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Abstract

A sequence of vertices in a graph is called a (total) legal dominating sequence if
every vertex in the sequence (totally) dominates at least one vertex not dominated
by the ones that precedes it, and at the end all vertices of the graph are (totally)
dominated. The Grundy (total) domination number of a graph is the size of the
largest (total) legal dominating sequence. In this work, we present integer program-
ming formulations for obtaining the Grundy (total) domination number of a graph,
we study some aspects of the polyhedral structure of one of them and we test the
performance of some new valid inequalities as cuts.

Keywords: Grundy (total) domination number, Legal dominating sequence,
Facet-defining inequality, Web graph.

1 Introduction

Domination set problems are among the most studied problems in Combina-
torial Optimization due to a large number of applications. Two of them are
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Grundy domination [1] and Grundy total domination [2] problems.

Let G = (V,E) be a graph and C be a subset of vertices such that no vertex
of V \C is isolated in G. Define N〈 〉 : V → P(V ) as follows: N〈v〉 .

= N(v)
if v /∈ C and N〈v〉 .

= N [v] if v ∈ C. Let S = (v1, . . . , vk) be a sequence
of distinct vertices of G. The sequence S is called a legal sequence of G;C
if Wi

.
= N〈vi〉\

⋃i−1
j=1 N〈vj〉 �= ∅ holds for every i = 2, . . . , k. If S is a legal

sequence, then we say that vi footprints the vertices from Wi. That is, vi
footprints a vertex u ∈ N〈vi〉 if u does not belong to N〈vj〉, j = 1, 2, . . . , i−1.

If ∪k
j=1Wj = V then S is called a dominating sequence. It is easy to see

that, for given G and C, any legal sequence of maximum length is also a
dominating sequence. This maximum length is denoted by γgr(G;C).

The Grundy domination and total domination problems consist in finding
γgr(G;V ) and γgr(G; ∅), respectively (N〈 〉 denotes the closed or the open
neighborhood, respectively). Both are NP-hard problems [1,2].

In order to reduce the size of the input graph, two simple rules can be
applied. First, if G is the disjoint union of graphs G1 and G2, γgr(G;C) =
γgr(G1;C ∩ V (G1)) + γgr(G2;C ∩ V (G2)). Therefore, we can restrict ourselves
to connected graphs. In addition, if there exist vertices u, v such that N〈u〉 =
N〈v〉 (such vertices are called twins), γgr(G;C) = γgr(G − v;C\{v}), where
G − v is the graph obtained from G by deleting v. Hence, we can suppose
that G;C does not have twin vertices.

In this work, we present integer programming formulations for obtaining
γgr(G;C), we study some aspects of the polyhedral structure of one of them
and we test the performance of some new valid inequalities as cuts. Also, we
give below the value of γgr(G;C) for two families of graphs.

An upper bound on γgr(G;C) is m
.
= n− δ(G;C) + 1 [1,2], where n is the

number of vertices of G and δ(G;C) = minv∈V |N〈v〉|. If G = Pn (a path on
n vertices) with V = {1, . . . , n}, we say that C is a good configuration for Pn

if (i) n = 0 (empty path), (ii) n = 1 and 1 ∈ C, or (iii) n ≥ 2 and either (iii.1)
1 /∈ C and C is a good configuration for the subpath (3, . . . , n) or (iii.2) n /∈ C
and C is a good configuration for the subpath (1, . . . , n− 2).

Proposition 1.1 Let G = Pn≥1 and C ⊂ V . If {1, n} ⊂ C or if C is a good
configuration for G then, γgr(G;C) = m. Otherwise, γgr(G;C) = m− 1.

Define H(G;C) as the hypergraph (V, E) with E = {N〈v〉 : v ∈ V }.
H(G;C) is a clutter if N〈u〉\N〈v〉 �= ∅ for all u �= v. For example, consider
instances W k

n ;C where n, k ∈ N, n ≥ 2(k + 1) and W k
n is the web graph with

V = {0, . . . , n− 1} and E = {(i, j) : 0 < |i− j| ≤ k or |i− j| ≥ n− k}.
Proposition 1.2 Let G = W k

n and C ⊂ V . H(G;C) is a clutter if and only
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if n > 2(k + 1) or C = V . Moreover, γgr(G;C) = m if (i) C = V , or (ii)
there exists i ∈ V \C such that V \N [i] induces a path P and C is a good
configuration for P . Otherwise γgr(G;C) = m− 1.

