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Abstract

The influence of the initial in-plane deformations, generated by the action of a static external loading, as well as the effect of shear flexibility on
the dynamic behavior of bisymmetric thin-walled composite beams has been investigated in this paper. The analysis is based on a geometrically
non-linear theory based on large displacements and rotations. The Ritz variational method is used in order to discretize the governing equation and
an analytical method is used to obtain the natural frequencies. In the investigation open cross-section beams subjected to initial uniform moment,
distributed load and concentrated load are considered. The numerical results show that when the ratio of the smaller axis flexural stiffness to the
major axis flexural stiffness is large, classic analysis of vibration may lead to inaccurate predictions because of the effects of initial displacements.
Besides, the effects of span length and height of the load point have also been investigated for different laminate stacking sequences.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin-walled beam structures made of advanced anisotropic
composite materials are increasingly found in the design
of the aircraft wings, helicopter blades, axles of vehicles
and so on, due to their outstanding engineering properties,
such as high strength/stiffness to weight ratios and favorable
fatigue characteristics. The interesting possibilities provided
by fiber reinforced composite materials can be used to
enhance the response characteristics of such structures that
operate in complex environmental conditions. Since composite
thin-walled beam members are widely used in aerospace,
automobile and civil architecture industries, it is important to
ensure that their design is reliable and safe.

There are several studies about the dynamic behavior
of thin-walled isotropic beams subjected to an initial stress
static state. For example, Vlasov [1] examined in detail
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the problem of vibrations of thin-walled beams subjected
to a longitudinal load located in one of their ends. Then,
Bolotin [2] considered the study of a simply supported beam
subjected to an axial or transverse load. In both studies the
effect of shear deformation was not considered. Coulter and
Miller [3] investigated the vibration of tapered plane cross-
section beams subject to distributed axial forces. Cortı́nez
and Rossi [4] studied the dynamics of shear deformable thin-
walled open beams, subjected to an axial initial stress state.
They obtained natural frequencies of vibration by means of
the finite elements method based on a linear formulation. Kim
et al. [5] presented an improved second-order formulation in
which the transverse shear effect was ignored. They analyzed
the free vibration of thin-walled tapered beams subjected
to an axial load. The dynamic response of non-symmetrical
thin-walled beams subjected to concentrated and distributed
axial loads was analyzed by Jun et al. [6] by means of a
Bernoulli–Euler beam theory. They studied the warping effect
and the flexural–torsional coupling of cantilever beams. On
the other hand, Mohri et al. [7] presented a higher-order non
shear deformable model to investigate the dynamic behavior of
thin-walled open sections in the pre- and post-buckling state.

http://www.elsevier.com/locate/engstruct
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In their numeric examples they considered simply supported
beams subjected to axial and distributed transverse loads.

In spite of the practical interest and future potential
of composite beam structures, particularly in the context
of aerospace and mechanical applications, the quantity of
available investigations devoted to studying the dynamic
response behavior of composite beams subjected to an initial
stress state is relatively limited. Cortı́nez and Piovan [8]
developed a linear theoretical model for thin-walled beams of
open and closed cross-section. In their work they studied the
effect of the initial state of stresses on the natural frequencies
of the structure. Also, they analyzed the influence of shear
deformation when the fibers are oriented in the longitudinal
direction of the beam. Jun et al. [9] studied the dynamic
flexural–torsional response of axially loaded beams, by means
of a Timoshenko model [10] for thin-walled beams of closed
section.

It should be emphasized here that the necessity of
incorporating transverse shear effect arises from the fact that
the advanced fiber composite materials exhibit high flexibilities
in transverse shear [11,8].

On the other hand, the effect of large displacement
(associated to an initial static state of deformation) on the
dynamic behavior of thin-walled composite beams has not
been yet studied. Machado and Cortı́nez [12] investigated
the influence of initial displacements on the lateral buckling
behavior of thin-walled composite beams. Their numerical
results show that the classical predictions of lateral buckling
are conservative when the pre-buckling displacements are not
negligible.

The primary purpose of this paper is to investigate
numerically the effects of the initial displacements as well
as the effect of shear deformation on the dynamic response
of bisymmetric thin-walled composite beams subjected to
initial uniform moment, distributed load and concentrated
load. Simply supported, cantilever and fixed-end beams are
considered.

