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Abstract

Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such
as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live
cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and
hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific
organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology
offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in
these intriguing unicellular eukaryotes.
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Introduction

In recent years studies of anaerobic protists such as Giardia

intestinalis and Trichomonas vaginalis have revealed a number of

exciting aspects of their cell biology, including cytoskeleton

structures, vesicular transport and organelle biogenesis [1–5].

Besides unique cellular structures [6–8], many of the common

eukaryotic processes have been stripped to their essentials in these

protists e.g. [9,10]. The combination of their parasitic lifestyle,

anaerobic metabolism and their evolutionary position [11] makes

them attractive objects to study.

One of the features typical to anaerobic protists is the absence of

‘classical’ mitochondria, herein represented by organelles called

mitosomes in G. intestinalis and hydrogenosomes in T. vaginalis [12].

Mitosomes, the simplest mitochondria-related compartments,

seem to have lost all but the single pathway of iron-sulfur cluster

assembly [4]. Compared to mitosomes, hydrogenosomes are more

elaborate organelles, possessing substrate level ATP synthesis as

well as iron and amino acid metabolism [13,14]. Moreover, recent

proteomic studies of hydrogenosomes suggest that many more

pathways are yet to be described [10,15].

Characterization of cellular organelles and their dynamics

strongly relies on the concerted action of reverse genetics and live

cell imaging. While particular advancements have been achieved

in the former (e.g. gene silencing and protein overexpression) [16–

20], only limited technical innovations have been introduced into

the latter [21,22].

GFP and its derivatives are the first choice of reporters for live

imaging in aerobic eukaryotes. They offer great protein stability as

well as a broad range of spectral variants that enable multichannel

studies. However the major drawback for their widespread use in

anaerobic protists is the formation of the GFP fluorophore [22,23]:

upon translation and protein folding the fluorophore is formed

from the tripeptide Ser 65-Tyr 66-Gly 67 by an intramolecular

cyclization, which requires the presence of molecular oxygen

[24,25]. This reaction does not require additional proteins and

occurs spontaneously in all eukaryotic compartments, except

within anaerobic cells, which employ oxygen scavenging pathways

in order to limit its toxic effects [26,27]. Cells can be temporarily

oxygenated and observed under the microscope [7,28] . While this

approach has proven to be efficient for large cellular structures

such as the cytoskeleton [21,29], the organelles like mitosomes and

hydrogenosomes exhibit only very weak labeling. Additionally, the

double membrane surrounding the organelles may have limited

capacity to import GFP.
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Alternative approaches for live cell imaging exploit the use of

chemical fluorescent tags, which form covalent or noncovalent

bonds with the reporter protein or peptide [30]. Of these, SNAP

and CLIP tags are commonly used for both extra- and

intracellular labeling [31,32]. The SNAP tag was successfully

used to track the distribution of G. intestinalis RabA homologue in

the live parasite [22]. However, the use of the tag has been limited

to this single study so far.

In this work, we decided to test a newly developed tag termed

HaloTag, which utilizes a mutant form of haloalkane dehalogen-

ase as a reporter protein. While the original enzyme hydrolyzes

alkylhalides into a free halide and a primary alcohol, the H289Q

mutant form of the protein (HaloTag) leaves free halide but

remains covalently bound to the alkyl chain [33]. Thus, when a

ligand with the alkylhalide chain is exposed to the native HaloTag,

it is specifically bound by a covalent bond. The lack of

dehalogenase activity among eukaryotes guarantees very low

unspecific background labeling.

Here, we report the successful introduction of the HaloTag into

vectors for stable expression in G. intestinalis and T. vaginalis.

Moreover, using a TMR-halo ligand we were able to show live

images of mitochondria-related compartments in these two

anaerobic protists for the first time.

Materials and Methods

Cell strains
The G. intestinalis strain WB (ATCC 30957) was grown in TYI-

S-33 medium supplemented with 10% heat-inactivated bovine

serum, 0.1% bovine bile, and antibiotics. The T. vaginalis strain T1

was grown in TYM pH 6,2 medium supplemented with 10% heat

inactivated horse serum. Both organisms were cultured at 37uC.