2 Integer programming formulations

Legal sequences can be modeled as binary vectors as follows. For every v ∈ V
and i = 1, . . . ,m, let yvi be a binary value such that yvi = 1 if v is chosen in
step i. Also, for every u ∈ V and i = 1, . . . ,m, let xui be a binary value such
that xui = 1 if u is available to footprint in step i (i.e. not footprinted by any
of the chosen vertices in previous steps). The following formulation computes
the parameter γgr(G;C):

max
m∑

i=1

∑

v∈V
yvi

subject to
∑

v∈V
yvi ≤ 1, ∀ i = 1, . . . ,m (1)

m∑

i=1

yvi ≤ 1, ∀ v ∈ V (2)

yvi+1 ≤
∑

u∈N〈v〉
(xui − xui+1), ∀ v ∈ V, i = 1, . . . ,m− 1 (3)

xui +
∑

v∈N〈u〉
yvi ≤ 1, ∀ u ∈ V, i = 1, . . . ,m (4)

xui+1 ≤ xui, ∀ u ∈ V, i = 1, . . . ,m− 1 (5)

x, y ∈ {0, 1}nm,

Constraints (1) ensure that at most one vertex is chosen in each iteration.
Constraints (2) guarantee that each vertex is chosen at most once. Constraints
(3) specify that v can be chosen in the next iteration only if there is at least
one non-footprinted vertex of N〈v〉 in the current iteration (that will become
footprinted). Constraints (4) force to footprint u if some vertex of N〈u〉
is chosen. Finally, constraints (5) tell that footprinted vertices will remain
footprinted for the next iterations.

Although this formulation works fine, there exist several integer solutions
associated to each legal sequence, since a variable xui can be set to zero even
if it is not footprinted by any vertex. In order to forbid this situation, we also
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consider these constraints:

xu1 +
∑

v∈N〈u〉
yv1 ≥ 1, ∀ u ∈ V (6)

xui+1 +
∑

v∈N〈u〉
yvi+1 ≥ xui, ∀ u ∈ V, i = 1, . . . ,m− 1 (7)

Note that it is still allowed not to choose a vertex in a step, leading to
several symmetric solutions. They can be avoided by replacing (1) by

∑

v∈V
yv1 = 1 and

∑

v∈V
yvi+1 ≤

∑

v∈V
yvi, ∀ i = 1, . . . ,m− 1 (8)

These constraints force to use the first k slots when the solution represents a
legal sequence of length k.

The space of feasible solutions can be even smaller if we impose that every
solution represents a dominating sequence:

m∑

i=1

∑

v∈N〈u〉
yvi ≥ 1, ∀ u ∈ V (9)

A preliminary experiment over random instances showed that considering
constraints (8) greatly improve the performance of the optimization. Con-
straints (6) and (7) also help to improve the performance, while constraints
(9) do not seem to be useful. According to our experiment, the best formula-
tion consists of constraints (2) to (8).

3 The polytope of legal sequences

From now on, suppose that n ≥ 3, G is connected and G;C does not have
twin vertices. Let P be the convex hull of the set of binary feasible solutions
satisfying constraints (1) to (5). We choose not to consider (6) to (9) for
two reasons. On the one hand, every valid inequality of P is still valid for
polytopes that consider more constraints. On the other hand, the dimension
of P just depends on the size of the instance, which is an interesting feature
for polyhedral studies. This fails for the other polytopes. For instance, if
constraints (8) were considered, the dimension of the polytope would be nm−
m|V0|−(m−1)|V1|+

∑
v∈V i(G;C, v)−1, where i(G;C, v) is the index of largest

step where v can occur in any legal sequence of G;C (clearly, an NP-hard
parameter), V0 = {v ∈ V : N〈v〉 = V }, and V1 = {v ∈ V : N〈v〉 = V \{v}}.
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The following results give the dimension of P and prove the facet-definition
of non-negativity inequalities and constraints (3), (4) and (5).

Proposition 3.1 The polytope P is full dimensional, and the following in-
equalities define facets of P : (i) yvi ≥ 0 for all v ∈ V and i = 1, . . . ,m;
(ii) xui ≥ 0 for all u ∈ V if and only if i = m; (iii) Constraints (5), i.e.
xui+1 ≤ xui, if and only if for all v ∈ V , N〈v〉 �= {u} (i.e. every leaf of G
adjacent to u must belong to C).

Corollary 3.2 If H(G;C) is a clutter, (5) always define facets of P .

Proposition 3.3 Let W = {w1, . . . , wt} be a non-empty set of vertices sat-
isfying the property N〈wj〉 ⊂ N〈w1〉 for all j = 2, . . . , t. Then, for all i =
1, . . . ,m−1, the following is a valid inequality:

∑
w∈W ywi+1 ≤

∑
u∈N〈w1〉(xui−

xui+1). Moreover, it is facet defining if and only if every v ∈ V \W satisfies
N〈v〉\N〈w1〉 �= ∅ (W is maximal with respect to the property).