A second purpose is to investigate the effects of the span
length and the load height on the dynamic behavior considering
different laminate stacking sequences.

The analysis is based in a geometrically non-linear shear
deformable beam theory recently developed by the authors [12]
that is valid for symmetric balanced and especially orthotropic
laminates [13,14].

In order to solve the governing equations, the Ritz
method [15] is used for reducing the variational problem to
an algebraic equation for determining the natural frequencies
of vibration. The results obtained are compared with values
obtained by means of the linearized theory, with the purpose
of evaluating the importance of the effects considered in the
present model. Besides, numerical solutions are compared with
solutions by Abaqus’s shell element in order to show the
practical usefulness of this formulation.

2. Kinematics

A straight thin-walled composite beam with an arbitrary
cross-section is considered (Fig. 1). The points of the structural
Fig. 1. Coordinate system of the cross-section and notation for displacement
measures.

member are referred to a Cartesian coordinate system (x, ȳ, z̄),
where the x-axis is parallel to the longitudinal axis of the beam
while ȳ and z̄ are the principal axes of the cross-section. The
axes y and z are parallel to the principal ones but have their
origin at the shear center (defined according to Vlasov’s theory
of isotropic beams). The coordinates corresponding to points
lying on the middle line are denoted as Y and Z (or Ȳ and
Z̄ ). In addition, a circumferential coordinate s and a normal
coordinate n are introduced on the middle contour of the cross-
section.

ȳ(s, n) = Ȳ (s) − n
dZ
ds

, z̄(s, n) = Z̄(s) + n
dY
ds

(1)

y(s, n) = Y (s) − n
dZ
ds

, z(s, n) = Z(s) + n
dY
ds

. (2)

On the other hand, y0 and z0 are the centroidal coordinates
measured with respect to the shear center.

ȳ(s, n) = y(s, n) − y0

z̄(s, n) = z(s, n) − z0.
(3)

The present structural model is based on the following
assumptions [8]:

(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by the

Saint-Venant function for isotropic beams.
(3) Flexural rotations (about the ȳ and z̄ axes) are assumed to

be moderate, while the twist φ of the cross-section can be
arbitrarily large.

(4) Shell force and moment resultants corresponding to
the circumferential stress σss and the force resultant
corresponding to γns are neglected.

(5) The curvature at any point of the shell is neglected.
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(6) Twisting linear curvature of the shell is expressed according
to the classical plate theory.

(7) The laminate stacking sequence is assumed to be symmetric
and balanced, or especially orthotropic [13,14].

According to these hypotheses the displacement field is
assumed to be in the following form:

ux = uo − ȳ(θz cos φ − θy sin φ) − z̄(θy cos φ − θz sin φ)

+ ω

[
θ −

1
2
(θ ′

yθz − θyθ
′
z)

]
+ (θzz0 − θy y0) sin φ

u y = v − z sin φ − y(1 − cos φ) −
1
2
(θ2

z ȳ + θzθy z̄)

uz = w + y sin φ − z(1 − cos φ) −
1
2
(θ2

y z̄ + θzθy ȳ).

(4)

This expression is a generalization of others previously
proposed in the literature as explained in [12].

In the above expressions φ, θy and θz are measures of
the rotations about the shear center axis, ȳ and z̄ axes,
respectively; θ represents the warping variable of the cross-
section. Furthermore the superscript ‘prime’ denotes derivation
with respect to the variable x .

The components of the Green’s strain tensor which
incorporates the large displacement are obtained as explained
in [12].

3. Variational formulation

Taking into account the adopted assumptions, the principle
of virtual work for a composite shell may be expressed in the
form [16,8]:∫ ∫

(Nxxδε
(0)
xx + Mxxδκ

(1)
xx + Nxsδγ

(0)
xs + Mxsδκ

(1)
xs

+ Nxnδγ (0)
xn )dsdx

−

∫ ∫ ∫
ρ(üxδux + ü yδu y + üzδuz)dsdndx

−

∫ ∫
(q̄xδūx + q̄yδū y + q̄zδūz)dsdx

−

∫ ∫
( p̄xδux + p̄yδu y + p̄zδuz)

∣∣
x=0 dsdn

−

∫ ∫
( p̄xδux + p̄yδu y + p̄zδuz)

