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ABSTRACT: We perform a thermodynamic analysis of the polymerization-induced phase separation in
nanoparticle-monomer-polymer blends using a simple model recently proposed by Ginzburg (Macromolecules
2005, 38, 2362). The model was adapted for ternary blends constituted by nanoparticles, a monomer and a linear
polymer, where the relative fractions of polymer and monomer determine the conversion in the polymerization
reaction. The analysis showed that phase separation can occur in the course of polymerization for a large range
of values of the relevant parameters (interaction parameter and polymer and particle sizes). This possibility has
to be considered when the intention is to fix a uniform dispersion of nanoparticles in a monomer through its
polymerization.

Introduction

One of the possible strategies to disperse nanoparticles into
polymeric materials is to polymerize a homogeneous solution
of these particles in the corresponding monomers. This can lead
to a final homogeneous dispersion, provided that phase separa-
tion does not occur in the course of polymerization. In general,
when a polymerization is carried out in the presence of a second
component (an oligomer, a linear polymer, a liquid crystal, etc.),
phase separation can take place leading to different types of
morphologies that depend on the initial composition and reaction
conditions.1 Polymerization-induced phase separation (PIPS) is
used in practice to synthesize a set of useful materials such as
high-impact polystyrene (HIPS),2 rubber-modified thermosets,3

thermoplastic-thermoset blends,4 polymer-dispersed liquid crys-
tals,5 thermally reversible light scattering films,6,7 nanostructured
thermosets,8 etc. PIPS has also been observed in blends of epoxy
monomers and polyhedral oligomeric silsesquioxanes (POSS),9-12

that can be considered as a model system of nanoparticles
dissolved in reactive solvents. A similar phenomenon has been
recently reported for dispersions of inorganic nanoparticles in
methyl methacrylate where aggregation of individual particles
occurred upon polymerization.13 A combination of phase
separation induced simultaneously by polymerization and
solvent evaporation was used to synthesize polymer-gold
nanoparticle films of high dielectric constant.14

Our aim is to provide a thermodynamic description of the
polymerization-induced phase separation in nanoparticle-
monomer-polymer blends, for the particular case where a linear
polymer is formed by the polymerization of the monomer. This
situation is an ideal representation of a linear free-radical
polymerization that produces a monodisperse polymer. The
relative fractions of polymer and monomer determine the
conversion in the polymerization reaction.

Among the thermodynamic models proposed to analyze the
nanoparticle-polymer blends, the one recently developed by
Ginzburg15 has the advantage of simplicity and adaptability to
computer simulations.16,17 We will use this model to predict
miscibility regions in ternary nanoparticle-monomer-polymer
blends as a function of the relevant parameters of the system.

Ginzburg’s Model

For a binary blend consisting of nanoparticles and a linear
polymer, the free energy per lattice cell (∆G) may be written
as15

In eq 1, k is Boltzmann constant,T is temperature,φpol and
φpart ) 1 - φpol represent the volume fractions of polymer and
particles,rpol and rpart are the number of lattice cells occupied
by polymer and particles,Rp is the radius of a spherical particle,
R0 is the radius of a sphere occupied by the repetitive unit of
the polymer, andø is the Flory-Huggins interaction parameter
between polymer and particles.

By defining the volume of the unit lattice cell as (4/3)πR0
3,

the volume of the polymer chain with respect to the unit cell is
equal to its number-average degree of polymerization,rpol )
N, and the relative volume of a particle is equal torpart ) (Rp/
R0).3 Therefore, the equilibrium conditions depend on three
independent parameters:N, Rp/R0, andø.

Changes in the arbitrary reference state used to define∆G
will incorporate constants or linear functions of compositions
in eq 1. As equilibrium conditions depend on derivatives of
this function, there will be no effect on thermodynamic
predictions, as is obviously expected.

The first two terms of eq 1 represent the contribution of
configurational entropy to free energy. Particles are assumed
as hard spheres with a configurational entropy contribution
described by the Carnahan-Starling equation of state.18 The
assumption of hard spheres imposes a significant penalty to the
generation of a phase with a high concentration of particles
(whenφpart f 1, ∆G f ∞).

