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Chapter 15

Determination of Reactive Oxygen Species  
in Salt-Stressed Plant Tissues

Andrés Alberto Rodríguez and Edith L. Taleisnik 

Abstract

Reactive oxygen species (ROS) participate in signaling events that regulate ion channel activity and gene 
expression. However, excess ROS exert adverse effects that stem from their interaction with macromole-
cules. Thus, the assessment of the effects of salinity on ROS changes are central to understanding how 
plants respond and cope with this stress. ROS determination in salt-stressed plants poses specific chal-
lenges. On the one hand, salinity comprises osmotic and ion-specific effects which may, in turn, have dif-
ferent effects on ROS production. On the other hand, changes in ROS production may happen when 
tissues from salinized plants are subject to water potential (Y) changes when incubated in non-isosmotic 
solutions. This chapter provides detailed accounts of methods for ROS detection in tissues from salt-
stressed plants and includes suggestions for avoiding artifacts when dealing with such tissues.

Key words: Reactive oxygen species, Hydrogen peroxide, Superoxide, Hydroxyl radical, Salt stress, 
Fluorescence, Tetrazolium salts

Reactive oxygen species (ROS) are highly reactive oxygen deriva-
tives comprising both oxygen radicals and certain nonradicals (1). 
Oxygen radicals are independent species with unpaired electrons 
and include singlet oxygen ( 1

2O ), superoxide radicals (•O2
−) and 

the hydroxyl radical (HO•). Nonradical ROS include H2O2 and 
ozone (O3), among others.

ROS are generated in most plant cell compartments (2) and 
controlled ROS production appears to be a general characteristic 
of expanding plant cells and organs (3), where ROS participate in 
signaling events (4, 5) that regulate ion channel activity (6) and 
gene expression (7). However, ROS levels generally increase in 
many plant parts under biotic (8) and abiotic (9) stress conditions, 
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including salinity (10). Excess ROS exert adverse effects (oxidative 
damage) that stem from their interaction with macromolecules 
such as lipids, proteins, and nucleic acids.

The ROS balance response to salt stress is expected to differ 
among tissues (11) and cell compartments (12, 13). Thus, the 
assessment of the effects of salinity on ROS changes is central to 
understanding how plants respond and cope with this stress. 
Techniques for measuring ROS have been extensively reviewed 
(14), and only a few specific references on plant systems are men-
tioned here (15–18).

ROS determination in salt-stressed plants poses specific chal-
lenges (19). On the one hand, osmotic and ion-specific effects of 
salinity on ROS production may be different (19, 20), while on 
the other hand, changes in ROS production may occur when tis-
sues from salinized plants are subject to water potential (Y) 
changes (21) when incubated in non-isosmotic solutions (20). 
Essentially, when assessing ROS production under saline condi-
tions, it is necessary to include realistic estimates of apoplastic ion 
concentration in the incubation medium, and to take into account 
the plant tissue Y.

This chapter provides accounts of methods for ROS detection 
in tissues from salt-stressed plants that we have personally prac-
ticed. Qualitative, histochemical methods are described for detect-
ing ROS by epifluorescence, H2O2 by electron microscopy, and, 
•O2

− with nitro blue tetrazolium (NBT). Quantitative assessment 
methods for H2O2, 

•O2
−, and HO• production are also detailed.  

A method for the obtention of apoplastic fluid to estimate ion con-
centration in this compartment is also included.

ROS detection by epifluorescence is based on the formation of 
a fluorescent compound from 2¢,7¢-dichlorofluorescin diacetate 
(DCFH-DA) when the acetate group is cleaved and nonfluorescent 
2¢,7¢-dichlorofluorescin (DCFH) is oxidated to the fluorescent 
DCF product in a peroxidase-dependent reaction (22). Endogenous 
peroxidase activity is considered to be sufficient to sustain this reac-
tion. The non-polar unreactive DCFH-DA can be taken up by the 
cells and subsequently deacetylated by endogenous esterases to 
render the polar DCFH (23), to which the cell membrane is sup-
posedly impermeable. Alternatively, DCFH-DA may be first deac-
elytated by apoplastic esterases and it will then detect extracellular 
ROS.