∣∣
x=L dsdn

−

∫ ∫ ∫
( f̄xδux + f̄yδu y + f̄zδuz)dsdndx = 0 (5)

where Nxx , Nxs, Mxx , Mxs and Nxn are the shell stress
resultants [12]. The beam is subjected to wall surface tractions
q̄x , q̄y and q̄z specified per unit area of the undeformed middle
surface and acting along the x , y and z directions, respectively.
Similarly, p̄x , p̄y and p̄z are the end tractions per unit area of
the undeformed cross-section specified at x = 0 and x = L ,
where L is the undeformed length of the beam. Besides f̄x , f̄y
and f̄z are the body forces per unit of volume. Finally, ūx , ū y
and ūz denote the displacements at the middle line.
4. Constitutive equations

The constitutive equations of symmetrically balanced
laminates may be expressed in the terms of shell stress
resultants in the following form [13]:

Nxx
Nxs
Nxn
Mxx
Mxs

 =


Ā11 0 0 0 0
0 Ā66 0 0 0
0 0 Ā(H)

55 0 0
0 0 0 D̄11 0
0 0 0 0 D̄66




ε(0)
xx

γ (0)
xs

γ (0)
xn

κ(1)
xx

κ(1)
xs

 (6)

with

Ā11 = A11 −
A2

12
A22

, Ā66 = A66 −
A2

26
A22

,

Ā(H)
55 = A(H)

55 −
(A(H)

45 )2

A(H)
44

D̄11 = D11 −
D2

12
D22

, D̄66 = D66 −
D2

26
D22

(7)

where Ai j , Di j and A(H)
i j are plate stiffness coefficients defined

according to the lamination theory presented by Barbero [13].
The coefficient D̄16 has been neglected because of its low value
for the considered laminate stacking sequence [8].

5. Principle of virtual work for thin-walled beams

Substituting the kinematics expressions and the constitutive
equations into (5) and integrating with respect to s, one obtains
the one-dimensional expression for the virtual work equation
given by

L M + L K + L P = 0 (8)

where L M , Lk and L p represent the virtual work contributions
due to the inertial, internal and external forces, respectively.

L M =

∫ L

0
ρ

[
A

∂2u0

∂t2 δu0 + Iz
∂2θz

∂t2 δθz + Iy
∂2θy

∂t2 δθy

+ Cw

∂2θ

∂t2 δθ + A
∂2

∂t2 (v − z0φ) δv

+ A
∂2

∂t2 (w + y0φ)δw

+
∂2

∂t2 (−Az0v + Ay0w + Isφ)δφ

]
dx (9)

where A is the cross-sectional area, Iz and Iy are the principal
moments of inertia of the cross-section, Cw is the warping
constant, Is is the polar moment with respect to the shear center
and ρ is the mean density of the laminate.

The expressions of Lk and L p are the same as presented by
the authors in [12]; in the same way the 1-D beam forces, in
terms of the shell forces, have been defined in [12].
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6. Free vibration analysis

The dynamic response of bisymmetric thin-walled compos-
ite beams is analyzed by taking into account the initial dis-
placements due to the static load. In the case of lateral load
in the vertical plane of the beam, the displacement compo-
nents in the load plane are in the form {u, v, θz, w, θy, φ, θ}

t
=

{0, 0, 0, w, θy, 0, 0}
t , that is to say, the beam deforms in the

loading plane. It is reasonable to assume that the displacements
in the load plane are solved by means of the linearized static
theory [14]. Then these last expressions, which represent the
deformed initial state of the beam, are replaced in the varia-
tional Eq. (8), and Ritz’s method is used to discretize the result-
ing system. Assembling in a usual way, this last system can be
written as

M
∂2U
∂t2 + KtU = 0 (10)

where M denotes the mass matrix, U is the global vector
of incremental displacements and Kt is the tangential matrix
evaluated in the deformed initial state.

Assuming a harmonic incremental motion with frequency Ω ,
the Eq. (10) is reduced to an eigenvalue problem:[
−Ω2M + Kt

]
U = 0. (11)

Then, the numerical solution of this equation permits one to
study the natural frequencies of vibration corresponding to the
modes out of the load plane, in this case flexural–torsional
modes.