The last term of eq 1 includes entropic and enthalpic
contributions to the free energy due to interactions between
polymer and particles. The entropic contribution is due to the
fact that particles usually cause stretching of polymer chains in
their vicinity,15,19-21 although cases were chain contraction
occurs have also been reported.21,22 The form of the chain* Corresponding author. E-mail: williams@fi.mdp.edu.ar.

∆G/kT ) (φpol/rpol) ln φpol + (φpart/rpart) [ln φpart +

(4φpart - 3φpart
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2] + [(3Rp
2)/(2rpol rpartR0
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ø R0/Rp]φpolφpart (1)
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stretching term has its basis in the analysis of polymer
brushes.15,23 Other expressions for this term have also been
suggested.19 The enthalpic contribution depends on the interac-
tion parameter (ø) between polymer and particles. This factor
includes a lumped contribution of particle-particle, particle-
polymer, and polymer-polymer interaction energies. It depends
on temperature; e.g., it decreases with an increase in temperature
for a usual upper-critical-solution-temperature (UCST) behavior.
Eventually, a dependence ofø on composition can be postulated
if needed to fit the model with experimental results. Detailed
analysis of nanoparticle-polymer interactions are considered
in diverse models focused in the potential of mean force between
a pair of spherical particles dissolved in a homopolymer
melt.24,25

The polymer is defined as a flexible constituent that is able
to occupy all the available volume even when present as a single
component. In this sense,R0 should be defined on the basis of
the experimental density of the polymer including the free
volume contribution. This is the usual way in which polymers
are considered when using lattice models. However, when the
size of the particle (Rp) gets close to the size of the repetitive
unit of the polymer (R0), the hard-sphere correction cannot be
reconciled with the assumed flexibility of the polymer. This
problem was addressed by Ginzburg,15 who proposed an
interpolating function that eliminates the hard-sphere correction
in this limit. In the present analysis we avoid this limiting case
and solve the equations forRp/R0 g 3, assuming that this value
is high enough to consider the validity of the hard-sphere
correction. The arbitrary interpolating function proposed by
Ginzburg has an asymptotic behavior but leads to a similar
situation whenRp/R0 g 3.

Assuming typical values for the polymer mass density
(∼1 g/cm3) and the molar mass of the repetitive unit (∼100
g/mol) gives the following size of the repetitive unit:R0 )
0.34 nm. This means that the present analysis is considered
valid for nanoparticles with a radius equal to or higher than
about 1 nm. However, there should be also a limit for the
application of the model in the range of large particle sizes.
Inspection of eq 1 reveals that the last term becomes negligible
for large values ofRp/R0. As a consequence, eq 1 predicts
miscibility of large particles, a fact that is contrary to the
experimental evidence. Ginzburg’s model performs averaging
over polymer degrees of freedom and particle degrees of
freedom at once and should not be applied for large particle
sizes where a different approach should be more appropriate.
Besides, increasing particle size introduces gravitational effects
as a new player in the phase separation process. This driving
force becomes significant for large particles when the difference
between mass densities of both constituents is important. In this
case, phase separation of large particles is produced by gravity
independently of any thermodynamic consideration. In our
analysis, we restricted the range of particle sizes to 3e Rp/R0

e 15.

A key issue of this analysis is whether eq 1 can be applied
to describe the behavior of a high-particle-concentration phase.
According to Ginzburg,15 eq 1 neglects the possibility of
nanoparticle positional ordering or the potential effects of
nanoparticle “crowding” on the polymer-particle interaction
terms. In the present analysis we will assume that the nano-
particle-rich phase formed during the polymerization-induced
phase separation process is amorphous. This is favored by the
fact that the Carnahan-Starling term introduces a significant
entropic penalty to generate equilibrium phases containing large
particle concentrations. In practice, a slight polydispersity of

nanoparticle sizes should also help to avoid crystallization in
the nanoparticle-rich phase. We will also assume that phases
with different particle concentrations can be reversibly gener-
ated. This should be the case for several types of nanoparticles
such as polyhedral oligomeric silsesquioxanes (POSS) or
functionalized metal nanoparticles. The assumption could be
not valid for other types of nanoparticles such as those present
in fumed silica where association by chemical bonds is possible.
With these considerations, the thermodynamic analysis will be
performed without imposing any restriction on the concentration
of particles in the system.

Before analyzing the more complex situation of a ternary
blend, we will investigate the effect of these parameters on the
location of miscibility regions in a binary polymer-nanoparticle
blend.

