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Abstract

The dynamic stability of thin-walled composite beams, considering shear deformation, subjected to axial external force,

has been investigated in this paper. The analysis is based on a small strain and moderate rotation theory, which is

formulated through the adoption of a second-order displacement field. The Galerkin’s method is used in order to discretize

the governing equation and the Bolotin’s method is applied to determine the regions of dynamic instability of a simply

supported beam. The regions of instability are evaluated, and are expressed in non-dimensional terms. The influence of the

longitudinal vibration on the unstable regions has been investigated. The numerical results show that this effect has large

influence when the forcing frequency approaches to the natural longitudinal frequency, obtaining parametric instability

regions substantially wider. Besides, the effect of shear flexibility is also analyzed for different laminate stacking sequence,

considering open and closed cross-section beams.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled beam structures made of advanced anisotropic composite materials are increasingly found in
the design of the aircraft wing, helicopter blade, axles of vehicles and so on, due to their outstanding
engineering properties, such as high strength/stiffness to weight ratios and favorable fatigue characteristics.
The interesting possibilities provided by fiber reinforced composite materials can be used to enhance the
response characteristics of such structures that operate in complex environmental conditions. Besides, the
composite thin-walled beam members are widely used in aerospace, automobile and civil architecture
industries. The new generation of these constructions should be designed to work in a safe way under complex
environmental conditions, and to experience higher performance than the conventional systems. The theory of
dynamic stability represents a specific aspect of the stability of the motion, which is related the theory of
vibrations and stability of mechanical systems.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The dynamic instability of elastic structural elements, such as rods, beams and columns, induced by
parametric excitation has been investigated by many researchers. Extensive bibliographies on this subject were
given by Evan-Iwanowski [1] and Nayfeh and Mook [2]. Bolotin [3] provided a general introduction to analyze
the dynamic stability problems of various structural elements.

The Mathieu–Hill equation [1,3] is obtained while resolving the parametric vibration of a beam subjected to
a compressive dynamic force. Nayfeh and Mook [2], used the perturbation method to solve Mathieu–Hill’s
equation, in order to analyze the behavior of an elastic system under parametric excitation. They established a
criterion to yield the transition curves by determining the characteristic exponents in the solution.

In relation to thin-walled beams, Gol’denblat [4] investigated the problem of the stability of a compressed
thin-walled rod symmetrical about one axis. The problem was reduced to a system of two differential
equations. Tso [5] studied the problem of longitudinal–torsional stability, while Mettler [6] and Ghobarah and
Tso [7] studied the problem of bending–torsional stability of thin-walled beams. Bolotin [3,8] and Popelar
[9,10] discussed the dynamic stability of thin-walled beams; typical I and H sections were considered. Hasan
and Barr [11] evaluated regions of instability of thin-walled beams of equal angle-section, considering axial
and transverse excitation in a cantilever beam. Although a number of authors have investigated the problem
of dynamic stability of thin-walled beams, the effects of shear deformation has been assumed to be small and
neglected in the analysis.

In spite of the practical interest and future potential of the thin-walled composite beam structures,
particularly in the context of aerospace and mechanical applications, the main body of the available
investigations has devoted to study the dynamic response behavior of composite beams of solid sections
[12,13]. Therefore, it seems that, to the best knowledge of the authors, there is no work investigating the
problem of dynamic stability of composite thin-walled beams subjected to axial excitation.

On the other hand, the contribution to the axial displacement from second-order effects gives rise to a
longitudinal inertia force, which must be taken into account during the derivation of the equations of motion.
Longitudinal vibrations can influence the regions of dynamic stability [3,14]. In the present paper, the
contribution of this effect on the dynamic behavior is included.

The analysis is based on a second-order geometrically nonlinear shear deformable beam theory, which is a
simplified version of the theory recently developed by the authors [15,16], that is valid for symmetric balanced
and especially orthotropic laminates [17,18]. The model is based on a small strain and moderate rotation
theory, which is formulated through the adoption of a second-order displacement field. The adoption of a
first-order approximation in the displacement field may lead to incorrect expressions for the equations of
motion and to inaccurate predictions of the dynamic behavior of thin-walled beams [19].

The Galerkin’s method is used in order to discretize the governing equation and the Bolotin’s method is
applied to determine the regions of dynamic instability of a simply supported beam. The regions of instability
are evaluated, and are expressed in non-dimensional terms.

The purpose of the present investigation is the determination of the regions of dynamic instability of simply
supported thin-walled composite beam subjected to an axial excitation and considering open and closed cross-
section. The influence of shear deformation, natural longitudinal vibration and load static parameter on the
unstable regions is analyzed, considering different laminate stacking sequences.
2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-section is considered (Fig. 1). The points of
the structural member are referred to a Cartesian coordinate system x; ȳ; z̄ð Þ, where the x-axis is parallel to the
longitudinal axis of the beam while ȳ and z̄ are the principal axes of the cross-section. The axes y and z are
parallel to the principal ones but having their origin at the shear center (SR) (defined according to Vlasov’s
theory of isotropic beams). The coordinates corresponding to points lying on the middle line are denoted as Y

and Z (or Ȳ and Z̄). In addition, a circumferential coordinate s and a normal coordinate n are introduced on
the middle contour of the cross-section:

ȳðs; nÞ ¼ Ȳ ðsÞ � n
dZ

ds
; z̄ðs; nÞ ¼ Z̄ðsÞ þ n

dY

ds
, (1)
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Fig. 1. Coordinate system of the cross-section and notation for displacement measures.
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yðs; nÞ ¼ Y ðsÞ � n
dZ

ds
; zðs; nÞ ¼ ZðsÞ þ n

dY

ds
. (2)

On the other hand, y0 and z0 are the centroidal coordinates measured with respect to the SR:

ȳðs; nÞ ¼ yðs; nÞ � y0; z̄ðs; nÞ ¼ zðs; nÞ � z0. (3)

The present structural model is based on the following assumptions [20]:
(1)
 The cross-section contour is rigid in its own plane.