6.1. Simply supported beams

The displacements corresponding to the load plane are
obtained from the linearized version of Eq. (8). In fact, by
neglecting all the non-linear terms in (8), and applying the
variational calculus, the differential equations of equilibrium
are obtained which are easily solved in a closed form in order
to determine the displacements in the loading plane.

For the case of simply supported beams subjected to uniform
bending, the initial displacements are given by the following
expressions:

w =
Mo

2Ê I y
(Lx − x2); θy =

Mo

2Ê I y
(L − 2x). (12)

The variational Eq. (8) is discretized by means of the following
functions:

v = v0(t) sin
(π

L
x
)

; θz = θ z 0
(t) cos

(π

L
x
)

;

φ = φ0(t) sin
(π

L
x
)

; θ = θ0(t) cos
(π

L
x
)

;

(13)

where v0(t), θz0(t), φ0(t) and θ0(t) are the associated
displacement amplitudes which are time dependent. These
relationships are commonly adopted as an approximation for
modes of simply supported beams in both static and dynamics
analysis [8,12].
Following the procedure explained previously it is possible
to obtain the system (11), where the mass matrix is

M =


ρ A 0 0 0
0 ρ Iz 0 0
0 0 ρ Is 0
0 0 0 ρCw

 (14)

and the tangential stiffness matrix can be expressed as

Kt = K + KG M0 (15)

where K is the linear elastic stiffness matrix and KG it is the
geometric stiffness matrix which considers the displacements
corresponding to the stress initial state.

K =



ĜSyπ
2

L2 −
ĜSyπ

L
0 0

−
ĜSyπ

L
ĜSy + Ê I z

π2

L2 0 0

0 0 (Ĝ J + ĜSw)
π2

L2 −
ĜSwπ

L

0 0 −
ĜSwπ

L
ĜSw + ÊCw

π2

L2


(16)

KG =



0 0 0 0

0 0 −

(
1 −

Ê I z

Ê I y
−

Ĝ J

4Ê I y

)
π

L
ÊCwπ2

4Ê I y L2

0 −

(
1 −

Ê I z

Ê I y
−

Ĝ J

4Ê I y

)
π

L
−

Mo

Ê I y

(
1 −

Ê I z

Ê I y

)
0

0
ÊCwπ2

4Ê I y L2
0 0


(17)

where Ê I y is the flexural stiffness, ĜSz and ĜSy are shear
stiffnesses of a composite beam and ez is the parameter of load
height measured from the shear center [12].

The same procedure can be applied for different load
conditions, modifying only the expression of the tangential
matrix Kt, in fact redefining the elements of the matrix KG ,
which consider the displacements due to the initial load. For
example, in the case of a simply supported beam subjected to a
distributed load qz ,

Kt = K + KGqz (18)

where the tangential stiffness matrix is given in Box I:

6.2. Cantilever beams

In this case, the variational Eq. (8) is discretized by
using beam characteristic orthogonal polynomials for the
displacements v, θz , φ and θ , while the displacements w and θy
(load plane) are adopted as the exact solution of the linearized
problem. For this case, the only type of loading considered
is a concentrated force applied at the free end of the beam.
The corresponding expressions for the initial displacements are
given by

w = −
P

ĜSz
x +

P

Ê I y

(
x3

6
− L

x2

2

)
;

θy =
P

Ê I y

(
x2

2
− Lx

)
. (19)
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KG =



0 0 0 0

0

(
6ĜSy

π LĜSz
−

12(Ê I z + Ê I y) − 9Ĝ J

4Ê I yπ L
+

(
1 −

Ê I z

Ê I y
−

Ĝ J

4Ê I y

)
π

L

)
L2

12
−

ÊCw(π2
− 9)

48Ê I y

−
qz

Ê I y

(
1 −

Ê I z

Ê I y

)
L4

π4

(
45 + π4)

120
−

qz

ĜSz

(
1 −

ĜSy

ĜSz

)
L2

π2
(π2

− 6)

12
− ez 0

Sym. 0


.

Box I.
The set of orthogonal polynomials which satisfy the
geometrical boundary conditions are generated by using the
Gram–Schmidt process.