Preparation of cell fractions
G. intestinalis trophozoites were harvested in ice-cold PBS,

washed once in ST buffer (250 mM sucrose, 0.5 mM KCl,

10 mM Tris [pH 7.2]) and suspended in ST buffer with protease

inhibitors 50 mg/ml N-a-tosyl-L-lysine chloromethyl ketone and

10 mg/ml of leupeptin. Cells were lysed on ice using sonication,

during which the cell integrity was checked under the microscope.

The lysate was centrifuged twice at 24506 g for 10 minutes to

remove unbroken cells, nuclei and residual cytoskeleton. Super-

natant was transferred to a new tube and the centrifugation step

repeated twice. The resulting supernatant was spun down at

180 0006 g for 30 minutes. Final supernatant and pellet

contained the cytosolic and high-speed pellet fraction, respectively.

T. vaginalis cells were harvested, washed once in ST buffer and

suspended in ST buffer containing protease inhibitors (see above).

Cells were sonicated on ice and the lysate was twice centrifuged at

24506 g (see above). Supernatant was spun down at 180 0006 g

for 30 minutes. The final supernatant corresponded to the

cytosolic fraction. The pellet was resuspended in 1 ml of ST

buffer, transferred to a new microcentrifuge tube and spun down

at 30 0006 g for 10 minutes. The Resulting pellet contained a

white layer of lysosomes resting on top of a brown pellet of

hydrogenosomes. Lysosomes were carefully removed using a

pipette and this step was repeated once more. The final pellet

corresponded to the hydrogenosomal fraction.

Cloning and stable cell transformation
G. intestinalis. First, pTG vector (gift from Francis D. Gillin,

[34]) was modified to contain NdeI PstI sites. The polylinker

containing EcoRV, NdeI, XhoI, PstI, NsiI, MluI and ApaI sites

was introduced into the vector using 59-CATGGATATCCAT-

ATGCTCGAGCTGCAGATGCATACGCGTATGGTGAGC-

AAGGGCGAGGAG-39 and 59-GATCGGGCCCTCACTTGT-

ACAGCTCGTCCAT-39 primers. The PCR product was

digested by EcoRV and ApaI and ligated into EcoRV/ApaI

linearized pTG vector. The 300 bp of 59UTR of G. intestinalis

ornithine carbamoyl transferase (OCT) DNA sequence was

amplified using 59-CATGGATATCGAATTCGATGCTTCG-

39 and 59-CATGCATATGTTTAATTTTCAGCCTCTACTG-

39 primers, digested by EcoRV and NdeI primers and ligated into

modified pTG vector. The HaloTag DNA sequence was amplified

from pHT2 vector (Promega) using 59-ATGCTGCAGATG-

GGATCCGAAATCGGTACA-39and 59-CATGGGGCCCT-

TAGCCGGCCAGCCCGGGGAG-39 oligonucleotides. The

resulting PCR product was digested by PstI and ApaI and

ligated into modified pTG vector. G. intestinalis IscU was amplified

from genomic DNA using 59-CTAGCATATGATGACTTC-

TGATGCCGCAGAT-39 and 59-GACTATGCATAGAAGAC-

TTTGATACCTGTAT-39 oligonucleotides. The product was

digested by NdeI and NsiI and ligated into modified pTG vector

containing HaloTag coding sequence.

