transversality condition is not fulfilled:

∇σ T
1 B = [−

√
2/2 0 0]B = 0T

n. (47)
The time derivative of the constraint function φ1 results in:

φ̇1 = σ̇1 = ∇σ T
1 q̇ = ∇σ T

1 J
Ďṗd, (48)

where K = 0 and bc = 0n have been used for simplicity.
Thus for zero tracking error, i.e. ep = 0m, the condition Lf φ1 ≤ 0

to avoid the blocking situation can be written as:

φ̇1 = (
√
2/L)[

√
3/2 − 1/2]ṗref ≤ 0, (49)

which means that the angle of vector ṗref must be within the
interval [π/3, 4π/3], see Fig. 6.

4.5. Workspace constraints

In practical applications with redundant robots one common
objective is that the Cartesian position p̄j = [xj yj zj]T of every
point j of the robot6 belongs to the allowed workspace ΦWS(p̄j) =

{p̄j|σi(p̄j) ≤ 0 ∀i}. Thus, the allowed C-space results in ΦCS(q) =

{q|σi(lj(q)) ≤ 0 ∀i, j}, where lj is the kinematic function of the
Cartesian position of point j.

6 Obviously, the Cartesian position p̄ee of the robot end-effector or tracking
point (i.e., the point that tracks the workspace reference pref) must also belong
to the allowed workspace ΦWS . However, the tracking point does not satisfy the
transversality condition (20) because from (42) Lgφee = α K ∇σ T

ee B, using the chain
rule ∇σ T

ee =
∂σee
∂q

T
=

∂σee
∂pee

T ∂lee
∂q =

∂σee
∂pee

TJ and by definition (Section 2.1) J B = On .
Therefore, a blocking situation arises when the end-effector reaches the boundary
∂ΦWS unless vector ṗref fulfills a certain condition in order to obtain Lf φee ≤ 0, see
Section 4.4.
Fig. 7. Example of characteristic points of the robot.

The infinite number of points of the robot to be considered in
the above expression can reduced to a set of characteristic points
such that the distance from every point on the boundary surface
of the robot links to the closest characteristic point is less than
a predetermined value which is used to enlarge the constrained
region of the workspace, see Fig. 7.

Some simplifications can be made in case the allowed work-
space is convex. In such circumstances, the links could be enclosed
withpolyhedrons and the characteristic points to be considered are
those on their vertices, whereas the original constrained region of
theworkspace does not have to be enlarged.Moreover, if thewidth
of the robot links is negligible, the characteristic points to be con-
sidered are reduced to the end-points of the links.

4.6. Non-static environment

The proposed approach can also be used if there are moving
constraints, e.g. moving obstacles with known trajectories. In this
case σi also depends explicitly on time and, hence, the derivative
of φi in Eq. (15) must be replaced by φ̇i = Lf φi + Lgφiu, whereLf φi is equal to Lf φi + ∂σi/∂t + K(∂2σi/∂t2 + 2∂∇σ T

i /∂tq̇), and
Lgφi and Lf φi are given again by (42) and (43), respectively (the
explicit derivation of the above expression is omitted for brevity).
Therefore, all developments keep unchanged except for changing
Lf φi to Lf φi. Thus, only the value of the lower bound for u+ is
changed when moving constraints are considered and, hence, the
iterative computation of the SM supervisor block of Section 4.2
remains the same.

4.7. Switching frequency and chattering

As in all SM controls, the theoretically infinite switching fre-
quency cannot be achieved in practice because all physical systems
have finite bandwidth. In computer implementations, the switch-
ing frequency is directly the inverse of the sampling period. Finite-
frequency commutationmakes the system leave the theoretical SM
and, instead, its states oscillates with finite frequency and ampli-
tude inside a ‘‘band’’ around φ = 0, which is known as ‘chattering’.

For active constraints, the chattering band △φi due to the SM
supervisor block of Section 4.2 is given, using the Euler-integration,
by:

△φi = Ts|LgφiuSM| = TsαK |∇σ T
i BuSM|

≤ TsαK‖uSM‖2‖∇σi‖2, (50)

where Ts is the sampling period of the proposed RRS, ‖uSM‖2 is
the amplitude of the control action and ‖∇σi‖2 is the amplitude



L. Gracia et al. / Robotics and Autonomous Systems 60 (2012) 1–15 9
of the gradient vector, i.e., the maximum directional derivative of
the constraint function σi. (Note that ‖∇σ T

i B‖2 ≤ ‖∇σi‖2, see
Section 2.1.)