Subcellular H2O2 detection by electron microscopy is based 
on the formation of cerium perhydroxide crystals that are depos-
ited after the reaction of CeCl3 with endogenous H2O2 (24). 
Positive staining is detected in electron micrographs as the for-
mation of electron-dense deposits. In vivo H2O2 production can 
be measured as the formation of a pink adduct that results from 
the reaction between H2O2, 4-aminoantipyrine (4-AAP) and 
3,5-dichloro-2-hydroxybenzene sulfonic acid (DCHBS) in a 
peroxidase (POX)-dependent reaction (25).
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The qualitative determination of •O2
− with NBT depends on 

the formation of a blue insoluble formazan precipitate that results 
from the reaction between •O2

− and NBT. Tetrazolium compounds 
that form soluble formazans can be used to quantify •O2

− produc-
tion. The reaction between •O2

− and Na, 3¢-[1-[(phenylamino)-
carbonyl]-3, 4-tetrazolium](4-methoxy-6-nitro) benzene sulfonic 
acid hydrate (XTT) produces a soluble formazan that can be mea-
sured spectrophotometrically (26).

HO• production can be quantified by spectrofluorometry as 
the formation of hydroxyl benzoate resulting from the reaction of 
HO• and benzoate (BZ) (27).

As mentioned above, realistic estimates of apoplastic ion con-
centration should be included in the incubation media. The meth-
ods to obtain apoplastic fluid usually involve tissue centrifugation 
at low speed and a check for symplastic contamination by deter-
mining the glucose 6-P dehydrogenase (G6PDH) activity (3, 28).

The methods described below are for either intact seedlings or 
excised plant parts (2, 13, 19, 29). See Note 1 for tissue manipula-
tion tips and Note 2 for the comments on the composition of incu-
bation solutions.

All solutions should be prepared using distilled or deionized 
water and analytical grade reagents. Solutions can be prepared at 
room temperature and stored at 4°C (unless otherwise indicated).

	 1.	Net bags.
	 2.	Falcon and Eppendorf tubes.
	 3.	Spectrophotometer (UV lamp).
	 4.	Atomic emission spectrophotometer or flame photometer.
	 5.	Unrefrigerated centrifuge.
	 6.	Reagents for determining G6PDH activity (30) and protein 

concentration (31).

	 1.	Intact plants or excised plant sections.
	 2.	Petri dish.
	 3.	Microwave oven.
	 4.	Thermometer.
	 5.	Epifluorescence or stereoscopic microscope with excitation 

filter BP 450–490 and emission filter LP 520 and attached 
camera. Alternative: confocal microscope with a 405 nm diode 
laser as source of excitation light and acquisition through a 
515/30 BP filter (green channel).

2. Materials

2.1. Obtaining the 
Apoplastic Fluid  
and Estimating  
the Cytoplasmic 
Contamination and 
Na+ Concentration

2.2. Localized ROS 
Detection in Intact 
Seedlings  
Using 2¢,7¢-Dichloro- 
fluorescin and 
Epifluorescence (See 
Note 3 on Specificity 
and Controls)
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	 6.	Solutions and inclusion medium.
(a)	 2’,7’-dichlorofluorescin diacetate (DCFH-DA). For 1 mL 

of 25 mM DCFH-DA in ethanol, weigh 12 mg DCFH-DA 
into a 1.5 mL Eppendorf tube. Add 1 mL absolute etha-
nol and mix. Wrap the tube with aluminum foil. If not 
used immediately, this solution can be stored frozen at 
−20°C for up to 3 months.

(b)	 Potassium phosphate buffer. For 50 mL of 20 mM potas-
sium phosphate buffer, pH 6, weigh 23 mg KH2PO4 and 
118 mg KH2PO4 and transfer to a glass beaker containing 
40 mL water. Mix and adjust pH with HCl (see Note 4). 
Make up to 50 mL with water.

(c)	 KI control. Weigh 1.66 g KI and add to the buffer solution 
above before adjusting to the final volume.