U =

n∑
i=1

ciξi (x) (20)

where U represents each of the displacements v, θz , φ and θ ,
and ci are arbitrary coefficients which are to be determined.
The polynomials ξi (x) are generated as follows [17]:

ξ2(x) = (x − B2)ξ1(x), . . . , ξk(x)

= (x − Bk)ξk−1(x) − Ckξk−2(x),

donde Bk =

∫ L
0 xξ2

k−1(x)dx∫ L
0 ξ2

k−1(x)dx
,

Ck =

∫ L
0 xξk−1(x)ξk−2(x)dx∫ L

0 ξ2
k−2dx

. (21)

The first member of the orthogonal polynomial ξ1(x) is chosen
as the simplest polynomial (of the least order) that satisfies the
boundary conditions.

ξ1(x) :

{
2x L corresponding to the displacements v and φ.
2x
L

(2L − x) corresponding to the displacements θz and θ.

(22)

6.3. Fixed-end beams

This case is similar to the previous one and it is necessary
to find the expressions of the displacements corresponding to
the load plane (w and θy). The generation of the orthogonal
polynomials for the displacements v, θz , φ and θ , is carried out
in the same way as that previously explained and the choice of
the first term of the polynomial ξ1(x) is:

ξ1(x) :


( x

L

)2
(L − x)2 corresponding to the displacements v and φ.

x
L

(L − x) corresponding to the displacements θz and θ.

(23)

In order to obtain sufficiently accurate results, four terms
(n = 4) are taken for each one of the flexural–torsional
displacements. Due to the size of the resultant tangential matrix,
it is difficult to obtain a simple expression and therefore one is
not presented here.
Fig. 2. Simply supported beam subjected to uniform moment.

7. Applications and numerical results

The purpose of this section is to apply the present theoretical
model in order to study the free vibration behavior of thin-
walled composite beams. In the tables and figures the following
notation is used.

LF: denotes natural frequency values obtained from the
classical or lineal theory, considering initial stresses
and disregarding the initial deformation.

NLF: denotes natural frequency values obtained with this
formulation, taking into account initial displacements.

On the other hand, the influence of shear deformation
is analyzed for different laminate stacking sequence. In the
following numerical results, the shear effect on the thickness
γ

(0)
xn has been neglected because its consideration conduces

to inaccurate results for thin-walled sections, as explained by
Piovan and Cortı́nez [8]. They showed that the inclusion of the
in-thickness shear deformation effect erroneously increases the
rigidity instead of flexibilizing the beam behavior.

7.1. Simply supported I-beam subjected to uniform moments

This example corresponds to a simply supported I-beam
subjected to a uniform bending moment Mo applied about its
major axis, as shown in Fig. 2. The geometrical properties are
h = 0.6 m, b = 0.6 m, e = 0.03 m (Fig. 3). The analyzed
material is graphite–epoxy (AS4/3501) whose properties are
E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa, G13 =

4.14 GPa, G23 = 3.45 GPa, ν12 = 0.3, ν13 = 0.3, ν23 = 0.5,
ρ = 1389 kg/m3.

The variation of the fundamental frequencies (Hz) as a
function of the load parameter λ is shown in Figs. 4–
6, for a sequence of lamination {0/0/0/0}, {0/90/90/0} and
{45/−45/−45/45}, respectively. The moment load M0 = λMcr



S.P. Machado, V.H. Cortı́nez / Engineering Structures 29 (2007) 372–382 377
Table 1
Parameters in Eq. (24) and in Box II

Simply supported beam C1 C2 β δ

(a) End moments 1 0 0.5 0
(b) Uniformly distributed load (Mcr = qz L2/8) 1.141 0.459 0.033 0.214
(c) Concentrated force (Mcr = P L/4) 1.423 0.554 0.076 0.083
Fig. 3. Analyzed cross-section shape.

Fig. 4. Natural frequencies of beams subjected to uniform bending, lamination
{0/0/0/0}.

Fig. 5. Natural frequencies of beams subjected to uniform bending, lamination
{0/90/90/0}.
Fig. 6. Natural frequencies of beams subjected to uniform bending, lamination
{45/−45/−45/ 45}.

is scaled with the value of the critical buckling load obtained by
means of the formula developed by the authors in [12].

Mcr = C1α Ê I z
π2

L2

−C2ezα

+

√√√√√ ĜSwĜ J + ÊCw

(
ĜSw + Ĝ J

)
π2

L2

Ê I z
π2

L2

(
ĜSw + ÊCw

π2

L2

) + (C2ezα)2


(24)

where C1,C2, β and δ are approximate constants presented in
Table 1, and α is defined in Box II.