The signal σi is obtained by passing signal φi through a first-
order low-pass filter whose cutoff frequency is equal to 1/K , see
(39). This filter smooths out the chattering band of φi. In the worst
case the chattering band △σi is equal to △φi and it is reduced
as the chattering frequency ωφ and/or the constraint approaching
parameter K increase. Thus the upper bound σmax for signal σi
results in:

σmax = TsαK‖uSM‖2‖∇σi‖2. (51)

5. Additional remarks

5.1. Guidelines for designing the algorithm parameters

5.1.1. Constraint approaching parameter
The value of K can be interpreted as the time constant of the

‘‘braking’’ process when approaching the boundary of the original
constraints σi, i.e., when approaching a constraint at high speed,
the constraint will be reached in approximately 3K seconds and
transversal speed will be also lowered to zero after that time has
elapsed.

5.1.2. Cutoff frequency
The value of α must be higher than the frequency bandwidth of

the desired workspace velocity vector ṗd in order to obtain a good
approximation of the theoretical SM behavior, but not too high to
avoid significant chattering (50).

5.1.3. Amplitude of the control action
The value of ‖uSM‖2 (which is directly related to u+) has to be

as close as possible to its lower bound given by (34) or (37) (with,
perhaps, some safety margin) in order to have reduced chattering
amplitude and high chattering frequency, see Section 4.7. Note that
if the minimum-amplitude auto-regulation of Section 4.3 is used,
the value of ‖uSM‖2 can bemade as small as desired at the expense
of not guaranteeing the achievement of the desired values for the
workspace velocity vector ṗd and performance vector bc .

5.1.4. Sampling period
The sampling period Ts has to be small enough in order for the

discrete implementation of the filter to work properly, i.e. Ts ≪

π/α, and have small chattering amplitude (50).

5.2. Computational cost

The redundancy resolution used in this research ismainly based
on the SVD of the robot Jacobian in order to obtain matrices
U, Σ,V andV to be used in Eq. (6). The computational complexity
of the Golub–Reinsch SVD algorithm is 14mn2

+ 8n3 floating
point operations for an m × n matrix [17]. For instance, the SVD
computation of a 50×50matrix in amodern computer takes about
3 ms using MATLAB r⃝’s svd function.

For on-line implementation, matrix Lgφ must be computed,
which is plainly the multiplication of the null-space matrix
B = [V On×r ] by the gradients of the constraints which can be
preprogrammed. Hence, moderately-sized redundant robots can
be managed with the on-line computation of (35) at sampling
periods below onemillisecond. Applications with harder real-time
requirements can be managed with the on-line implementation
of (36) where the only operation to be carried out is a matrix
multiplication, so only one SVD of the Jacobian needs to be
executed at each iteration.
5.3. Constraint definition

It is advisable to properly define all σi functions so that their
orders of magnitude are comparable, for instance, being related
to the minimum distance from q to the boundary of the ith-
constraint. For instance, we may consider the constraint σplane =

nT
plane(q − qplane) ≤ 0 to indicate that a plane with normal vector

nplane and passing through point qplane is included in the boundary
of the C-space. However, instead of using σplane we could have used
5σplane, or σ 3

plane, etc. Therefore, in this case the first option might
be advised if similar criteria are used with the rest of constraints.

5.4. Security margin

In case it is needed for security reasons, the original constraint
functions σi may be designed conservatively, taking into account
the estimated chattering amplitude σmax and any other additional
extra margin to cater for possible inaccuracies in the robot control
or in the environment description.

5.5. Differentiability of the constraint functions

As stated in Assumption 2, the constraint functions σi must be
twice differentiable and their second-order derivatives must be
reasonably bounded in order to fulfill (34) or (37). If this assump-
tion is not satisfied at a certain time, the SM behavior of the su-
pervisor block (Section 4.2) is temporarily lost and the constraints
may be unfulfilled.