(d)	 Agar mixture. Weigh 1  g agar. Add 90  mL of 20  mM 
potassium phosphate buffer to a 200 mL graduated glass 
beaker. Mix and place in a microwave oven and heat at 
maximum power setting for 1 min. Return the glass bea-
ker to room temperature. Add 0.2 mL 25 mM DCFH-DA 
solution and wrap with aluminum foil. Make up to 100 mL. 
The final solution is 1% (w/v) agar, in 20 mM phosphate 
buffer pH 6, and 50 mM DCFH and should be prepared 
immediately before use (see Notes 5 and 6).

Positive staining is detected in electron micrographs as the forma-
tion of electron-dense deposits. A treatment with KI is an appro-
priate control.

The solutions and procedures indicated do not include the 
processing of the plant material for transmission electron micros-
copy observation, detail is provided until the fixation step. From 
there on, use standard transmission electron microscopy techniques 
to embed, slice, mount, shade, and observe the tissue.

	 1.	Small plant sections (approximately 3 mm or smaller), briefly 
rinsed after cutting to remove wound-induced ROS.

	 2.	Electron microscopy embedding and mounting materials and 
equipment.

	 3.	Transmission electron microscope.
	 4.	Solutions.

(a)	 CeCl3. For a 5 mM CeCl3 solution in 5 mM MOPS buffer, 
pH 7.2, weigh 62 mg CeCl3 and 58 mg MOPS and trans-
fer to 40 mL water in a glass beaker. Mix and adjust pH 
with NaOH (see Note 6). Make up to 50 mL with water. 
Transfer to a 50 mL Falcon tube wrapped with aluminum 
foil. Prepare and use the same day, do not store.

(b)	 KI control. Weigh 1.66 g KI and add to the solution above 
before adjusting to final volume.

2.3. Subcellular H2O2 
Detection by Electron 
Microscopy
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(c)	 Sodium phosphate buffer. For 100 mM sodium phosphate 
buffer pH 7.0 solution, weigh 0.584  g NaH2PO4·H2O 
and 1.547 g Na2HPO4·7H2O and transfer to a glass bea-
ker containing approximately 70 mL water. Mix and adjust 
pH with HCl (see Note 4). Make up to 100  mL with 
water.

(d)	 Glutaraldehyde. For 2.5 % glutaraldehyde in sodium phos-
phate buffer solution, add 40 mL sodium phosphate buf-
fer solution to a 100 mL graduated glass beaker. Weigh 
1.25 g glutaraldehyde and transfer to a glass beaker con-
taining approximately 40 mL 100 mM sodium phosphate 
buffer pH 7.0. Mix, make up to 50 mL with sodium phos-
phate buffer solution, and store.

Controls for this technique must include an effective •O2
− dismu-

tating catalyst such as superoxide dismutase (SOD) or Mn salts.

	 1.	Plant parts or tissue sections.
	 2.	Falcon or Eppendorf tubes.
	 3.	Vacuum pump.
	 4.	Vacuum desiccator.
	 5.	Glass slides or plates for mounting.
	 6.	Camera.
	 7.	Solutions.

(a)	 Nitro blue tetrazolium (NBT). To prepare 50  mL of 
122 mM NBT solution, weigh 5 mg NBT and transfer to 
a glass beaker containing approximately 40 mL water. Mix 
and make up to 50 mL with water. Transfer to a 50 mL 
Falcon tube wrapped with aluminum foil. For salinized 
plants, weigh an appropriate amount of NaCl or sorbitol 
(depending on whether the material to be tested is Na+-
including or not) and add before making up to final NBT 
solution volume (see Note 2). If not used immediately, 
solutions can be stored frozen at −20°C for up to 3 
months.

(b)	 MnCl2. For a 10 mM MnCl2 solution, weigh 63 mg MnCl2 
and transfer to a glass beaker containing approximately 
40 mL water. Mix and make up to 50 mL with water.

(c)	 9:1 ethanol and glycerin. Make up enough to completely 
submerge the stained tissue and sustain 30 min boiling.

Use a KI treatment as a control for this technique.

	 1.	Plant sections.
	 2.	Falcon or Eppendorf tubes.

2.4. Determination of 
•O2

− with Nitro Blue 
Tetrazolium

2.5. Spectrophotometric 
Determination of In Vivo 
H2O2 Production
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	 3.	Vacuum pump.
	 4.	Vacuum desiccator.
	 5.	Spectrophotometer (visible light wavelength).
	 6.	Solutions.