The frequency values of the present formulation (NLF)
and those obtained by disregarding the initial deflection (LF-
classical Theory) are compared, analyzing in addition the
influence of the shear deformation effect.

From the figures, it is possible appreciate that the effect of
the bending moment is to decrease the fundamental frequency
with respect to the unloaded case. The frequencies calculated
from the linear analysis (LF) are smaller compared with those
calculated from the non-linear model (NLF).

For example, for a load parameter λ = 0.5 and lamination
{0/0/0/0}, the fundamental frequencies are:

• Frequency = 41.96 Hz, according to the present analysis
(NLF).

• Frequency = 36.79 Hz, according to the classical analysis
(LF).

The difference between both analyses can reach a percentage
of about 12% and the effect of initial displacements becomes
more significant as the load parameter λ increases. We observe
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α =
1√(

1 −
Ê I z

Ê I y

)(
1 − β Ĝ J

Ê I y
− β ÊCw ĜSwπ2

Ê I y(ĜSw L2+ÊCwπ2)

)
− δ

Ê I z
ĜSy

π2

L2

[
1 −

ĜSy

ĜSz

(
0.71 −

ĜSy

ĜSz

0.29
)]

Box II.
Fig. 7. First flexural mode (a); y flexural–torsional mode (b).

that the effect of the initial deflections is important for all the
sequences of lamination analyzed.

On the other hand, the shear deformation effect is significant
for beams with unidirectional fibers and insignificant for
the sequence of lamination {45/−45/−45/45}. For this last
lamination the curves with and without shear deformation
coincide for both NLF and LF analyses. The shear deformation
may significantly reduce the natural frequency value, for
example, for a load parameter λ = 0.5 and lamination
{0/0/0/0}:

• Frequency = 41.96 Hz, according to NLF with shear
deformation

• Frequency = 48.84 Hz, according to NLF without shear
deformation.

This discrepancy can reach a percentage of about 16%,
taking as reference the frequency value with shear deformation.
Moreover, this effect keeps approximately constant as the load
parameter is varied.

It is important to mention that in the case of λ = 0, the
natural frequency corresponds to the first flexural mode (see
Fig. 7(©a )). Then, for any value of the load, the frequency
corresponds to a flexural–torsional mode with initial deflection
in the vertical direction (see Fig. 7(©b )). The coupling between
both modes is caused exclusively by the effect of the lateral load
M0.

It is interesting to observe that for a certain load parameter
value, the natural frequency obtained with the present
formulation coincides with that from the linear theory without
shear deformation. This effect is observed for the lamination
sequence {0/0/0/0} and {0/90/90/0}, and it is only presented for
a certain load value, λ ≈ 0.65 and λ ≈ 0.38, respectively. Then,
as we move away from this load value, the discrepancy among
both theories becomes more noticeable.
7.2. Simply supported I-beam subjected to distributed load

In this example a simply supported I-beam under distributed
load is considered for three load positions, as shown in Fig. 8.
The load can be applied to the top flange (case ©a ), at the shear
center (case ©b ), and to the bottom flange (case ©c ). Attention is
focused on the importance of the load height parameter effect
on the dynamic behavior of the beam, considering the effect
of the initial deformation. The geometrical properties and the
analyzed material are the same as in the previous example.

Figs. 9–11 show comparative results between the non-linear
(NLF) and linear (LF) dynamic analysis (considering shear
effect) in function on the load parameter, for a sequence
of lamination {0/0/0/0}, {0/90/90/0} and {45/−45/−45/45},
respectively. The load qz = λqcr is scaled with the value of the
critical buckling load corresponding to the case ©b , by means
of expression (24) and Box II. As in the previous case, the
effect of the distributed load causes a reduction in the values of
natural frequencies in relation to the unloaded state. Moreover,
this decrease is more pronounced when the load is on the top
flange, case ©a .