(2)
 The warping distribution is assumed to be given by the Saint-Venant function for isotropic beams.

(3)
 Flexural rotations (about the ȳ and z̄ axes) and twist f of the cross-section are assumed to be moderate.

(4)
 Shell force and moment resultants corresponding to the circumferential stress sss and the force resultant

corresponding to gns are neglected.

(5)
 The curvature at any point of the shell is neglected.

(6)
 Twisting linear curvature of the shell is expressed according to the classical plate theory.

(7)
 The laminate stacking sequence is assumed to be symmetric and balanced, or especially orthotropic [17].
One the first paper on geometrically nonlinear theory was presented by Bhaskar and Librescu [21] for thin-
walled composite beams. The nonlinear model is based on the hypothesis that the flexural displacement are
finite and the twist of the cross-section can be arbitrary large.

According to the hypotheses of the present structural model, the displacement field proposed Eq. (4) is
based on the principle of semitangential rotation defined by Argyris [22] to avoid the difficulty due to the
noncommutative nature of rotations:

ux ¼ uo � yzȳ� yyz̄þ fyzz� fyyyþ o y� 1
2
y0yyz � yyy

0
z

� �h i
,

uy ¼ v� fzþ 1
2
�f2y� y2z ȳ� yzyyz̄
� �

,

uz ¼ wþ fyþ 1
2
�f2z� y2yz̄� yzyyȳ
� �

. ð4Þ
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This expression is a second-order approximation of the displacement field proposed by the authors in
Refs. [15,16]. On the other hand, neglecting the shear flexibility (yz ¼ v0, yy ¼ w0 and y ¼ f0), the present
displacement field coincides with that developed by Fraternali and Feo [23], who formulated a moderate
rotation theory of thin-walled composite beams generalizing the infinitesimal theory of sectorial areas by
Vlasov. Besides, a similar displacement field obtained by means of a second-order rotation matrix was used by
Pi and Bradford [19] to show the effects of approximations in analysis of open thin-walled beams.

In the above expressions, f, yy and yz are measures of the rotations about the SC axis, ȳ and z̄ axes,
respectively; y represents the warping variable of the cross-section. Furthermore, the superscript ‘prime’
denotes derivation with respect to the variable x. The warping function o of the thin-walled cross-section may
be defined as

oðs; nÞ ¼ opðsÞ þ osðs; nÞ, (5)

where op and os are the contour warping function and the thickness warping function, respectively. They are
defined in the form [24,25]

opðsÞ ¼
1

S

Z S

0

Z s

s0

rðsÞ � cðsÞ½ �ds
� �

ds

� 	
�

Z s

s0

rðsÞ � cðsÞ½ �ds; osðs; nÞ ¼ �nlðsÞ, (6a,b)

where s is a dummy variable, and

rðsÞ ¼ �ZðsÞ
dY

ds
þ Y ðsÞ

dZ

ds
, (7)

lðsÞ ¼ Y ðsÞ
dY

ds
þ ZðsÞ

dZ

ds
, (8)

where r(s) represents the perpendicular distance from the SC to the tangent at any point of the mid-surface
contour, and l(s) represents the perpendicular distance from the SC to the normal at any point of the mid-
surface contour, as shown in Fig. 1.

In Eq. (6), C is the shear strain at the middle line, obtained by means of the Saint-Venant theory of pure
torsion for isotropic beams, and normalized with respect to df=dx [25]. For the case of open sections C ¼ 0.

3. The strain field

The displacements with respect to the curvilinear system (x, s, n) are obtained by means of the following
expressions:

Ū ¼ uxðx; s; nÞ, (9)

V̄ ¼ uyðx; s; nÞ
dY

ds
þ uzðx; s; nÞ

dZ

ds
, (10)

W̄ ¼ �uyðx; s; nÞ
dZ

ds
þ uzðx; s; nÞ

dY

ds
. (11)

The three non-zero components exx, exs, exn of the Green’s strain tensor are given by

�xx ¼
qU

qx
þ

1

2

qU

qx

� �2

þ
qV

qx

� �2

þ
qW

qx

� �2
" #

, (12)

�xs ¼
1

2

qU

qs
þ

qV

qx
þ

qU

qx

qU

qs
þ

qV

qx

qV

qs
þ

qW

qx

qW

qs

� 	
, (13)

�xn ¼
1

2

qU

qn
þ

qW

qx
þ

qU

qx

qU

qn
þ

qV

qx

qV

qn
þ

qW

qx

qW

qn

� 	
. (14)



ARTICLE IN PRESS
S.P. Machado et al. / Journal of Sound and Vibration 305 (2007) 563–581 567
Substituting Eq. (4) into Eqs. (9)–(11) and then into Eqs. (12)–(14), employing the relations expressed in
Eqs. (1)–(3) and Eqs. (5)–(8), after simplifying some higher-order terms, the components of the strain tensor
are expressed in the following form:

�xx ¼ �
ð0Þ
xx þ nkð1Þxx ; gxs ¼ 2�xs ¼ gð0Þxs þ nkð1Þxs ; gxn ¼ 2�xn ¼ gð0Þxn , (15)

where

�ð0Þxx ¼ u0o þ
1
2

v0
2
þ w0

2
� �

� y0y
0
yfþ z0y

0
zfþ Y �y0z � y0yf

� �
þ Z �y0y þ y0zf

� �
þ op y0 � 1

2
yzy
00
y � yyy

00
z

� �h i
þ 1

2
f02 Y 2 þ Z2
� �

, ð16Þ

kð1Þxx ¼ �
dZ

ds
�y0z � y0yf
� �

þ
dY

ds
�y0y þ y0zf
� �

� l y0 �
1

2
yzy
00
y � yyy

00
z

� �� 	
� rf02, (17)

gð0Þxs ¼
dY

ds
v0 � yz � z0

1

2
yzy
0
y � yyy

0
z

� �� 	
þ

dZ

ds
w0 � yy þ y0

1

2
yzy
0
y � yyy

0
z

� �� 	
þ r� cð Þ f0 � y

� �
þ c f0 �

1

2
yzy
0
y � yyy

0
z

� �� 	
, ð18Þ

kð1Þxs ¼ �2 f0 � 1
2
yzy
0
y � yyy

0
z

� �h i
, (19)

gð0Þxn ¼ �
dZ

ds
v0 � yz � z0

1

2
yzy
0
y � yyy

0
z

� �� 	
þ

dY

ds
w0 � yy þ y0

1

2
yzy
0
y � yyy

0
z

� �� 	
þ l f0 � y
� �

. (20)

4. Variational formulation

Taking into account the adopted assumptions, the principle of virtual work for a composite shell may be
expressed in the form [20,26]ZZ

Nxxd�ð0Þxx þMxxdkð1Þxx þNxsdgð0Þxs þMxsdkð1Þxs þNxndgð0Þxn

� �
dsdx

�

ZZZ
r €uxdux þ €uyduy þ €uzduz

� �
dsdndx

�

ZZ
ðq̄xdūx þ q̄ydūy þ q̄zdūzÞdsdx�

ZZ
ðp̄xdux þ p̄yduy þ p̄zduzÞ





x¼0

dsdn

�

ZZ
ðp̄xdux þ p̄yduy þ p̄zduzÞ





x¼L

dsdn�

ZZZ
ðf̄ xdux þ f̄ yduy þ f̄ zduzÞdsdndx ¼ 0, ð21Þ

where Nxx, Nxs, Mxx, Mxs and Nxn are the shell stress resultants defined according to the following expressions:

Nxx ¼

Z e=2

�e=2
sxx dn; Mxx ¼

Z e=2

�e=2
sxxnð Þdn,

Nxs ¼

Z e=2

�e=2
sxs dn; Mxs ¼

Z e=2

�e=2
sxsnð Þdn; Nxn ¼

Z e=2

�e=2
sxn dn. ð22Þ

The beam is subjected to wall surface tractions q̄x, q̄y and q̄z specified per unit area of the undeformed
middle surface and acting along the x, y and z directions, respectively. Similarly, p̄x, p̄y and p̄z are the end
tractions per unit area of the undeformed cross-section specified at x ¼ 0 and L, where L is the undeformed
length of the beam. Besides f̄ x, f̄ y and f̄ z are the body forces per unit of volume. Finally, denoting ūx, ūy and ūz

as displacements at the middle line.



ARTICLE IN PRESS
S.P. Machado et al. / Journal of Sound and Vibration 305 (2007) 563–581568
5. Constitutive equations

The constitutive equations of symmetrically balanced laminates may be expressed in the terms of shell stress
resultants in the following form [17]:

Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Ā11 0 0 0 0

0 Ā66 0 0 0

0 0 Ā
ðHÞ

55 0 0

0 0 0 D̄11 0

0 0 0 0 D̄66

26666664

37777775
�ð0Þxx

gð0Þxs

gð0Þxn

kð1Þxx

kð1Þxs

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
(23)

with

Ā11 ¼ A11 �
A2

12

A22
; Ā66 ¼ A66 �

A2
26

A22
; Ā

ðHÞ

55 ¼ A
ðHÞ
55 �

A
ðHÞ
45

� �2
A
ðHÞ
44

,

D̄11 ¼ D11 �
D2

12

D22
; D̄66 ¼ D66 �

D2
26

D22
, ð24Þ

where Aij , Dij and A
ðHÞ
ij are plate stiffness coefficients defined according to the lamination theory presented by

Barbero [17]. The coefficient D̄16 has been neglected because of its low value for the considered laminate
stacking sequence [20].
6. Principle of virtual work for thin-walled beams

Substituting Eqs. (16)–(20) into Eq. (21) and integrating with respect to s, one obtains the one-dimensional
(1-D) expression for the virtual work equation given by

LM þ LK þ LP ¼ 0, (25)

where LM, Lk and Lp represent the virtual work contributions due to the inertial, internal and external forces,
respectively. Their expressions are given below:

LM ¼

Z L

0

r A
q2u0

qt2
du0 þ Iz

q2yz

qt2
dyz þ Iy

q2yy

qt2
dyy þ Cw

q2y
qt2

dyþ A
q2

qt2
v� z0fð Þdv

"

þA
q2

qt2
wþ y0f
� �

dwþ
q2

qt2
�Az0vþ Ay0wþ Isf
� �

df

#
dx, ð26Þ

where A is the cross-sectional area, Iz and Iy the principal moments of inertia of the cross-section, Cw the
warping constant, Is the polar moment with respect to the SR and r the mean density of the laminate:

LK ¼

Z L

0

du00N þ dv0 Qy þ v0N
� �

þ dw0 Qz þ w0N
� �n

þ dyz �Qy þ
1

2
Qzy0 �Qyz0

� �
y0y �

1

2
Tsvy

0
y �

1

2
By00y

� 	
� dy00y

1

2
Byz

þ dy0z �Mz þ My þNz0
� �

fþ
1

2
Qyz0 �Qzy0

� �
yy þ

1

2
Tsvyy

� 	
þ dyy �Qz0

þ
1

2
Qyz0 �Qzy0

� �
y0z þ

1

2
Tsvy

0
z þ

1

2
By00z

� 	
þ dy00z

1

2
Byy
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þ dy0y �My � Mz þNy0

� �
fþ

1

2
Qzy0 �Qyz0

� �
yz �

1

2
Tsvyz

� 	
þdf My þNz0

� �
y0z � Mz þNy0

� �
y0y

h i
þ df0 Tw þ Tsv þ B1f

0
� �

þ dy0B� dyTw

o
dx, ð27Þ

LP ¼

Z L

0

�qxdu0 � qydv� qzdwþmzdyz þmydyy � bdy�mxdf
� �

dx

þ �N̄du0 � B̄dy� Q̄ydv� Q̄zdwþ dyz M̄z � M̄y þ N̄z0
� �

f
� �



þdyy M̄y þ M̄z þ N̄y0

� �
f

� �
þ df �M̄x � M̄y þ N̄z0

� �
yz þ M̄z þ N̄y0

� �
yy

� �

x¼L

x¼0
. ð28Þ

7. Beam forces

In the above expressions, the following 1-D beam forces, in terms of the shell forces, have been defined:

N ¼

Z
Nxx ds; MY ¼

Z
NxxZ̄ þMxx

dY

ds

� �
ds; MZ ¼

Z
NxxȲ �Mxx

dZ

ds

� �
ds,

QZ ¼

Z
Nxs

dZ

ds
þNxn

dY

ds

� �
ds; QY ¼

Z
Nxs

dY

ds
�Nxn

dZ

ds

� �
ds,

Tw ¼

Z
Nxs r� cð Þ þNxnlð Þds; B ¼

Z
Nxxop �Mxxl
� �

ds,

T sv ¼

Z
Nxsc� 2Mxsð Þds; B1 ¼

Z
Nxx Y 2 þ Z2

� �
� 2Mxxr

� �
ds, ð29Þ

where the integration is carried out over the entire length of the mid-line contour. N corresponds to the axial
force, Qy and Qz to shear forces, My and Mz to bending moments about y- and z-axis, respectively, B to the
bimoment, Tw to the flexural–torsional moment, Tsv to the Saint-Venant torsional moment and B1 to a high-
order stress resultant, which contributes to the torque.

The relationships among the generalized beam forces and the generalized strains characterizing the behavior
of the beam are obtained by substituting Eqs. (16)–(20) into Eq. (23), and the results into Eq. (29). This
constitutive law can be expressed in terms of a beam stiffness matrix [D] as defined in Appendix A.
8. Equations of motion

Taking variations with respect to the generalized displacement u0, yz, v, yy, w, y, f as indicated in Eqs. (26),
(27) and (28), one obtains the equations of motion. In the case of a beam subjected to an axial excitation, the
equations of motion can be reduced considering only the interaction of the longitudinal motion on the other
motions. Therefore, in this case we obtain

�N 0 þ rA
q2u0

qt2
¼ 0, (30a)

M 0
z �Qy�Nz0f

0
þrIz

q2yz

qt2
¼ 0, (30b)

�Q0y �Nv00 þ rA
q2v

qt2
� z0

q2f
qt2

� �
¼ 0, (30c)

M 0
y �QzþNy0f

0
þrIy

q2yy

qt2
¼ 0, (30d)
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�Q0z �Nw00 þ rA
q2w
qt2
þ y0

q2f
qt2

� �
¼ 0, (30e)

�B0 � Tw þ rCw

q2y
qt2
¼ 0, (30f)

�T 0w � T 0sv þN z0y
0
z � y0y

0
y �

I s

A
f00

� �
þrA y0

q2w

qt2
� z0

q2v

qt2
þ

I s

A

q2f
qt2

� �
¼ 0 (30g)

subjected to the following boundary conditions (at x ¼ 0, L)

N � N̄ ¼ 0 or du0 ¼ 0, (31a)

�Mz þNz0f�N̄z0f ¼ 0 or dyz ¼ 0, (31b)

Qy þ v0N ¼ 0 or dv ¼ 0, (31c)

�My�Ny0fþN̄y0f ¼ 0 or dyy ¼ 0, (31d)

Qz þ w0N ¼ 0 or dw ¼ 0, (31e)

B ¼ 0 or dy ¼ 0, (31f)

Tw þ T sv � N̄ z0yz � y0yy �
Is

A
f0

� �
¼ 0 or df ¼ 0. (31g)

In some previous papers, the displacement field equation (4) is simplified significantly, by introducing the
first-order approximations [20]. However, considering this approximation, the components of the generalized
displacements are linear functions of the displacements u0, v, w, yz, yz, f and y, so that some important terms
in the nonlinear strains equations (16)–(20) may be lost. These may lead to incorrect expressions for the
movements equations (30) and inaccurate predictions of the dynamic behavior of thin-walled beams. The
terms underlined in Eqs. (30b), (30d) and (30g) are those that disappear in a first-order formulation [20], and
appear in a different way in Eqs. (30c), (30e) and (30g).
9. Dynamic stability

In this section, the dynamic stability of a simply supported thin-walled composite beam is analyzed
considering an axial excitation in the form

PðtÞ ¼ Ps þ Pd cos $t, (32)

where $ is the excitation frequency, Ps ¼ aPcr, Pd ¼ bPcr, a is the static load factor, b is the dynamic load
factor and Pcr is the critical load of the beam.