T. vaginalis. For expression in T. vaginalis, the HaloTag

DNA sequence was amplified from pHT2 vector using 59-

CATGAGATCTATGGGATCCGAAATCGGTACA-39 and 59-

GCTACTCGAGTTAAGCGTAATCTGGAACATCGTATG-

GGTAGCCGGCCAGCCCGGGGAGCCA-39. The C-terminal

hemagglutinin (HA)-tag was introduced into the construct as a

part of the reverse primer. The PCR product was digested by BglII

and XhoI and ligated into BamHI/XhoI linearized TagVag2

vector containing a gene encoding hydrogenosomal frataxin. Both

organism were electroporated using modified protocols published

in [35,36]. Briefly, three hundred micro liters of T. vaginalis and G.

intestinalis at approximate concentration 2,56108 cells/ml and

3,36108 cells/ml, respectively, were electroporated with 50 ug of

the plasmid using a Biorad Gene Pulser under the time constant

protocol (Tc = 175 ms, U = 350 V). Transfectants were

maintained under pressure of selective antibiotics (57 ug/ml of

puromycin for G. intestinalis and 200 ug/ml for T. vaginalis).

Halo-labeling and immunofluorescence microscopy
Cell were incubated for 30 minutes in regular growth media

supplemented with HaloTag TMR Ligand (1: 500 dilution) at

37uC. After the incubation the cells were pelleted at 15006g and

washed twice with fresh media. Cells were then incubated for

60 minutes at 37uC, pelleted and resuspended in fresh media or

PBS. For immunofluorescence, the cells were incubated on slides

for 15 minutes, fixed in 220uC methanol for 5 minutes and

transferred to 220uC acetone for 5 minutes. Blocking and

immunolabeling was performed in 0,25% Gelatin, 0,25% BSA,

0,05%.

Tween20 in PBS 7,4 using specific rabbit polyclonal antibodies

raised against T. vaginalis malic enzyme and G.intestinalis Tom40 .

Primary antibodies were decorated by Alexa Fluor 488 anti-rabbit

antibody. Slides were mounted in hard set Vectashield containing

DAPI. For live cell imaging, labeled G. intestinalis cells were allowed

to attach to the surface of 96 well optical bottom plates and

imaged directly. Labeled T. vaginalis cells were mounted in low

temperature-melting 2% agarose dissolved in PBS and analyzed

by microscopy. Cells were observed using an OLYMPUS Cell-R,

IX81 microscope system and images processed by Fiji (http://fiji.

sc/wiki/index.php/Fiji). During all steps cells were protected from

light.

Live Imaging of Mitosomes and Hydrogenosomes
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Results and Discussion

Mitosomes and hydrogenosomes can be found in anaerobic

protists from different eukaryotic lineages. Recent phylogenetic

and functional data have shown that these double membrane

bound organelles represent long evolved mitochondrial forms

adjusted to anaerobic environments [12]. While devoid of many

typical mitochondrial functions, they contain unique metabolic

adaptations as well as simplified versions of intricate molecular

processes occurring in mitochondria [37–39]. To date only limited

information is available on their biogenesis, inheritance and

related membrane dynamics [40]. In order to follow these

processes in living cells we have introduced HaloTag technology

into both G. intestinalis and T. vaginalis.

The coding sequence of HaloTag was introduced into G.

intestinalis and T. vaginalis episomal vectors pTG and TagVag2,

respectively [34,39] . Transcription from these vectors is driven by

promotor regions in 59 UTRs of highly expressed ornithine

carbamoyl transferase and succinyl-CoA thiokinase [34,41],

respectively, which ensure strong constitutive protein expression

in both organisms. For specific labeling of mitochondria-related

organelles in these anaerobic protists, the HaloTag was inserted as

a C-terminal fusion to the mitosomal and hydrogenosomal marker

proteins GiIscU and TvFtx, respectively [13,42].