The load height parameter effect is smaller in the case
of stacking sequence {45/−45/−45/45} in comparison with
the other laminations. On the other hand, it is observed that
the inclusion of initial deformation considerably increases the
values of natural frequencies in comparison with the classical
theory, as the load parameter increases. This effect is higher
when the loads are on the bottom flange (case ©c ) and for a
lamination sequence {0/0/0/0}. When the load is applied in the
shear center, this influence is similar to the one obtained in
the previous example. Finally, in the three analyzed lamination
sequences, it can be observed that when the load is on the top
flange of the beam, the differences between both theories (NLF
and LF) are smaller than in the other two load cases. For this
I-beam the shear deformation effect continues to be important
and has a similar behavior as in the previous example. For this
reason, this effect is not discussed for this load condition.

7.3. Cantilever beam subjected to end force

The example considered is a cantilever I-beam subjected
to an end force applied in the shear center; see Fig. 12. The
analyzed material is the same as in the previous example and
the geometrical properties of the beam are defined in Table 2.
In this example the influence of the initial displacements
on the dynamic behavior of a cantilever beam is studied,
considering three different cross-sections and beams lengths. In
Table 1, the natural frequencies values obtained with the present
formulation (NLF) and those obtained from the classic theory
(LF) are shown.
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Fig. 8. Different load heights.
Fig. 9. Natural frequencies versus load parameter, lamination {0/0/0/0}.

Fig. 10. Natural frequencies versus load parameter, lamination {0/90/90/0}.

Fig. 11. Natural frequencies versus load parameter, lamination {45/−45/−45/45}.
Fig. 12. Cantilever beam subjected to end force.

In all the cases, the concentrated load is scaled with the
corresponding buckling load obtained as explained in [12],
P = λPcr . The percentage difference between both theories
is determined by taking as reference the values calculated with
the present formulation (NLF).

The effect of the initial deformation, due to geometric
non-linearity, is highly dependent on the relation between
the bending stiffnesses Ê I z and Ê I y . It is observed that the
influence of the initial displacement is insignificant as the
geometric relation Ê I z/Ê I y decreases. For example, observing
the first and second cross-section analyzed, the effect of the
initial displacement is smaller when the flexural stiffness Ê I y
increases, while Ê I z remains constant. Besides, this last effect
is much smaller for the lamination sequence {0/90/90/0} in
comparison with {0/0/0/0}, for the same load state.

7.4. Fixed-end beam subjected to concentrated force

A fixed-end I-beam loaded by a transverse force at the
middle of the span is considered for three load positions, as
shown in Fig. 13. The geometrical properties are L = 12 m,
h = 0.6 m, b = 0.6 m and e = 0.03 m. The analyzed
material is glass–epoxy (S2) whose properties are E1 = 48.3
GPa, E2 = 19.8 GPa, G12 = 8.96 GPa, G13 = 8.96 GPa,
G23 = 6.19 GPa, ν12 = 0.27, ν13 = 0.27, ν23 = 0.6,
ρ = 1389 kg/m3. The purpose of this section is to perform a
comparison of the results obtained with the present formulation
with those obtained from a shell finite elements model using
Abaqus [18]. The beam is idealized by 240 four-node shell
elements (S4). The analysis *STATIC is used in Abaqus as
the first step of calculus, together with the option NLGEOM to
consider the non-linear geometric effect in the pre-loaded state.
Then, in the second step, the procedure *Frequency is used for
the dynamic analysis of the structure.
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Table 2
Natural frequencies in Hz of a cantilever beam with the load applied in the shear center

Section Lamination Analysis L = 4 m L = 6 m L = 12 m
λ = 0.6 λ = 0.8 λ = 0.9

{0/0/0/0}

NLF 28.04 10.44 2.77
LF 14.84 6.05 2.20
Difference 47% 42% 21%

{0/90/90/0}

NLF 24.14 9.60 2.51
LF 22.09 8.41 2.35
Difference 9% 12% 6%

Ê I z/Ê I y = 0.29

{0/0/0/0}

NLF 30.45 11.04 2.61
LF 25.20 7.51 2.26
Difference 17% 32% 13%

{0/90/90/0}

NLF 24.59 8.49 1.77
LF 23.34 7.91 1.74
Difference 5% 7% 2%

Ê I z/Ê I y = 0.12

{0/0/0/0}

NLF 17.67 6.30 1.41
LF 17.42 6.21 1.39
Difference 1% 1% 1%

{0/90/90/0}

NLF 13.13 4.46 0.84
LF 12.97 4.38 0.83
Difference 1% 1% 1%

Ê I z/Ê I y = 0.06

Table 3
Comparison of natural frequencies in Hz, fixed-end beam

Lamination Load condition NLF LF Abaqus

{0/0/0/0}

λ = 0 20.17 20.17 19.95

λ = 0.5
case ©a 15.09 14.74 14.96
case ©b 15.18 14.66 15.83
case ©c 18.41 14.41 18.91