(a)	 4-aminoantipyrine (4-AAP). For a 5  mM 4-AAP solution, 
weigh 10 mg AAP and transfer to a 15 mL Falcon tube contain-
ing 5 mL water. Mix, make up to 10 mL with water, and store.

(b)	 Reaction mixture. 100 mM 4-AAP, 1 mM 3, 5-dichloro-2-
hydroxybenzene sulfonic acid (DCHBS), 0.06 mg−1 mL−1 
horseradish POX (HPOX). Add 40 mL water to a 100 mL 
graduated glass beaker. Weigh 13  mg DCHBS, 3  mg 
HPOX, and transfer to the glass beaker. Add 1 mL 5 mM 
4-AAP solution. Mix and make up to 50 mL with water. 
Transfer to a 50 mL Falcon tube wrapped with aluminum 
foil. For the NaCl treatment, weigh an appropriate amount 
of NaCl or sorbitol and add before mixing (see Note 2). 
For the H2O2 specificity control, add 1.66  g KI to the 
reaction mixture before adjusting to the final volume.

(c)	 Ethanol-glycerin. For 9:1 ethanol-glycerin solution, add 
45 mL ethanol and 5 mL glycerine to a glass beaker and 
mix to homogeneity. Transfer to a 50 mL Falcon tube.

Suitable controls for this technique must include an effective •O2
− 

dismutating agent such as SOD or a Mn salt.

	 1.	Falcon or Eppendorf tubes.
	 2.	Vacuum pump.
	 3.	Vacuum desiccator.
	 4.	Spectrophotometer (visible light wavelength).
	 5.	Solutions.

(a)	 MnCl2. For a 10 mM MnCl2 solution, weigh 63 mg MnCl2 
and transfer to a glass beaker containing approximately 
40 mL water. Mix and make up to 50 mL with water.

(b)	 3’-[1-[(phenylamino)-carbonyl]-3, 4-tetrazolium](4-meth-
oxy-6-nitro) benzene sulfonic acid hydrate (XTT) solution. 
For 0.5 mM XTT, weigh 17 mg XTT and transfer to a 
glass beaker containing approximately 40 mL water. Mix 
and make up to 50 mL with water. Transfer to a 50 mL 
Falcon tube wrapped with aluminum foil. For the NaCl 
treated plant material, weigh an appropriate amount of 
NaCl or sorbitol and add before mixing (see Note 2). For 
the •O2

− specificity control, add 0.5 mL of the MnCl2 solu-
tion or SOD (50 mm mL−1) before making up to the final 
volume. If not used immediately, solutions can be stored 
frozen at −20°C for up to 3 months.

2.6. Spectrophotometric 
Determination of In 
Vivo •O2

− Production
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	 1.	Falcon or Eppendorf tubes.
	 2.	Vacuum pump.
	 3.	Vacuum desiccator.
	 4.	Spectrofluorometer.
	 5.	Benzoate (BZ) solution. For a 2.5 mM BZ solution, weigh 18 mg 

BZ and transfer to a glass beaker containing water. Mix and 
make up to 50 mL with water. Transfer to a 50 mL Falcon tube 
wrapped with aluminum foil. For the salt-treated plants, weigh 
an appropriate amount of NaCl or sorbitol and add before mix-
ing (see Note 2). Prepare and use the same day, do not store.

	 1.	Prepare a 15 mm long section from a plastic tube that can fit 
into a 50 mL Falcon tube, depending on the size of the plant 
material. Seal one end with plastic net. Introduce a net bag 
inside the tube. The net pores should be smaller than the sur-
face of the plant segments (see next point).

	 2.	Carefully introduce approximately 100 excised, rinsed leaf or 
root segments (10 mm in length) in the net bag. Make sure 
they are all positioned parallel to the tube side. Seal the net bag 
loosely to prevent the segments from moving.

	 3.	Centrifuge the tubes for 1 min at 1,000 × g to remove any rins-
ing solution.

	 4.	Centrifuge again for 10 min at 2,000 × g to collect the apoplas-
tic fluid. Store the apoplastic fluid at −20°C.

	 5.	Use the apoplastic fluid to check G6PDH activity, protein con-
centration, and Na+ concentration. Several batches of apoplas-
tic fluid will be necessary to carry out all assays. Compare 
apoplastic G6PDH activity on a protein concentration basis 
with that of whole tissue homogenate. It should not be higher 
than 5 % of whole tissue activity when the apoplastic fluid is 
not contaminated with cytosol.