5.6. Redundancy resolution with planning

The proposed redundancy resolution can be implemented on-
line because it does not require future values of the reference
trajectory and because it has a reasonably low computational cost:
only linear algebra is used, no Hessian matrices are required (only
gradients are used), etc. However, if future values of the reference
trajectory were known, advanced robotic planning [2] could be
used in the redundancy resolution to solve nonlinear optimization
problems in order to, for example, avoid blocking situations, see
Section 4.4. However, this issue is out of the scope of this work,
where knowledge of future reference trajectories is not assumed.

5.7. Direct control of the robot

The proposed redundancy resolution can also be used with
direct control of the robot, e.g. the classicalmodel-based computed
torque control scheme [26]. In particular, Eq. (4) is replaced by the
second order kinematics of the robot:

p̈ = J(q)q̈ + q̇THRq̇ → p̈d − q̇THRq̇ = J(q)q̈d, (52)
where HR denotes the Hessian matrix of second-order partial
derivatives of the robot kinematic function l(q), p̈d is the desired
workspace acceleration vector and q̈d is the desired joint accelera-
tion vector.

The robot control is as follows. First, vector p̈d is obtained by
the kinematic controller (Fig. 1) from the workspace reference pref
and the robot state (q, q̇). Next, vector q̈d is computed in (52) from
vector p̈d and the robot state using the SVD of the robot Jacobian as
described in Section 2.1. Finally, the torque vector τ for the robot
is computed from the desired joint acceleration vector q̈d and the
robot state (q, q̇) using the robot inverse dynamicalmodel (model-
based computed torque control scheme). In this approach, no filter
is required (Fig. 4) to have a unitary relative degree between φi and
the discontinuous action u, see Section 3.2.

The major advantage of this approach is that the kinematic
framework assumption (Section 2.2) is not required and the main
disadvantages are that the computation of the robot Hessian
is needed and that, in general, the minimum-amplitude auto-
regulation described in Section 4.3 cannot be used.
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Fig. 8. Classical kinematic controller.

6. Simulation

In this section the main features of the constraint supervision
algorithm developed in Section 4 are illustrated for a planar robot
and for the classical PUMA-560 robot through simulation results
obtained using MATLAB r⃝.

6.1. Kinematic controller

For the simulations of this section, it is used a classical kinematic
controller utilized for robotic trajectory tracking [27], see Fig. 8,
which consists of a two-degree of freedom (2-DOF) control that
incorporates a correction based on the position error ep = pref − p
by means of the position loop controller Cp plus a feedforward
termdepending on the first-order timederivative of theworkspace
reference, i.e. ṗref. For the simulations, the position controller is
simply implemented as a proportional controller with correction
gain Kp. Therefore, the desired workspace velocity vector ṗd
generated by the kinematic controller results in:

ṗd =
∂v(λ)

∂λ
λ̇ + Kp(pref − p). (53)

Since ṗd is multiplied in the proposal by the scale factor fAR
obtained from theminimum-amplitude auto-regulation algorithm
(see Section 4), it will be used λ̇ = fARλ̇max and Kp = fARKp max,
where λ̇max and Kp max are the desired maximum values of the
motion rate parameter and correction gain, respectively.

6.2. First example: 6R planar robot

In this first example, it is considered an open-chain planar
mechanism composed by seven links (the first of them is fixed)
connected serially by six revolute joints, i.e. a 6R planar robot.
This robot is an extension of that shown in Fig. 6 with three
more joints and links. Two elements are considered for the robot
workspace vector: the Cartesian coordinates [x6 y6]T of the end-
effector position pee ≡ p6. Therefore, this robot has four (6 − 2)
redundant degrees of freedom.

For this 6R robot, the kinematic function li(q) of the point
located at the end of the ith moving link is given by:

pi(q) =

[
xi
yi

]
= L


i−

j=1

cos(q1 + · · · + qj)

i−
j=1

sin(q1 + · · · + qj)

 , i = 1, . . . , 6, (54)

where the origin of the reference frame is located at the first joint
of the 6R robot and the same length L has been considered for the
six moving links. Note that the robot Jacobian is readily obtained
from (54) with i = 6.