Polymer-Nanoparticle Blends

Chemical potentials may be derived from the free energy
equation in the usual form.26 Equating chemical potentials of a
particular constituent in both phases (R and â) leads to the
following equations that define the binodal curve:

By fixing the values ofN, Rp/R0, and a particular composition
in phaseR (φpol

R andφpart
R ) 1 - φpol

R), eqs 2 and 3 may be
solved to obtain the particular composition of phaseâ (φpol

â

andφpart
â ) 1 - φpol

â) and the value ofø.
The spinodal curve may be obtained following standard

procedures:26

To visualize the effect of the three parameters on the location
of binodal and spinodal curves, phase diagrams in (1/ø) vsφpart

coordinates were calculated (for an UCST behavior the ordinates
are proportional to temperature). Parts a and b of Figure 1 show
phase diagrams for different polymer sizes (N). The blend is
homogeneous above the binodal curves meaning that miscibility
decreases with an increase in polymer size, attaining an
asymptotic value for large sizes. Equilibrium compositions are
located on the binodal curves joined by horizontal tie lines. One
of the branches is located at very low particle concentrations
(except at compositions close to the critical point). The
concentration of particles in the other branch of the binodal is
limited by the entropic penalty imposed by the Carnahan-
Starling (C-S) term.

Increasing the nanoparticle radius produces a significant
decrease in miscibility as shown in Figure 2 for the selected
range of particle sizes. The prevailing effect is the decrease in
the absolute value of the contribution of configurational entropy
of nanoparticles to the free energy of the system.

ln φpol
â/φpol

R + φpol
R - φpol

â + (NR0
3/Rp

3)[φpart
R - φpart

â +

2(φpart
R)2(2 - φpart

R)/(1 - φpart
R)2 - 2(φpart

â)2(2 - φpart
â)/

(1 - φpart
â)2] + (R0/Rp)(1.5+ øN)[(φpart

â)2 - (φpart
R)2] ) 0

(2)

ln φpart
â/φpart

R + φpart
R - φpart

â + (Rp
3/NR0

3)(φpol
R -

φpol
â) + [(8φpart

â - 5(φpart
â)2]/(1 - φpart

â)2 - [(8φpart
R - 5

(φpart
R)2]/(1 - φpart

R)2 + (Rp
2/NR0

2)(1.5+ øN)[(φpol
â)2 -

(φpol
R)2] ) 0 (3)

(Rp
3/NR0

3)(1/φpol) + (1/φpart) + 2(4 - φpart)/(1 - φpart)
4 -

2(Rp
2/NR0

2)(1.5+ øN) ) 0 (4)
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The effect of the C-S term may be visualized in Figure 3
where phase diagrams are predicted with and without using this
term, keeping constant the rest of the parameters. The upper
phase diagram is the one predicted when the C-S term is
arbitrarily eliminated from the free-energy equation. The lower
phase diagram is predicted using this term. The effect of the
C-S term on the shape and location of the phase diagram is
extremely important. In the first place it produces a significant
increase in the miscibility of binary nanoparticle-polymer
blends resulting from the contribution of the third term of the
spinodal equation (eq 4). Besides, it shifts the critical point to
the low particle concentration region leading to two equilibrium
phases containing very low and intermediate particle concentra-
tions.

The effect that is being taken into account through the C-S
term may be visualized by considering that the factor [(3Rp

2)/
(2rpol rpartR0

2) + ø R0/Rp] in eq 1 is equal to an effective
interaction parameterøef. In this case, omitting the C-S term
in eq 1 would be valid for a blend of a polymer of sizeN with
a second polymer of size (Rp/R0),3 exhibiting an interaction
parameter equal toøef. The blend is significantly more miscible
when the second polymer is present as hard spheres instead of

flexible chains. The reason is the high entropic penalty for the
formation of a phase rich in hard spheres (a compact phase of
hard spheres requires a significant fraction of free volume to
fill the space among particles).