Expression of proteins fused to the HaloTag was determined on

western blots of cellular fractions (Figure 1). G. intestinalis IscU-

HaloTag fusion was detected by specific polyclonal antibody

raised against mitosomal IscU. Two dominant protein bands of

approximately 15 kDa and 50 kDa were detected, which is

consistent with the expected molecular weights (the size of

HaloTag is 33 kDa) (Figure 1A). While the lower band

corresponded to the mature form of nuclear encoded IscU, the

Figure 1. Expression of HaloTagged proteins in G. intestinalis
and T. vaginalis. Western blot analyses of cellular fractions of G.
intestinalis and T. vaginalis transformants expressing GiIscU-Halo and
TvFtx-Halo fusions, respectively. A) GiIscU-Halo was detected by specific
anti-IscU polyclonal antibodies in cell lysate and high-speed pellet
(HSP). Two bands in these fractions represent the nuclear encoded
(GiIscU) and episomally encoded HaloTag fusion (GiIscU-Halo). B) TvFtx-
Halo product was detected by anti-HA monoclonal antibodies in T.
vaginalis cellular fractions. The fusion protein was found exclusively in
cell lysate and in hydrogenosomes. The upper panels demonstrate the
protein profile on the coomassie stained SDS-PAGE gel. Lys-lysate, Cyt-
cytosol, HSP-high-speed pellet, Hyd-hydrogenosomes.
doi:10.1371/journal.pone.0036314.g001

Figure 2. Mitosomal and hydrogenosomal localization of HaloTagged proteins. Immunofluorescence analyses of G. intestinalis and T. vaginalis
transformants expressing GiIscU-Halo and TvFtx-Halo fusion, respectively. Cells were incubated with TMR-Halo ligand (red), washed and fixed for
immunofluorescence analysis. A) TMR-Halo labeled G. intestinalis cells were fixed and labeled by anti-Tom40 specific polyclonal antibodies (green). B) TMR-
Halo labeled T. vaginalis cells were fixed and decorated by anti-malic enzyme specific polyclonal antibodies (green). Nuclei were stained with DAPI (blue).
doi:10.1371/journal.pone.0036314.g002

Live Imaging of Mitosomes and Hydrogenosomes
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upper band represented IscU-HaloTag fusion. The specific signal

was present in the lysate and high speed pellet fraction, which is in

addition to other vesicular structures enriched for mitosomes.

Additional weak protein bands were detected, which likely

corresponded to partially proteolytically degraded protein forms.

In order to detect HaloTagged hydrogenosomal frataxin in T.

vaginalis, an additional single hemagglutinin (HA)-tag was intro-

duced to the C-terminus of the HaloTag sequence. Using anti-HA

antibodies the protein band of about 47 kDa, corresponding to the

expected protein fusion size, was detected in the cell lysate and

hydrogenosomal fractions (Figure 1B).

In both organisms, the HaloTag fusion proteins were expressed

at a moderate level with no growth defect obvious in daily

culturing, indicating that the tag does not interfere with the

cellular metabolism of the anaerobic eukaryotes, similar to what

has been shown in mammalian cells [33].

In order to confirm that the fusion protein is targeted to

mitochondria-related compartments of G. intestinalis and T.

vaginalis, cells were labeled with HaloTag TMR ligand, fixed and

immunolabeled with specific antibodies raised against organellar

marker proteins. In G. intestinalis, mitosomes were labeled by

Tom40-specific antibody [37]. Tom40 is a conserved protein of

the outer mitochondrial/mitosomal membrane and its detection

revealed typical mitosomal distribution within G. intestinalis cells:

the central array of mitosomes between the two nuclei as well as

the peripheral ones scattered throughout the cytoplasm. The

HaloTag signal from GiIscU was found to be in perfect agreement

with Tom40, revealing highly specific mitosomal compartment

labeling in G. intestinalis (Figure 2A).

In contrast to mitosomes, which are scarce, T. vaginalis

hydrogenosomes are abundant organelles distributed along the

major cytoskeletal structures such as the costa and axostyle. Malic

enzyme is the most dominant hydrogenosomal protein [43] and its

detection in fixed TMR-Halo ligand-labeled cells revealed typical

hydrogenosomal distribution. The same pattern was obtained with

TMR labeled HaloTag, as indicated in the merged image

(Figure 2B).

These experiments showed that the HaloTag TMR ligand is a

membrane-permeable ligand in both organisms, capable of

diffusing across the cell membrane as well as the two membranes

surrounding the mitosomes and hydrogenosomes. Although some

background labeling was detected using HaloTag in mammalian

cells [31], no such signal was found in two anaerobic organisms

used in this study.