Corollary 3.4 If H(G;C) is a clutter, (3) always define facets of P .

Proposition 3.5 Constraint (4) defines a facet of P if and only if i = 1 or
for every v ∈ N〈u〉 there exists w ∈ N〈u〉\{v} such that N〈w〉\N〈v〉 �= ∅.
Corollary 3.6 If H(G;C) is a clutter, (4) always define facets of P .

The following results provide two families of valid inequalities. The former
dominates constraints (2) and, sometimes, constraints (4).

Proposition 3.7 Let u ∈ V , i = 2, . . . ,m, N ⊂ N〈u〉 and W = {w1, . . . ,
wt} ⊂ N〈u〉\N be a non-empty set of vertices, such that (i) N〈wr+1〉 ⊂ N〈wr〉
for all r = 1, . . . , t− 1, (ii) N〈v〉 ⊂ N〈wt〉 for all v ∈ N . Let {j1, . . . , jt+1} ⊂
{1, . . . , i} be such that j1 = 1, jt+1 = i and jr ≤ jr+1 for all r = 1, . . . , t.
Then, the inequality xui+

∑
v∈N yvi+

∑t
r=1

∑jr+1

j=jr
ywrj ≤ 1 is valid. Moreover,

it defines a facet of P if and only if (iii) N �= ∅ or N〈wt〉 �= {u} (i.e. if
wt is a leaf of G then wt ∈ C), (iv) for every v ∈ N〈u〉\(N ∪ W ), the sets
R⊃(v) .

= {r : N〈v〉\N〈wr〉 �= ∅} and R⊂(v) .
= {r : N〈wr〉\N〈v〉 �= ∅} have

non-empty intersection, and jr < jr+1 for some r ∈ R⊃(v) ∩R⊂(v).

Corollary 3.8 Let u ∈ V , i = 2, . . . ,m, w ∈ N〈u〉. If H(G;C) is a clutter,
the following inequalities are facet-defining:

xui +
i∑

j=1

ywj ≤ 1. (10)

Proposition 3.9 Let u1, u2 be distinct vertices such that N〈u1〉 ∩N〈u2〉 �= ∅,
i = 2, . . . ,m, k = 1, . . . , i and w ∈ N〈u1〉 ∩ N〈u2〉. The following inequality
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is valid:

xu1i + xu2i +
i∑

j=1

ywj +
∑

v∈N〈u1〉∪N〈u2〉
yvk ≤ 2. (11)

(note that variable ywk has coefficient 2 in the left hand side). Moreover, it
defines a facet of P if (i) there exist v1 ∈ N〈u1〉\N〈u2〉 and v2 ∈ N〈u2〉\N〈u1〉
such that N〈v1〉\N〈w〉 �= ∅ and N〈v2〉\N〈w〉 �= ∅, (ii) there exist ṽ1 ∈
N〈u1〉\N〈u2〉 and ṽ2 ∈ N〈u2〉\N〈u1〉 such that N〈w〉\({u2} ∪ N〈ṽ1〉) �= ∅
and N〈w〉\({u1} ∪ N〈ṽ2〉) �= ∅, (iii) for every v ∈ (N〈u1〉 ∩ N〈u2〉)\{w} we
have N〈v〉\N〈w〉 �= ∅ and N〈w〉\N〈v〉 �= ∅, and (iv) if k < i then for every
v ∈ (N〈u1〉\N〈u2〉) ∪ (N〈u2〉\N〈u1〉) we have N〈v〉\N〈w〉 �= ∅.
Corollary 3.10 If H(G;C) is a clutter and hypothesis (ii) of Proposition 3.9
holds, then constraints (11) define facets of P .

We also carried out an experiment to see the performance of the new
valid inequalities (10) and (11) when they are embedded as cuts. We used a
computer equipped with an Intel i5 CPU 2.67GHz, Ubuntu 16.04, IBM ILOG
CPLEX 12.7, formulation with constraints (2) to (8) and 24 instances (random
graphs of 15, 20 and 30 vertices with edge densities from 20% to 80%, and
C ∈ {∅, V }). The following table reports averages obtained:

All instances Only high density

Algorithm Nodes Time (sec.) Nodes Time (sec.)

pure B&B 64106 425.18 18596 362.52

B&C with ineq. (10) 29658 287.38 23327 443.79

B&C with ineq. (10), (11) 50779 409.59 17970 300.41

We conclude that embedding inequalities (10) as cuts helps to decrease the
number of nodes and consumed time. Moreover, inequalities (11) are useful
for instances with high density.
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