When the beam is excited in the axial (longitudinal) direction, and the interaction of this movement on the
other motions is to be studied, the coupling of these various motions will depend on the symmetry of the cross-
section analyzed.

The differential expression equation (30a) corresponding to the longitudinal movement is generally solved
disregarding the longitudinal inertia forces, in the following form:

N ¼ �P tð Þ. (33)

This procedure is followed in this section. However, in some cases the longitudinal inertia forces can
substantially influence the dynamic stability of a beam. This effect is explained in Section 10.
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The differential equations (30b)–(30g) are discretized by means of the following functions:

v ¼ v0ðtÞ sin
kpx

L

� �
; yz ¼ yz0ðtÞ cos

kpx

L

� �
,

w ¼ w0ðtÞ sin
kpx

L

� �
; yy ¼ yy0 ðtÞ cos

kpx

L

� �
,

f ¼ f0ðtÞ sin
kpx

L

� �
; y ¼ y0ðtÞ cos

kpx

L

� �
ðk ¼ 1; 2; 3; . . .Þ, ð34Þ

where v0(t), yz0(t), w0(t), yy0(t), f0(t) and y0(t) are the associated displacement amplitudes which are time
dependent.

The formal substitution of Eqs. (33) and (34) into Eqs. (30b)–(30g) leads to a system of ordinary differential
equations, which can be expressed in a compact form by using matrix notations as

MU
::
þ K� PðtÞS½ �U ¼ 0, (35)

where Uf gt ¼ yz0 tð Þ; v0 tð Þ; yy0 tð Þ;w0 tð Þ; y0 tð Þ;f0 tð Þ
 �

,

M ¼

rIz 0 0 0 0 0

rA 0 0 0 �z0rA

rIy 0 0 0

rA 0 y0rA

SYM rCw 0

rA

26666666664

37777777775
; S ¼

0 0 0 0 0 �z0lk

l2k 0 0 0 0

0 0 0 y0lk

l2k 0 0

SYM 0 0
Is

A
l2k

26666666664

37777777775
, (36a,b)

K ¼

cEIzl
2
k þ

cGSyy �cGSyylk 0 0 0 0cGSyyl
2
k 0 0 0 0cEIyl

2
k þ

cGSzz �cGSzzlk
cGSwz �cGSwzlkcGSzzl

2
k �cGSwzlk

cGSwzl
2
k

SYM dECwl
2
k þ

cGSww �cGSwwlkcGJ þ cGSww

� �
l2k

26666666666664

37777777777775
, (36c)

where [M] denotes the mass matrix, [K] is the elastic stiffness matrix, [S] is the geometric matrix and
lk ¼ kpx=L.

Then, the problem concerning the determination of frequencies of free vibration of a beam loaded by a
constant longitudinal force, it is expressed:

K � PsS � O2M


 

 ¼ 0, (37)

while the problem of the determination of frequencies of free vibration of an unloaded beam leads to the
following equation:

K �Mo2


 

 ¼ 0 (38)

and the buckling problem can be analyzed from the following equation:

K � PsSj j ¼ 0. (39)
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9.1. Principal parametric resonance

The unstable boundaries for the thin-walled composite beam subjected to an axial periodic load are studied
in this section. In the classification of parametric resonance, if $ is the excitation frequency and Oi the natural
frequency of the ith mode, parametric resonance of ‘‘first kind’’ is said to occur when $/2OE1/r, r ¼ 1,2,y
while parametric resonance of the ‘‘second kind’’ is said to occur when $/(Ok+Oj)E1/r, r ¼ 1,2,y (k 6¼j). In
both cases the situation where r ¼ 1 is generally the only one of practical importance. Usually, the parametric
resonance of the first kind is termed ‘‘parametric resonance’’, whereas the second kind is referred as
‘‘combination resonance’’, because it involves two different frequencies. In this paper the study is only
concentrated in the case of parametric resonance.

Finding the boundaries of the regions of instability reduces to the determination of the conditions under
which the differential equation (35) of the system has periodic solutions with period 2p/$ and 4p/$ [3]. For
the principal region, which is a half-subharmonic, one looks for a solution with a period which is twice the
forcing frequency: i.e., 4p/$.