The higher miscibility predicted when a polymer is present
as nanoparticles instead of linear chains is supported by recent
experimental findings.19 Linear polystyrene-linear polyethylene
blends have an unfavorable mixing enthalpy and are a classic
phase-separating system. However, branched polyethylene
nanoparticles (radius of about 13 nm) could be homogeneously
dispersed in a 393-kDa linear polystyrene.19

Polymerization-Induced Phase Separation

This process is modeled with a ternary blend composed of
nanoparticles, a monomer and a linear polymer, where the
conversion in the polymerization reaction is measured by the
relative fraction of polymer in the mixture with the monomer.
In fact, this is an ideal model of a linear free-radical polymer-
ization where at any conversion, the system is composed by
high molar mass polymer and residual monomer. It is assumed
that the interaction parameter between monomer and polymer
is null and both components have the same interaction parameter
with nanoparticles. In this situation, the free energy per lattice
cell (∆G) may be written as

The equilibrium condition expressed as a binodal curve may
be obtained by equating chemical potentials of the three
constituents in both phases.26 This leads to the following
equations:

By fixing the values ofN, Rp/R0, ø, andφpart
R, eqs 6-8 may

be solved to obtain the remaining independent compositions:
φpol

R, φpol
â, andφpart

â (the volume fraction of monomer in both
phases is obtained by the condition that the sum of volume
fractions of the three components is equal to 1).

Figure 1. Phase diagrams of binary polymer-nanoparticle blends for
Rp/R0 ) 5, in (1/ø) vs φpart coordinates: (a)N ) 10 to 40; (b)N ) 70
to 5000. Binodal curves are indicated by a continuous line while
spinodals are traced with a dashed line.

Figure 2. Phase diagrams of binary polymer-nanoparticle blends for
N ) 50, in (1/ø) vs φpart coordinates. Binodal curves are indicated by
a continuous line while spinodals are traced with a dashed line.

∆G/kT ) (φpol/N) ln φpol + φmonln φmon + (φpartR0
3/Rp

3)

[ln φpart + (4φpart - 3 φpart
2)/(1 - φpart)

2] + [(3/2N)φpol +
ø(1 - φpart)](R0/Rp)φpart (5)

ln φpol
â/φpol

R + φpol
R - φpol

â + N(φmon
R - φmon

â) +

(NR0
3/Rp

3)[φpart
R - φpart

â + 2(φpart
R)2(2 - φpart

R)/

(1 - φpart
R)2 - 2(φpart

â)2(2 - φpart
â)/(1 - φpart

â)2] +

(R0/Rp)(1.5+ øN)[φpart
â(1 - φpol

â) - φpart
R(1 - φpol

R)] -

(R0/Rp)øN(φpart
â
φmon

â - φpart
R
φmon

R) ) 0 (6)

ln φmon
â/φmon

R + φmon
R - φmon

â + (1/N)(φpol
R - φpol

â) +

(R0
3/Rp

3)[φpart
R - φpart

â + 2(φpart
R)2(2 - φpart

R)/

(1 - φpart
R)2 - 2(φpart

â)2(2 - φpart
â)/(1 - φpart
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(R0/Rp)(1.5/N - ø)(φpart
â
φpol

â - φpart
R
φpol
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(R0/Rp)ø [φpart
â(1 - φmon

â) - φpart
R(1 - φmon

R)] ) 0 (7)
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â/φpart

R + φpart
R - φpart
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(Rp
3/NR0

3)(φpol
R - φpol

â) + (Rp
3/R0

3)(φmon
R - φmon

â) +

[8φpart
â - 5(φpart

â)2/(1 - φpart
â)2 - [8φpart
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8084 Souléet al. Macromolecules, Vol. 40, No. 22, 2007



The equation for the spinodal may be obtained following
standard procedures:26

Figure 4 shows the predicted ternary phase diagram for a
monomer-polymer-nanoparticle blend withN ) 200, Rp/R0

) 10, and several values of the interaction parameter. Polym-
erization is simulated by horizontal trajectories starting at the
particular nanoparticle concentration in the monomer-nanopar-
ticle side and ending in the polymer-nanoparticle side. Polym-
erization-induced phase separation is expected for a large range
of ø values located between a lower limit where the system
remains homogeneous up to the end of polymerization and an
upper limit where the blend is initially immiscible. For anyø
value located in this range the cloud-point conversion decreases
when increasingø. A large gap between binodal and spinodal
curves is observed for blends with compositions in the off-
critical region in the branch of high nanoparticle concentration.
In this situation, a nucleation-growth type of phase separation
should be favored over spinodal demixing.