6.2.1. Constraints
It will be considered that the allowedworkspace for the robot is

a circle whose center is (xc, yc) and radius is Rc . Since the allowed
Fig. 9. Resulting joint positions q : {q1, q4} (solid), {q2, q5} (dashed) and {q3, q6}
(dotted).

workspace is convex and assuming that the width of the robot
links is negligible, the following constraints must be fulfilled to
guarantee that every part of the 6R robot is inside the allowed
workspace (see Section 4.5):

σi = −1 + (1/Rc)


(xi − xc)2 + (yi − yc)2 ≤ 0,
i = 1, . . . , 6. (55)

Another constraint is considered to enforce the extension of the
6R robot:

σ7 = 1 − (1/R3)


(x3 − xc)2 + (y3 − yc)2 ≤ 0, (56)

whichmeans that point p3 must be outside of a circle whose center
is (xc, yc) and radius is R3 which, obviously, must be less than Rc to
simultaneously fulfill (55).

The first three moving links of the 6R robot are considered to
lie in the same plane. Therefore, in order to limit the values of the
second and third joints for collision avoidance, the following two
constraints are also considered:

σ8 = −1 + |q2|/q2 max ≤ 0, (57)
σ9 = −1 + |q3|/q3 max ≤ 0, (58)

where q2 max and q3 max are the maximum allowed values for the
second and third joints, respectively.

6.2.2. Reference
The reference path is given by the following expression:

pref(λ) =

[
xref(λ)
yref(λ)

]
=

[
xc + Rc sin(λ)

yc + (Rc/2) sin(2λ)

]
, (59)

with λ = 0 . . . 2π .
Note that this reference path has the shape of themathematical

‘‘infinity’’ symbol (∞), is centered within the allowed workspace
and is tangent to its boundary at the two points given by λ = π/2
and λ = 3π/2.

6.2.3. Simulation conditions and parameter values
Simulation was run under the following conditions:

(i) The kinematic framework was considered, i.e. q̇ ≈ q̇d, see
Assumption 1 in Section 2.2.

(ii) No classical RRSwas simulated (i.e. bc = 0n) in order to focus
on the behavior of the proposed SM algorithms.
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Fig. 10a. Frames 1 (top left) to 6 (bottom right) of the robot configuration at regular intervals of λ: reference path (thick solid line), path followed by the robot end-effector
(dotted line), boundary of the allowed workspace (thin solid line), boundary of the constraint φ7 for point p3 (thin dashed line), robot joints (solid discs), end-effector (solid
star), moving links (extra thick solid lines) and fixed link (solid triangle). In Fig. 11 the active constraints at each frame are also shown.
(iii) The control actionuSM was computed using (36), which is the
equation that requires less computation time.

(iv) The constraint functionsφi were computedusing a constraint
approaching parameter K of 0.1 s.

(v) The constraint supervision algorithm in Fig. 4 was imple-
mented using a cutoff frequency α of 100 rad/s for the first-
order low-pass filter and an amplitude ‖uSM‖2 = 1 for the
switching law.

(vi) The minimum-amplitude auto-regulation algorithm shown
in Fig. 5 was implemented using a cutoff frequency of
100 rad/s for the first-order low-pass filter.
(vii) The kinematic controller was implemented using a gain cor-
rection Kp max of 20 s−1 in both coordinates and a maximum
motion rate λ̇max of 4 rad/s.

(viii) All the algorithms were implemented with a sampling time
Ts of half millisecond.

(ix) The link length Lwas set to 1.
(x) The center (xc, yc) and the radius Rc of the allowed work-

space were set to (0, 0) and 2.5, respectively.
(xi) The constraint φ7 was computed using a radius R3 = 2.
(xii) Themaximum allowed values for the second and third joints

were set to q2 max = 1.12 and q3 max = 1.37, respectively.
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Fig. 10b. Frames 7 (top left) to 12 (bottom right) of the robot configuration at regular intervals of λ: reference path (thick solid line), path followed by the robot end-effector
(dotted line), boundary of the allowed workspace (thin solid line), boundary of the constraint φ7 for point p3 (thin dashed line), robot joints (solid discs), end-effector (solid
star), moving links (extra thick solid lines) and fixed link (solid triangle). In Fig. 11 the active constraints at each frame are also shown.
(xiii) We considered an initial robot position error ep(0) =

[0.1 − 0.3]T and the initial robot configuration q(0) =

[0 π/3 π/3 π/3 0.73 1.54]T rad.