The condition for the existence of solutions can be expressed in the following infinite determinant form [3]:

K� S Ps �
1
2

Pd

� �
� 1

4
$2M � 1

2
PdS 0 :::

K� PsS�
9
4
$2M � 1

2
PdS :::

SYM K� PsS�
25
4
$2M :::

::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::: :::::::::::::::::::::::::::: :::





















 ¼ 0. (40)

The boundaries of the instability regions lying near $ ¼ 2O can be determined with sufficient accuracy
considering the first leading diagonal term:

K� S Ps �
1
2
Pd

� �
� 1

4
$2M



 

 ¼ 0. (41)

10. Influence of forced and parametrically excited vibrations

In the previously developed theory, the longitudinal force in the beam is equal to the external force acting in
the end of the beam and therefore the longitudinal vibrations are neglected. Such an assumption is valid to a
certain extent when the exciting frequency is small in comparison with the frequency oL of the free
longitudinal vibrations. However, for beams with small slenderness ratio or particular lamination sequence,
the frequency at which a parametric resonance occurs, can be the same order as the natural frequency of the
longitudinal vibrations. To consider this effect is necessary to substitute the constitutive expression
corresponding to the axial force N into Eq. (30a) and solving for the displacement u0:

�cEA
q2u0

qx2
þ rA

q2u0

qt2
¼ 0. (42)

The solution of this equation is easily obtained by considering the boundary condition equation (31a)

u0ðx; tÞ ¼
PsxcEA
þ

Pd sin nx

ncEA cos nL
cos $t, (43)

where

n ¼ $

ffiffiffiffiffiffiffi
rAcEA

s
. (44)

Substituting Eq. (43) into Eqs. (30b)–(30g) and applying the same methodology previously explained,
Eq. (41) can be expressed in the following form:

K� S Ps �
1

2
Pd

tan nL

nL

� �
�

1

4
$2M





 



 ¼ 0. (45)
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Solving Eq. (45) the main regions of instability considering the influence of the longitudinal vibration are
obtained.

11. Applications and numerical results

The purpose of this section is to apply the present theoretical model in order to study the dynamic stability
of simply supported thin-walled composite beams. The influence of longitudinal vibrations and the effect of
shear deformation on the regions of instability are analyzed. In the following numerical results, the shear effect
on the thickness gð0Þxn has been neglected because its consideration conduces to inaccurate results for thin-walled
sections, as explained by Piovan and Cortı́nez [27]. They showed that the inclusion of the in-thickness shear
deformation effect increases erroneously the rigidity instead of flexibilizing the beam behavior. Different cross-
sectional shapes, laminate schemes and beam lengths are considered to perform the numerical analysis. The
analyzed material is graphite-epoxy (AS4/3501) whose properties are E1 ¼ 144GPa, E2 ¼ 9.65GPa,
G12 ¼ 4.14GPa, G13 ¼ 4.14GPa, G23 ¼ 3.45GPa, n12 ¼ 0.3, n13 ¼ 0.3, n23 ¼ 0.5, r ¼ 1389 kg/m3. The ana-
lyzed cross-sections are shown in Fig. 2.

In all the results presented below, the value of the static load parameter is adopted a ¼ 0.5, and the
excitation frequency $ is scaled with the lowest frequency value of parametric resonance (that is the double of
the frequency value of the vibration mode first 2O1).

11.1. Bisymmetric open section

The example considered is a simply supported bisymmetric-I section whose geometric properties are
L ¼ 6m, h ¼ 0.6m, b ¼ 0.6m, e ¼ 0.03m. In this example (y0 ¼ z0 ¼ 0), the system equations are uncoupled.
Therefore, there are three main modes of vibration corresponding either to bending or to torsion. In this case,
the lowest frequency corresponds to the lateral flexural mode (y-direction), while the highest frequency of
vibration corresponds to the vertical flexural mode (z-direction).

Instability regions are shown in the Figs. 3–5, for different laminate stacking sequences. The critical load of
the beam corresponding to the flexural mode can be easily obtained by means of Eq. (38) (as explained by the
authors in Ref. [15]):

Pcr ¼
p2

L2

cEIz
cGSycGSy þcEIzp2

�
L2

, (46)

where cEIz is the flexural stiffness, cGSz and cGSy are shear stiffnesses of a composite beam. The definitions of
these stiffnesses are given in Appendix A.

It is observed that the widest unstable region corresponds to the first mode (or to the first frequency of
parametric resonance), while the smallest region belongs to the third mode (or third frequency of parametric
resonance). The size of the principal unstable region (first mode) keeps practically constant for the different
sequences of lamination analyzed. While the second parametric region (21 mode) decreases considerably for a
lamination sequence {45/-45/-45/45}. The second parametric resonance frequency, for the same lamination, is
h
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Fig. 2. Analyzed cross-sectional shapes.
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Fig. 3. Regions of dynamic instability for a bisymmetric beam {0/0/0/0}.
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Fig. 4. Regions of dynamic instability for a bisymmetric beam {0/90/90/0}.
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Fig. 5. Regions of dynamic instability for a bisymmetric beam {45/-45/-45/45}.
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more distant from the principal region. This phenomenon is due to the torsional stiffness is larger in
comparison with the other laminations.

In Table 1, natural frequencies are given considering two models: the present theory (model I) and results
obtained by neglecting shear flexibility (model II). The shear deformation effect reduces considerably the
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Table 1

Natural frequencies for a bisymmetric beam (Hz), a ¼ 0.5

Frequencies {0/0/0/0} {0/90/90/0} {45/-45/-45/45}

Model I Model II Model I Model II Model I Model II

O1 18.66 19.96 13.88 14.41 6.24 6.24

O2 26.96 28.23 21.11 21.59 24.55 24.55

O3 71.81 106.37 60.99 77.84 34.08 34.31

oL 424.24 310.60 136.97

0.6 0.8 1 1.2 1.4 1.6 1.8
π=2Ω1

0.1

0.2

0.3

0.4

0.5

β

π=2Ω1 π=2Ω2

Fig. 6. First and second instable regions, lamination {0/0/0/0}, (—) present theory, (– � –) neglecting shear flexibility.
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vibration frequency values when the lamination {0/0/0/0} is used, while this effect has no influence for the
lamination {45/-45/-45/45}.