Starting from a blend containing a low nanoparticle concen-
tration that undergoes phase separation, the final blend at the
end of polymerization consists of a majority phase (the matrix)
constituted practically by pure polymer, and a minority (dis-
persed) phase containing a higher concentration of nanoparticles
than the initial blend. In practice, it is possible that polymeri-
zation-induced phase separation generates an amorphous dis-

persed phase rich in nanoparticles but an ordered phase is
produced through a secondary phase separation inside dispersed
domains when cooling from the polymerization temperature.
This has been experimentally observed for blends of POSS
nanoparticles in epoxy-amines monomers.12 Amorphous POSS-
rich domains were segregated at the polymerization temperature.
When cooling, POSS crystals were generated inside these
domains. The order-disorder transformation that occurs during
cooling can be taken into account by including the free energy
of the ordered phase in the thermodynamic description.

The effect of varying the polymer size (N) is shown in Figure
5, and the effect of particle size is shown in Figure 6. Increasing
either the polymer size or the particle size produces a decrease
in the conversion at which the blend enters the immiscibility
region. The effect of particle size on miscibility is extremely
important. A small increase in particle size fromRp/R0 ) 3 to
Rp/R0 ) 4 extends the immiscibility gap to the region of very
low particle concentrations. A polydispersity in the distribution
of nanoparticles should lead to a fractionation by size between
both phases (larger nanoparticles will be predominantly segre-
gated to the particle-rich phase).

Conclusions

We discussed the possibility of producing phase separation
when an initial homogeneous nanoparticle-monomer blend is
polymerized with the aim of producing the dispersion of the
nanoparticles in a polymeric material. The analysis was
performed using Ginzburg’s model and has, therefore, any
limitation of this model. In the analysis we avoided the regions
of very low particle sizes (Rp/R0 < 3) or large particle sizes
(Rp/R0 > 15), where a more appropriate model is needed. The
polymerization-induced phase separation was simulated using
the simplest possible model in which a monomer is converted
into a linear polymer with a size that does not vary with

Figure 3. Phase diagrams of binary polymer-nanoparticle blends for
N ) 200 andRp/R0 ) 4, in (1/ø) vs φpart coordinates. The lower phase
diagram is predicted using the Carnahan-Starling term. The upper
phase diagram is the prediction resulting by eliminating this term from
the free-energy equation. Binodal curves are indicated by a continuous
line while spinodals are traced with a dashed line.

Figure 4. Ternary phase diagram for a monomer-polymer-nanopar-
ticle blend with N ) 200, Rp/R0 ) 10, and several values of the
interaction parameter. Binodal curves are indicated by a continuous
line while spinodals are traced with a dashed line.

(1/N φpol + 1/φmon)[R0
3/(Rp

3
φpart) + 1/φmon + 2(R0

3/Rp
3)

(4 - φpart)/(1 - φpart)
2 - 2ø (R0/Rp)] - [1/φmon + 1.5

(R0/NRp) - 2ø (R0/Rp)]
2 ) 0 (9)

Figure 5. Ternary phase diagram for a monomer-polymer-nanopar-
ticle blend withø ) 1.2,Rp/R0 ) 10, and several values of the polymer
length (N). Binodal curves are indicated by a continuous line while
spinodals are traced with a dashed line.

Figure 6. Ternary phase diagram for a monomer-polymer-nanopar-
ticle blend withø ) 1.2 andN ) 200. Binodal curves are indicated by
a continuous line while spinodals are traced with a dashed line.
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conversion (an ideal situation for a linear free-radical polym-
erization).

The analysis showed that phase separation can occur in the
course of polymerization for a large range of values of the
relevant parameters (ø, N, andRp/R0). In most cases one of the
generated phases is practically devoid of nanoparticles while
the other phase exhibits a higher concentration of nanoparticles
than the initial blend. This second phase constitutes the minority
(dispersed) phase for the typical case of blends that contain a
very low concentration of nanoparticles.

The effect of particle size on miscibility is extremely
important. A small increase in particle size has a significant
effect in extending the immiscibility region of the phase
diagram. A polydispersity in the distribution of nanoparticles
should lead to a fractionation by size between both phases (larger
nanoparticles will be predominantly segregated to the particle-
rich phase).
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