6.2.4. Simulation results
Figs. 9, 11, 10a and 10b show the simulated behavior of the

global system. In particular, the robot configuration at each time
step is given by the joint positions shown in Fig. 9. For better
visualization, twelve frames of the robot configuration at regular
intervals of λ are shown in Figs. 10a and 10b. Note that the
tracking error ismade zero and that all constraints7 are fulfilled, i.e.
min(φi) ≤ 0, see Fig. 11. Note also that the constraint supervision
algorithm operates in the SM (in some phases with several active
constraints) except in two phases around t = 1.5 s and t = 5.3 s
where no constraint is active, see Fig. 11. Moreover, theminimum-
amplitude auto-regulation algorithm scales (i.e. fAR < 1) the

7 The constraintsφ1 andφ2 are not represented in Fig. 11 because they are always
fulfilled since xc = yc = 0 and Rc > 2L. Moreover the constraint φ6 , which is
given by the tracking point p6 , is neither represented because it does not satisfy
the transversality condition (20) (see Sections 3 and 4.5) and, therefore, it is not
affected by control action u.
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desired workspace velocity vector ṗd except in the twomentioned
phases where fAR = 1. Furthermore, the filtered value bSM of the
control action u generated by the constraint supervision algorithm
is zero in these two phases because no constraint is active.

6.3. Case study: PUMA robot

In this case study, the well-known 6DOF robotic arm PUMA-
560 is considered, which is a classical 6R serial manipulator
with spherical wrist. The results shown have been obtained with
the freely accessible Robotics Toolbox (Release 7.1) for MATLAB r⃝

developed by P. Corke [28]. This Toolbox includes the kinematic
model of the PUMA-560 robot, which has been used to generate
the results.

Three elements are considered for the robot workspace vector:
the Cartesian coordinates [x6 y6 z6]T of the end-effector position
pee ≡ p6, i.e., there is no reference for the end-effector orientation.
Assuming that the end-effector position lies as usual on the last
joint axis, the angle q6 of the last joint has no influence on the end-
effector position and, hence, the last joint will not be considered.
Therefore, the robot has two (5 − 3) degrees of redundancy.

6.3.1. Constraints
It will be considered that the boundary of the allowed work-

space is given by three vertical planes a, b and c. Since the allowed
workspace is convex and assuming for simplicity that the width
of the robot links is negligible, the following constraints must be
fulfilled to guarantee that every part of the PUMA robot is inside
the allowed workspace (see Section 4.5):

σai = yi − ya ≤ 0, (60)
σbi = −(yi − yb) ≤ 0, (61)
σci = xi − xc ≤ 0, i = 1, . . . , 6, (62)

where the subindex i is associated with the end-point of the ith
moving link (e.g., pi is the position of the end-point of the ith
moving link) and ya, yb and xc are the parameters of the vertical
planes a, b and c , respectively.

The following constraints are also considered for the joint
limits:

σqi = −1 + |qi norm| ≤ 0, i = 1, . . . , 5 (63)

where qi norm = (qi − qi mid)/(1qi max/2) is the normalized joint
position obtained using the mid joint position qi mid and the joint
maximum range of motion 1qi max.

6.3.2. Reference
The end-effector reference path is given by the following mod-

ified helicoidal expression:

pref(λ) =

xref(λ)
yref(λ)
zref(λ)



=

0.6277 + 0.15(cos(λ) − sin2(λ) − 1)
−0.1501 + 0.15 sin(λ)

0.0926 − 0.0375λ

 , (64)

with λ = 0 . . . 4π , where the units for linear and angular dimen-
sions are meters and radians, respectively. It is important to recall
that for the PUMA-560 manipulator the Z-axis of the robot base
frame is aligned with the first joint and its origin is located at the
same height of the second joint, i.e., the shoulder joint.
Fig. 11. Scale factor fAR for the desired workspace velocity vector ṗd; motion
parameter λ (the circles correspond to the time instants of the frames in Figs. 10a
and 10b); minimum value of the constraint functions φi; horizontal lines indicating
when a constraint is active (the dashed vertical lines correspond to the time instants
of the frames in Figs. 10a and 10b and the circles indicate the active constraints at
those instants); filtered valuebSM of the control actionu generated by the constraint
supervision algorithm.