	 6.	Dilute uncontaminated apoplastic fluid samples with an appro-
priate water volume to determine Na+ concentration by atomic 
emission spectrophotometry or flame photometry. See com-
ments on estimation of apoplastic ion concentrations in Note 7.

	 1.	Measure the temperature of the agar mixture. When it reaches 
30°C, pour it on a Petri dish and submerge the plant material 
(see Notes 8 and 9). Incubate in the dark.

	 2.	After 15–30 min, place the Petri dish under an epifluorescence or 
confocal microscope to observe DCF fluorescence (see Note 10). 
Briefly check the material and take a picture (see Notes 11 and 12).

2.7. Fluorometric 
Determination of In 
Vivo HO• Production

3. Methods

3.1. Obtaining 
the Apoplastic Fluid 
and Estimating  
the Cytoplasmic 
Contamination and 
Na+ Concentration

3.2. Localized ROS 
Detection in Intact 
Seedlings  
Using 2¢,7¢-Dichloro- 
fluorescin and 
Epifluorescence
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	 1.	Place the plant sections in an Eppendorf tube and completely 
submerge in the CeCl3 solution. Infiltrate by applying gentle 
vacuum pulses for 1 min. Incubate for 3 h.

	 2.	Remove and fix the plant material in glutaraldehyde solution 
for 24 h at 4°C.

	 3.	Process for electron microscopy.

	 1.	Place the plant sections in an appropriate tube and add sufficient 
NBT solution to cover completely (see Notes 13 and 14). 
To infiltrate, place the open tubes in a desiccator, and apply 
vacuum pulses, gently releasing the vacuum between each 
pulse. Usually, 8–10 pulses, 10  s each, are sufficient for 
infiltrating the tissue.

	 2.	Incubate for 2 h at 30°C in the dark. Comments about incuba-
tion time in Note 10 also apply for this technique.

	 3.	Remove the plant material from the NBT solution and place in 
beaker or glass tube with an appropriate volume of the 9:1 
ethanol-glycerin solution. Place the vessel in a water bath and 
boil for 10  min or until the green color has faded almost 
completely.

	 4.	Mount the material on a glass slide or sheet and cover with 
glass slips.

	 5.	Photograph.
	 6.	See Note 15 for tips on quantifying staining intensity.

	 1.	Submerge the plant material completely (see Notes 14 and 15) 
in the reaction solution. Infiltrate by applying gentle vacuum 
for 1 min. Incubate for 2 h at 30°C in the dark.

	 2.	Collect the incubation medium and centrifuge at 10,000 × g, 
for 5 min.

	 3.	Measure the absorbance at 515 nm.
	 4.	Transform 515 nm absorbance readings into the H2O2 concen-

tration using the molar extinction coefficient 2.6 × 104 M−1 cm−1.

	 1.	Submerge the plant material completely in the XTT solution 
(see Notes 14 and 15). Infiltrate by applying gentle vacuum for 
1 min. Incubate for 5 h at 30°C in the dark.

	 2.	Collect the incubation medium and centrifuge at 10,000 × g, 
for 5 min.

	 3.	Measure the absorbance of the incubation medium at 
470 nm.

	 4.	Use the •O2
− molar extinction coefficient at 470  nm 

(2.16 × 104  M−1 cm−1) to transform absorbance values into 
•O2

− concentration.

3.3. Subcellular H2O2 
Detection by Electron 
Microscopy

3.4. Histochemical 
Determination of 
•O2

− with Nitro Blue 
Tetrazolium

3.5. Spectrophoto-
metric Determination 
of In Vivo H2O2 
Production

3.6. Spectrophotometric 
Determination of In 
Vivo •O2

− Production
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	 1.	Submerge the plant material completely in the BZ solution 
(see Notes 14 and 15). Infiltrate by applying gentle vacuum for 
1 min. Incubate for 7 h at 30°C in the dark.