Following the co-localization experiments, labeled cells were

observed live for various time periods (Figure 3). While attached G.

intestinalis trophozoites could be observed directly in optical bottom

plates filled with medium (Figure 3A, Supplementary Movie S1

and S2), T. vaginalis were mounted in 2% low melting agarose in

order to slow down the rapidly moving cells (Figure 3B,

Supplementary Movie S3 and S4). In both parasites, the specific

fluorescence signal could be followed visually for more than

60 minutes. Notably, for prolonged cell observation an anaerobic

chamber would be necessary.

Figure 3. Live imaging of mitosomes and hydrogenosomes. Halo-TMR labeled organelles were followed in living cells. A) Labeled G.
intestinalis cells were allowed to attach to the bottom of the well and directly observed while B) the labeled T. vaginalis cells were mounted in 2%
agarose and then submitted to microscopy. Five different snapshots in time are shown. The original movies are part of the supplementary data.
doi:10.1371/journal.pone.0036314.g003

Live Imaging of Mitosomes and Hydrogenosomes
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In summary, these experiments demonstrate the applicability of

HaloTag in labeling the mitochondria-related organelles of G.

intestinalis and T. vaginalis. These tiny double membrane bound

organelles have been some of the most challenging cellular

structures for live imaging in anaerobic eukaryotes, and to our

knowledge this work is the first report of its kind.

HaloTag technology is relatively new to the cell biology. It

exhibits excellent specificity and fast chemistry but as true for other

large protein tags such as the fluorescent proteins or SNAP-tag, its

major drawback is the size, which may interfere with the function

of the carrier protein [30]. When possible the imaging studies rely

on GFP and other recently characterized fluorescent proteins e.g.

[44,45]. In these cases, the chemical tags such as HaloTag, SNAP-

tag or tetracystein helix motif [46] offer additional customizable

labeling, especially suitable for pulse-chase [47] or FRET

experiments. In the anaerobic unicellular organisms or the

anaerobic tissues of some invertebrates the GFP maturation

requires an extra oxygenation step, which may perturb narrow

physiological conditions. In these cases, the chemical tags may be

the first choice protein-labeling approach. Moreover, the speed

and the specificity of the formation of the covalent bond between

the HaloTag and the ligand provides new means of protein

purification from not easily tractable organisms [48].

Mitochondria are known to be very dynamic organelles

undergoing constant antagonist fusion and fission reactions [49].

Several GTPases drive these opposing reactions in a highly

regulated manner and the defects in the fusion or fission result in

disintegration or collapse of the organelles, respectively. So far no

information has been obtained on the machinery controlling the

dynamics of mitosomes and hydrogenosomes. Given that neither

the components of the mitochondrial division cycle nor the

homologues of bacterial division proteins were found in the

genomes of mitosome- and hydrogenosome-bearing eukaryotes,

the HaloTag has the potential to be a means of identifying the

different components driving these processes in these protists.

This opens up more fundamental questions regarding the

evolution of the mitochondrial division apparatus, the transition

from a FtsZ- to a dynamin-based system as well as the origin of

mitochondrial fusion. We believe that the introduction of HaloTag

technology to the cell biology of anaerobic protists will be of

assistance in the process of answering these questions.

Supporting Information

Movie S1 Giardia intestinalis expressing mitosomal IscU-HaloTag

fusion was labeled with TMR-Halo ligand. Images were taken

every at 10 second intervals, movie is displayed at 2 frames per

second.

(AVI)

Movie S2 Nomarski differential contrast of the same visual field

as in Movie S1.

(AVI)

Movie S3 Trichomonas vaginalis expressing hydrogenosomal fra-

taxin-HaloTag fusion was labeled with TMR-Halo ligand. Images

were taken every at 10 second intervals, movie is displayed at 2

frames per second.

(AVI)

Movie S4 Nomarski differential contrast of the same visual field

as in Movie S3.

(AVI)
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