λ = 0 17.10 17.10 16.96

{0/90/90/0}

case ©a 12.99 12.72 12.97
λ = 0.5 case ©b 12.98 12.58 12.81

case ©c 13.02 12.31 14.33

λ = 0 14.73 14.73 14.70

45/−45/−45/45 λ = 0.5
case ©a 11.76 11.57 11.93
case ©b 11.47 11.20 11.45
case ©c 11.26 10.75 12.71
Fig. 13. Fixed-end beam subjected to different load heights.
The concentrated load is scaled with the corresponding
buckling load obtained as explained in [12], P = λPcr . The
natural frequency values in Hz are shown in Table 3, for
different load conditions and stacking sequences. The values
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Fig. 14. Flexural mode of a fixed-end unloaded beam, {0/0/0/0}.
Fig. 15. Flexural–torsional mode of a fixed-end beam subjected to initial load applied in the top flange, {0/0/0/0}.
obtained with the present formulation (NLF) are compared
with those obtained with (LF) and those calculated with the
shell finite elements model (Abaqus). In Figs. 14 and 15, the
deformed configuration of the beam is shown, obtained with
the program of finite elements (Abaqus) and considering a
lamination {0/0/0/0}. This corresponds to the flexural unloaded
mode (Fig. 14) and to the flexural–torsional mode with initial
load applied in the top flange of the beam (Fig. 15).

The frequency values, corresponding to the pre-load state,
obtained with the classic theory (LF) are always smaller in
comparison with those that consider initial deflection (NLF and
Abaqus). Also, the influence of the initial displacements is more
important when the load is applied on the bottom flange of
the beam and when the lamination sequence {0/0/0/0} is used.
On the other hand, it is seen that the present solutions (NLF)
are, in general, in good agreement with those obtained with
Abaqus. When the loads are on the bottom flange of the beam,
the values corresponding to the NLF model present a difference
from those obtained with Abaqus. This can be due partly to
the fact that the dynamic response of the beam is more rigid
than in the other load conditions and the finite elements solution
presents some local modes associated to the global mode.

8. Conclusions

A one-dimensional model was developed for vibration
analysis of composite thin-walled beams subjected to an initial
state of stresses and deformations. The theory is formulated in
the context of large displacements and rotations, through the
adoption of a shear deformable displacement field (accounting
for bending and warping shear) considering moderate bending
rotations and large twist. The theory accounts for either open or
closed bisymmetric cross-sections.

In particular, the influence of the initial deformation was
studied on the dynamic response of a bisymmetric I-beam
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subjected to end moments, concentrated forces, or uniformly
distributed loads.

From the numerical examples studied, the natural frequen-
cies obtained with the present analytical formulation (consid-
ering initial displacement effect) are in good agreement with
those from finite element solutions. Based on the numerical re-
sults, the following conclusions are made:

• The vibration frequency values decrease as the initial load
increases. Also, this decrease depends on the location of the
load; for example, it is more pronounced when the load is
applied in the top flange of the beam.

• Classical analysis of vibration may lead to inaccurate
predictions due to the non-linear geometric effect increasing
the frequency values. Moreover, the influence of this effect
is higher as the load increases and consequently the initial
displacements, corresponding to the load plane.

• The influence of the initial displacements on the dynamic
behavior of the structure depends on the load position. In
most of the cases, this effect is more important when the
load is applied on the bottom flange of the beam.

• The lamination sequence also plays an important role on
the dynamic behavior of the beam. The lamination sequence
{0/0/0/0} presents a more stiff behavior than the other
laminations.

• The relationship among the bending stiffnesses has great
influence on the non-linear geometric effect. In the case of
small values of the relation Ê I z/Ê I y the influence of the
initial deformation becomes insignificant, while for bigger
values the influence becomes more important.

• For some laminations the shear deformation effect
presents a great influence on the dynamic behavior of
composite beams. The formulation without shear flexibility
overestimates the values of natural frequency.
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