
1 23

Journal of Heuristics
 
ISSN 1381-1231
Volume 20
Number 2
 
J Heuristics (2014) 20:189-209
DOI 10.1007/s10732-014-9237-2

Approximated algorithms for the minimum
dilation triangulation problem

Maria Gisela Dorzán, Mario Guillermo
Leguizamón, Efrén Mezura-Montes &
Gregorio Hernández-Peñalver



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Heuristics (2014) 20:189–209
DOI 10.1007/s10732-014-9237-2

Approximated algorithms for the minimum dilation
triangulation problem

Maria Gisela Dorzán · Mario Guillermo Leguizamón ·
Efrén Mezura-Montes · Gregorio Hernández-Peñalver

Received: 16 November 2012 / Revised: 15 October 2013 / Accepted: 25 January 2014 /
Published online: 9 February 2014
© Springer Science+Business Media New York 2014

Abstract The complexity status of the minimum dilation triangulation (MDT) prob-
lem for a general point set is unknown. Therefore, we focus on the development of
approximated algorithms to find high quality triangulations of minimum dilation. For
an initial approach, we design a greedy strategy able to obtain approximate solutions to
the optimal ones in a simple way. We also propose an operator to generate the neighbor-
hood which is used in different algorithms: Local Search, Iterated Local Search, and
Simulated Annealing. Besides, we present an algorithm called Random Local Search
where good and bad solutions are accepted using the previous mentioned operator. For
the experimental study we have created a set of problem instances since no reference
to benchmarks for these problems were found in the literature. We use the sequen-
tial parameter optimization toolbox for tuning the parameters of the SA algorithm.
We compare our results with those obtained by the OV-MDT algorithm that uses the
obstacle value to sort the edges in the constructive process. This is the only available
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190 M. G. Dorzán et al.

algorithm found in the literature. Through the experimental evaluation and statistical
analysis, we assess the performance of the proposed algorithms using this operator.

Keywords Computational geometry ·Metaheuristics · Triangulation ·
Minimum dilation

1 Introduction

Triangulations are applied in different areas such as wireless sensor networks (Zhou
et al. 2011), computational geometry (de Berg et al. 2000), computer graphics
(Kolingerová and Ferko 2001), scientific visualization (Nielson 1997), robotics (Bokka
and Gurla 1998), computer vision (Vite-Silva et al. 2007), image synthesis (Chen and
Medioni 1997), as well as in mathematical and natural science. Different measures
are adopted to design optimal triangulations. The most popular are the weight, stab-
bing number,1 area, and dilation. Although the usage of approximated approaches to
solve complex optimization problems is common nowadays, this last measure has not
been used as selection criteria when optimizing triangulations by using metaheuristic
algorithms (Michalewicz and Fogel 2004).

The dilation of a triangulation can be defined as follows: Let S be a finite planar
point set, T a triangulation of S and u, v two points in S. There are two distance
metrics: the Euclidean distance between u and v, |uv|, and the shortest path distance
between u and v with respect to T , dist (u, v). The shortest path distance represents
the minimum distance we must cover in order to travel from u to v when we are only
allowed to use the edges in T . The dilation between u and v with respect to T is the
ratio between the shortest path and the Euclidean distances between u and v, and is
defined as:

ΔT (u, v) =
{

1, u = v
dist (u,v)
|uv| , u �= v

(1)

Intuitively, the dilation measures the quality of the connection between u and v in
T . If the dilation is large, this means that we have to travel a long way along the edges
in T in order to reach v from u when the direct route would be much shorter.

The maximum over all the dilations between pairs of vertices in T is called the
dilation of T and is represented by Δ(T ). It measures the quality of the connection
between any two vertices in T . The best possible dilation of any triangulation of S is
the dilation of S and is denoted by Δ(S). Thus, we have

Δ(T ) = max
u,v∈S

ΔT (u, v) (2)

and

Δ(S) = min
T of S

Δ(T ) (3)

1 For a given triangulation, the stabbing number is the maximum number of edges that are encountered (in
their interior or at an endpoint) by any infinite line.
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Approximated algorithms for the minimum dilation triangulation problem 191

(a) (b)

Fig. 1 A set of points {a, b, c, d} and two possible triangulations. In triangulation (a), the dilation between
points a and c is very high, whereas in triangulation (b) achieves the lowest possible dilation. The bold
dashed lines represent the shortest path between a and c

The triangulation T ∗ which dilation is the dilation of S, i.e. Δ(T ∗) = Δ(S), is
called the minimum dilation triangulation of S. In Fig. 1, we show an example of
dilation for a set of points and two possible triangulations.

The rest of this paper is organized as follows. First, we give an overview of the related
work and background, describing previous attempts at solving the MDT problem. In
the next section we present the approaches developed in our research. Greedy, Local
Search, Iterated Local Search, Simulated Annealing algorithms, and the new proposed
algorithm Random Local Search are described including their respective operators
and parameters. Section 3 describes the experimental framework used to evaluate the
performance of the proposed algorithms giving a summary of the results obtained.
We compare the results obtained by the proposed algorithms against those obtained
by the existing algorithm in literature (OV-MDT ). The use of different statistical tests
has become necessary to confirm which of the proposed methods offers a significant
improvement over the others. Therefore, we present a statistical analysis of the results
to decide which algorithm has the best performance. The last section is deserved for
the conclusions and future vision.