It is important to mention that the influence of the longitudinal inertia is negligible in all the laminations
analyzed, due to the exciting frequency is far from the longitudinal natural frequencies of the beam (oL).

On the hand, the influence of shear deformation on the dynamic behavior of composite beams is analyzed
for the lamination sequence {0/0/0/0}. The unstable regions of the first and second parametric resonance are
shown in Fig. 6, where two models are compared: the present theory (considering shear flexibility) and results
obtained by neglecting shear flexibility. The width of the regions does not change for both models. However,
when shear deformation is neglected the unstable region moves toward the right, originated by an increase in
the parametric frequency values.

11.2. Monosymmetric open cross-section

The considered example is a monosymmetric channel section, the geometric properties are L ¼ 6m,
h ¼ 0.6m, b ¼ 0.6m, e ¼ 0.03m. In this case (z0 ¼ 0), the system of equations corresponding to y-direction (v
transversal displacement) are therefore uncoupled. Thus, when the beam is subjected to a longitudinal force, it
is possible to excite the beam parametrically in either to bending modes in y-direction (v) or in
flexural–torsional mode of vibration (w and f. For the cross-section analyzed, the flexural–torsional mode
presents the smallest parametric frequency value. Therefore, the excitation frequency is scaled with the value
of this last frequency.

Regions of dynamic instability for the composite channel-beam are shown in Figs. 7 and 8, considering the
lamination sequences {0/0/0/0}, {0/90/90/0} and {45/-45/-45/45}, respectively. The first and third instability
regions (O1 and O3) correspond to the flexural–torsional mode, while the second region corresponds to the
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Fig. 7. Regions of dynamic instability for a channel-beam {0/0/0/0}.

effect of
longitudinal

inertia

1 2 3 4 5 6 7
π=2Ω1

0.1

0.2

0.3

0.4

0.5

β

π=2Ω1 π=2Ω2 π=2Ω3 π=ΩL

Fig. 9. Regions of dynamic instability for a channel-beam {45/-45/-45/45}, (—) present theory, (- - -) neglecting longitudinal inertia.
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uncoupled flexural mode (O2). The critical load of the beam corresponding to the flexural–torsional mode can
be obtained by means of Eq. (38) [15].

From the figures, one can observe that the sizes of the unstable region of the first and second modes are
similar for the different laminations. However, the third region, corresponding to the second flexural–torsional
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mode, is wider for the lamination {45/-45/-45/45} than those obtained for the other laminations (see Fig. 9).
This phenomenon is due to that the exciting frequency is near to the longitudinal natural frequencies of the
beam (oL). The influence of the longitudinal inertia enlarges the third region, which certainly is composed by
two regions, one of them lies near $ ¼ 2O3 (O3/O1 ¼ 5.92); and the second lies near $ ¼ oL (oL/2O1 ¼ 6.24).
Fig. 9 shows comparative results between the unstable regions obtained by disregarding (which is much
narrower than the resultant region) and considering the influence of the longitudinal vibration.

In Table 2, natural frequencies are given for the different laminations, considering the effect of shear
deformation. One can observe from this table, a noticeable difference between both models when the
lamination sequence {0/0/0/0} is used. This discrepancy can reach a percentage of about 110% for the
frequency value O3.

11.3. Bisymmetric closed section

In this example, a bisymmetric box-beam is used to study the dynamic behavior, whose geometric properties
are L ¼ 6m, h ¼ 0.6m, b ¼ 0.6m, e ¼ 0.03m. In the similar way as the example (10.1), y0 ¼ z0 ¼ 0, there are
three vibration modes corresponding either to bending or to torsion. However in this case, the flexural
stiffnesses are the same order, for that reason bending frequencies are also the same. The lower frequency
corresponds to the lateral and vertical flexural mode, while the higher frequency of vibration corresponds to
the torsional mode.

In this example, the influence of the static load parameter a is analyzed. Regions of dynamic instability for
the composite box-beam are shown in Figs. 10–12, considering three different values of the parameter a ¼ 0.5,
Table 2

Natural frequencies for a channel-beam (Hz), a ¼ 0.5

Frequencies {0/0/0/0} {0/90/90/0} {45/-45/-45/45}

Model I Model II Model I Model II Model I Model II

O1 25.08 30.89 19.16 21.70 10.97 10.99

O2 66.77 85.29 53.67 62.06 26.27 26.37

O3 95.46 200.81 89.33 146.92 64.91 65.95

oL 424.24 310.60 136.97

1 1.5 2 2.5 3 3.5 40.5
π=2Ω1

0.1

0.2

0.3

0.4

0.5

β

π=2Ω1

π=2Ω2 π=2Ω3
π=ΩL

Fig. 10. Regions of dynamic instability for a box-beam a ¼ 0.5, (—) present theory, (- - -) neglecting longitudinal inertia.
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Fig. 11. Regions of dynamic instability for a box-beam a ¼ 0.25, (—) present theory, (- - -) neglecting longitudinal inertia.
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Fig. 12. Regions of dynamic instability for a box-beam a ¼ 0.10, (—) present theory, (- - -) neglecting longitudinal inertia.