	 2.	Collect the incubation medium and centrifuge at 10,000 × g, 
for 5 min.

	 3.	Measure the fluorescence using a spectrofluorometer at 407 nm 
emission after excitation at 305 nm.

	 4.	Run blanks without BZ in parallel to correct for unspecific 
fluorescence.

	 5.	Prepare a BZ calibration curve by measuring a series of BZ 
dilutions (from 0 to 2.5 mM).

	 6.	Transform the fluorescence values of the biological samples 
into HO• molar concentration using the calibration curve 
values.

	 1.	For any ROS determination method, it is of the utmost impor-
tance to manipulate the tissue with great care, avoiding any 
pressure while handling it, as this may induce injury-related 
ROS production (19). When working with explants such as 
leaf segments, it is very important to rinse them briefly after 
excision to remove any ROS produced as a result of the 
injury.

	 2.	It is recommended that the osmotic potential of infiltration 
and incubation solutions be as similar as possible to the tis-
sues Y, which can be measured psychrometrically. The choice 
of a suitable organic osmotic agent for that purpose is contin-
gent on its action as a ROS scavenger (32). Note that the 
organic solute sorbitol is a weak scavenger for •O2

− (19, 33) 
and HO• (34).

			   For salt-treated plant material, it is important to estimate 
apoplastic Na+ and include it in the incubation solutions. When 
studying roots obtained from hydroponically grown plants, 
the ion composition in the root apoplastic solution can be 
expected to approximately reflect that in the nutrient solution. 
However, this will not be the case in soil-grown roots. In other 
plant organs, the composition of the apoplastic solution will 
depend on the ion balance control exerted along the xylem 
and the transpiration stream (35). Therefore, an assessment of 
the apoplastic ion concentration should be performed and the 
estimated concentration included in the staining or assay solu-
tions (36). Average tissue ion estimates will not necessarily 

3.7. Fluorometric 
Determination of In 
Vivo HO• Production

4. Notes
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reflect ion concentration in different compartments (10) and 
estimates of ion concentration from one plant part should 
obviously not be extrapolated to the subject tissue because 
significant differences in ion distribution within a plant are 
likely to exist (37).

	 3.	Although DCFH is usually assumed to react mainly with H2O2, 
it can also become fluorescent in the presence of other oxi-
dants (22), as was critically reviewed by (14). Appropriate con-
trols, including a H2O2 scavenger such as KI (38), are essential 
for interpreting the results.

	 4.	To adjust the pH, use a series of HCl solutions (e.g., 1 and 
0.1  N), rather than concentrated HCl. This avoids sudden 
drops in pH.

	 5.	The required volume of the agar solution depends on the size 
of the plant material; the solution should cover it evenly.

	 6.	Use a series of NaOH solutions (e.g., 1 and 0.1 N) to avoid a 
sudden rise in pH.

	 7.	Details on how to calculate apoplastic fluid dilution after 
infiltration can be found in (39). Although these methods can 
render only an approximate idea of the ion concentration in 
the apoplastic solution due to the very small volumes obtained 
and dilutions induced by infiltration, it is still preferable to 
obtain information from these procedures rather than to incu-
bate the tissues without correcting for the estimated apoplastic 
ion concentration.

	 8.	Note that the plant material is introduced before the medium 
has completely cooled. Keep the plant material submerged 
using dissection needles. When the agar begins to solidify, 
remove the needles.

	 9.	If non-excised shoots are to be observed, roots can be kept in 
an appropriate nutrient medium, with or without NaCl, in a 
beaker or another vessel, alongside the Petri dish.

	10.	The incubation time depends on the type of plant material 
used. An estimated period is suggested above. For each mate-
rial, try a series of increasing incubation periods until the right 
fluorescence intensity (sharp, not too high) can be observed.

	11.	It is important not expose the plant material to the micro-
scope’s light for too long. This exposure will increase the 
fluorescence intensity, produce a loss of detail at high light 
intensity, and will affect any comparisons between treatments. 
Expose for only a few minutes to check the material and then 
take a picture.

	12.	Fixed exposure times are essential if different treatments are 
being compared. Increasing the exposure time will also increase 
fluorescence [see, for example, ref. (20)].
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effective.

	15.	Although this is essentially a qualitative technique, if the same 
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image processing software after splitting the images into blue, 
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