2 Related work

In 2006 several authors considered the question, whether computing certain graphs
of minimum dilation is NP-hard. The graph dilation is also called stretch factor
(Narasimhan and Smid 1999). A geometric graph G is called a t-spanner if Δ(G) ≤ t ,
and it is said to t-approximate the complete graph (Keil and Gutwin 1992). A good
overview of the results dealing with graph dilation known until 2000 is given by
Eppstein’s survey (Eppstein 1997). Even more recent results have been included in
(Narasimhan and Smid 2007). Klein and Kutz (2006) proved that the problem to com-
pute a minimum dilation graph G = (S, E) with less than 5920

5919 n − 7624
5919 edges for a

given set S ⊂ R2 of n points is NP-hard.
Cheong et al. (2007) showed that it is NP-hard to determine whether a spanning

tree of a set of point S with dilation at most Δ(S) exists. These points have integer
coordinates in the plane and a rational dilation Δ(S) > 1. Giannopoulos et al. (2007)
proved that computing a Hamilton circuit or path of minimum dilation for a given set
of points in the plane is NP-hard.

There are special cases of problem instances that can be solved efficiently. Eppstein
and Wortman (2005) showed that, given a set of terminals, choosing a point in the plane
and connecting it to all the given terminals such that a star graph is created of minimum
dilation can be solved in O(n log n) time. However, if one of the given terminals has
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192 M. G. Dorzán et al.

to be chosen as the center of the star, then the problem becomes considerably harder.
A randomized algorithm is presented to solve this problem in O(n2α(n) log2 n) time,
where α(n) is the inverse Ackermann function. Knauer and Mulzer (2005b) computed
a simple lower bound for the dilation of the regular n-gon and use this bound in order
to derive an efficient approximation algorithm that computes a triangulation whose
dilation is within a factor of 1+ O(1/

√
log n) of the optimum.

The research on minimum dilation triangulations is scarce, even though there has
been some work on estimating the dilation of certain types of triangulations that
had already been studied in other contexts. Chew (1986) showed that the rectilinear
Delaunay triangulation has dilation at most

√
10. Bonichon et al. (2012) improved this

bound to
√

4+ 2
√

2 ≈ 2.61. A similar result for the Euclidean Delaunay triangulation
was given by Dobkin et al. (1990) where they showed that the dilation of the Euclidean
Delaunay triangulation is bounded above by ((1+√5)/2)π ≈ 5.08. This bound was
further improved to 2π/(3 cos(π/6)) ≈ 2.42 by Keil and Gutwin (1989). Xia (2011)
proved that the dilation of the Delaunay triangulation of a set of points in the plane is
less than ρ = 1.998, improving the previous best upper bound of 2.42. Xia and Zhang
(2010) presented an improved lower bound of 1.5932 for the dilation of the Delaunay
triangulation.

When considering optimal triangulations, it is instructive to look at local proper-
ties of these triangulations, since local properties improve our understanding of the
structure of global optimal triangulations and sometimes lead to efficient algorithms
to compute them. One important class of local properties is constituted by exclusion
regions. Exclusion regions give us a necessary condition for the inclusion of an edge
into an optimal triangulation. Let u and v be two points in a planar point set S, then
the edge e = uv can only be contained in an optimal triangulation of S if no other
points of S lie in certain parts of the exclusion region of S. Knauer and Mulzer (2005a)
showed that an edge e can only be included in the minimum dilation triangulation of
S, if at least one of the two half circles with radius α|e| whose center is the center of e
is empty. Here α denotes any constant such that 0 < α < 3 cos(π/6)/(4π) ≈ 0.2067.

Usually, exclusion regions are applied as an initial filter of algorithms that com-
pute optimal triangulations (Beirouti and Snoeyink 1998; Drysdale et al. 1995). The
remaining edges are processed using some other local properties that give sufficient
conditions for the inclusion of an edge. For the minimum dilation triangulation, how-
ever, it is not yet clear what to do with the remaining edges, since no other useful local
properties are known that could be used in further processing steps. Finding such local
properties remains an open problem.

The upper bound of (Keil and Gutwin 1989) can also be used to obtain a suf-
ficient condition for the inclusion of an edge. Let p and q be two points of S,
γ = 2π/(3 cos(π/6)) and the ellipsoid

E p,q,γ =
{

x ∈ R2/|px | + |qx | ≤ γ |pq|
}

(4)

with foci p and q. If E p,q,γ is empty, then the edge pq has to be included in the
minimum dilation triangulation of S, since otherwise the dilation between p and q
would be would be higher than γ .
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Approximated algorithms for the minimum dilation triangulation problem 193

Klein (2006a) in his Master thesis, proposed a greedy algorithm for approximating
the minimum dilation triangulation for small sets of points. In fact, in his experimental
evaluation only results for sets of up to 10 points were shown. This algorithm is based
on the obstacle value of the edges. The obstacle value of an edge is the maximum
dilation that its presence causes. The existence of that edge in the triangulation can
block the direct path between two points and cause a detour. In the algorithm the edges
are sorted in ascendent order considering the obstacle value. Then the edge with the
lower obstacle value is inserted if it does not intersect with the edges previously added
and if a complete triangulation is not achieved.