Table 3

Natural frequencies for a box-beam (Hz) {0/90/90/0}

Frequencies a ¼ 0.1 a ¼ 0.25 a ¼ 0.5

O1, O2 59.33 54.16 44.22

O3 123.21 120.79 116.65

oL 310.59
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a ¼ 0.25 and a ¼ 0.1, respectively, for a lamination sequence {0/90/90/0}. The first region represents the
flexural mode either vertical or lateral and the second region represents the torsional mode. The third region
that appears in the figures represents the influence of the longitudinal vibration, which in this case is near to
the unstable boundaries corresponding to torsional mode. It is observed from the figures that the first unstable
region for a ¼ 0.1 (Fig. 12) is narrower than those corresponding to the higher static load parameter.
However, the width of the second region ($ ¼ 2O3) enlarges when the static load parameter increases, due to
the influence of the longitudinal inertia. Consequently, the region of dynamic instability is composed by two
regions, in the same way as the previous example for the lamination {45/-45/-45/45} (Fig. 9).

In Table 3, natural frequencies are given for the different load parameter values, considering shear
deformation and a lamination sequence {0/90/90/0}. As the load parameter a increases, the frequencies values
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decrease. For that reason, the effect of longitudinal vibration has more influence on dynamic behavior for the
smallest value of the parameter a.

The unstable regions that are obtained disregarding the longitudinal inertia are smaller than those obtained
with the present theory. Therefore, its discard results, inadvertently, in a less critical behavior than in the case
of its incorporation.

12. Conclusions

The equations of motion of axially oscillating beam are derived by means of a geometrically nonlinear
second-order theory. The formulation is based on the context of a rational small strain and moderate rotation
theory of thin-walled composite beams, through the adoption of a shear deformable displacement field
(accounting for bending and warping shear). The given beam model is 1-D and is valid for bi-symmetric and
mono-symmetric cross-sections either open or closed.

The dynamic stability of a simply supported thin-walled composite beam subjected to an axial periodic force
has been studied. The dynamic stability analysis of the system is performed by employing the Hill’s method of
infinite determinants, which has been extensively investigated by Bolotin [3].

From the numerical results obtained, it is found that the regions of instability dynamic are generally wider
for the first frequency of parametric resonance, and they decrease in their size as the resonance frequency value
increases. However, the size of the unstable regions can vary depending on the influence of the longitudinal
inertia. The influence of the interaction between the forced vibration and the parametrically excited vibrations
on the unstable regions is considerable when the excitation frequency is the same order than the frequency
value of the free longitudinal vibration. Moreover, this effect depends on the stacking sequence and on the
parameter of static load. For example, this effect is noticeable in the case of a channel-beam with lamination
{45/-45/-45/45} and insignificant for the other laminations.

On the other hand, the shear deformation effect has been investigated. The discard of transverse shear
results in an overprediction of the resonance behavior, in the sense of the shift of the domain of instability
toward larger excitation frequencies. This effect is more important when one of the material axes coincides
with the beam axis.
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Appendix A. Constitutive law

The constitutive law for a bisymmetric beam is defined in the following form:

f g

 �
¼ D½ � Df g, (A.1)

f g

 �
¼ N My Mz B Qy Qz

Tw T sv B1
h iT

, (A.2)

Df g ¼ �D1 �D2 �D3 �D4 �D5 �D6 �D7 �D8 �D9

h iT
. (A.3)

Where {fg} is the vector of generalized forces, {D} is the vector of the generalized strains and [D] is a
symmetric matrix (9� 9):

�D1 ¼ u0o þ
1
2 v0

2
þ w0

2
� �

� y0y
0
yfþ z0y

0
zf,

�D2 ¼ �y
0
z � y0yf,
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�D3 ¼ �y
0
y þ y0zf,

�D4 ¼ y0 � 1
2
yzy
00
y � yyy

00
z

� �
,

�D5 ¼ v0 � yz � z0
1
2
yzy
0
y � yyy

0
z

� �
,

�D6 ¼ w0 � yy þ y0
1
2
yzy
0
y � yyy

0
z

� �
,

�D7 ¼ f0 � y,

�D8 ¼ f0 � 1
2
yzy
0
y � yyy

0
z

� �
,

�D9 ¼
1
2
f02, ðA:4Þ

D ¼

cEA 0 0 0 0 0 0 0 cEI0

0 cEIy 0 0 0 0 0 0 0

0 0 cEIz 0 0 0 0 0 0

0 0 0 dECw 0 0 0 0 0

0 0 0 0 cGSy 0 0 0 0

0 0 0 0 0 cGSz 0 0 0

0 0 0 0 0 0 cGSw 0 0

0 0 0 0 0 0 0 cGJ 0cEI0 0 0 0 0 0 0 0 cEIR

2666666666666666664

3777777777777777775

. (A.5)

The elements of the symmetric matrix [D] are given by the following contour integrals:

cEA ¼

Z
Ā11 ds;

cEIy ¼

Z
Ā11Z2 þ D̄11Y 0

2
� �

ds,

cEIz ¼

Z
Ā11Y 2 þ D̄11Z0

2
� �

ds,

cEIw ¼

Z
Ā11o2

p þ D̄11l2
� �

ds,

cGSy ¼

Z
Ā55Z0

2
þ Ā66Y 0

2
� �

ds,

cGSz ¼

Z
Ā55Y 0

2
þ Ā66Z0

2
� �

ds,

cGJ ¼

Z
Ā66c

2
þ 4D̄66

� �
ds;

cEIR ¼

Z
Ā11 Y 2 þ Z2
� �2

þ 4D̄11r2
h i

ds,

cEI0 ¼

Z
Ā11 Y 2 þ Z2
� �

ds; ðA:6Þ

where

Y 0 ¼
dY

ds
; Z0 ¼

dZ

ds
. (A.7)
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