Fig. 12. Resulting normalized joint positions qnorm: q1 norm (thin solid line), q2 norm
(thin dashed line), q3 norm (dotted line), q4 norm (thick dashed line) and q5 norm (thick
solid line).
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Fig. 13. 3D and top views of the PUMA robot in its initial configuration and the
paths followedby the reference (thick solid line), robot end-effectorp6 (thick dotted
line) andpointsp2 (dark dashed line),p3 (thin dotted line) andp4 (light dashed line).
The limit planes of the workspace constraints are shown as thick dotted lines in the
top view.

6.3.3. Simulation conditions and parameter values
Simulation was run under the following conditions:

xiv) The same conditions (i)–(viii) of the first example were used
(see Section 6.2.3), except for the constraint approaching
parameter K of the joint limit constraints which was set to
0.02 s.

xv The tool length was set to 94 mm, i.e., the distance from the
end-effector position to the wrist center is equal to 150 mm.

xvi The workspace constraints were computed with ya =

0.05 m, yb = −0.32 m and xc = 0.645 m.
xvii The joint limit constraints were computed using a mid joint

position vector qmid = [0 π/2 − π/2 π/6 0]T rad and
a joint maximum range of motion 1qmax = [5.55 4.643
4.957 4.887 3.491]T rad, see [29,30].
Fig. 14. Scale factor fAR for the desired workspace velocity vector ṗd; motion
parameter λ; minimum value of the constraint functions φi; horizontal lines
indicating when a constraint is active (only the constraints which become active
at least once are shown); filtered value bSM of the control action u generated by the
constraint supervision algorithm.

xviii We considered an initial robot pose error ep(0) = [0.05
0.1 0]T m and the initial robot configuration q(0) = [−0.168
1.084 − 2.935 0 − 1.29]T rad.

6.3.4. Simulation results
Figs. 12–14 show the simulated behavior of the global system.

The robot configuration at each time step is given by the
normalized joint positions shown in Fig. 12, where it can be seen
that the joint limit constraints are fulfilled, i.e., |qnorm i| ≤ 1.
Fig. 13 shows the paths followed by the reference and the end-
points of themoving links,8 where it can bee seen that the tracking

8 The path followed by point p5 is not shown in Fig. 13 because this point lies
on the straight line connecting the points p4 and p6 (i.e., p5 fulfills the workspace
constraints if both p4 and p6 fulfill them, see Section 4.5). Note also that point p1
remains static.
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error is made zero and that the workspace constraints are also
fulfilled. Fig. 14 shows that, as expected, all constraints are fulfilled
(i.e., min(φi) ≤ 0) and that the constraint supervision algorithm
operates in the SM (i.e., the value of bSM is non-zero) when some
constraint is active, which occurs in six phases of different lengths.

7. Conclusions

A variable structure algorithm for redundancy resolution was
proposed using sliding mode related concepts. The strategy acts
as a supervisory loop, shaping the commanded joint velocities
in order to fulfill C-space and/or workspace constraints. In this
manner, the algorithm activates when the robot is about to violate
the constraints,modifying the commanded joint velocities asmuch
as necessary in order to fulfill all the constraints and reaching their
limit surface smoothly depending on a free design parameter. The
proposal also includes an additional sliding-mode supervisor block
in order to auto-regulate theminimum-amplitude required for the
main supervisory loop to achieve the sliding regime.

The proposal can be easily added as an auxiliary supervisory
loop to conventional redundancy resolution schemes. Moreover,
the proposed algorithm improves the classical conservative
potential field-based approach for collision avoidance in the sense
that it fully exploits the robot workspace and allows an additional
secondary task while the constraints are fulfilled.

Although the algorithm was illustrated for a particular kine-
matic controller and two particular robots (6R planar robot and
PUMA-560 robot), the conclusions drawn for the redundancy res-
olution method also apply to other kinematic controllers and/or
redundant robots.
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