Computing the minimum dilation triangulation for a set of points in the plane is
listed as an open problem in Eppstein’s survey (Eppstein 2000). There are no polyno-
mial algorithms reported in the literature which can build it. Moreover, it has not been
proved that the problem is NP-hard. Therefore, one approach is to use metaheuris-
tic techniques for obtaining approximate solutions to the optimum. In this work we
show results of several techniques: Greedy (Edmonds 1971), Local Search (Aarts and
Lenstra 1997; Papadimitriou 1976), Iterated Local Search (Martin et al. 1991), Sim-
ulated Annealing (Černý 1985; Kirkpatrick et al. 1983), and Random Local Search.

3 Metaheuristics applied to the MDT problem

Computing optimal solutions is intractable for many optimization problems of indus-
trial and scientific importance. In practice, we are usually satisfied with “good” solu-
tions, which are obtained by heuristic or metaheuristic algorithms.

Due to the fact that there are no works in the literature where the MDT problem is
approached using metaheuristics and also that the complexity of the MDT problem is
unknown, we propose a set of simple techniques as a first approach to approximate the
minimum dilation triangulation. In the rest of this section, we briefly describe a greedy
algorithm and the metaheuristic techniques considered in this work. We present the
general overview of the studied algorithms: Greedy, Local Search (LS), Iterated Local
Search (ILS), Simulated Annealing (SA), and Random Local Search (RLS) describing
their features and parameters.

Each optimization problem consists of a solution space and objective function. We
describe these concepts related to the MDT problem which are considered by all the
algorithms presented in this work (except for the greedy algorithm as it is a constructive
algorithm). The solution space E is represented by all possible triangulations of a set
S of n points in the plane. An n × n matrix of ones and zeros is used to represent a
possible solution. A 1 at position (i, j) means that there is an edge connecting points
i and j , otherwise a 0 is placed. The objective function, f : E → R, assigns to each
element of E a real value. For each E ∈ E , the function f is defined as the maximum
dilation between all pairs of points in E .

3.1 Greedy Algorithm

Greedy algorithms start from an empty solution and construct, in a deterministic way,
a solution by assigning values to one decision variable at a time, until a complete
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194 M. G. Dorzán et al.

solution is generated. At each step, a local heuristic is used to select the new element
to be included in the solution. In general, this heuristic chooses the best element from
the current list in terms of its contribution in minimizing locally the objective function.
Once an element is selected to be part of the solution, it is never replaced by another
element. There is no backtracking of the already taken decisions.

Particularly, for the MDT problem, we present a greedy algorithm G-MDT which
starts with an empty solution Sol and inserts edges until a triangulation for a given set
of point S is generated.

Let A be the set of all possible edges that have not been inserted in Sol, u, v ∈ S and
e = uv ∈ A. If the dilation of the points u and v determines the dilation of the solution,
i.e., ΔSol(u, v) = Δ(Sol), then the edge e is inserted in the solution Sol. This reduces
the dilation of the points u and v to 1 because dist (u, v) = |uv| and consequently
decreases the dilation of the solution Sol. The insertion is performed whenever the
new edge to insert produces no intersections with the edges already inserted.

Algorithm 1 describes how the greedy technique works for the MDT problem. The
main functions used are allEdges(S) and largestDilationEdge(A, Sol). allEdges(S)
returns the set of all possible edges considering the set of points S, and largestDila-
tionEdge(A, Sol) returns the edge (u, v) ∈ A where ΔSol(u, v) = Δ(Sol).

Algorithm 1 G-MDT
Sol← Ø
A← allEdges(S)
while Sol is not a triangulation do

e← largestDilationEdge(A, Sol)
if e do not intersect edges of Sol then

Sol← Sol ∪ {e}
end if
A← A \ {e}

end while
return Sol

3.2 Local Search Algorithm

Local search is likely the oldest and simplest metaheuristic method (Aarts and Lenstra
1997; Papadimitriou 1976). It starts at a given initial solution. At each iteration, the
current solution is replaced by a neighbor that improves the objective function. The
search stops when all candidate neighbors are worse than the current solution, meaning
that a local optimum is reached. For large neighborhoods, the candidate solutions may
be a subset of the neighborhood. The main objective of this restricted neighborhood
strategy is to speed up the search.

The proposed local search algorithm LS-MDT starts from a random initial solution
and then iteratively moves to a neighbor solution. An operator is applied to such
solution so as to generate a new one which is expected to improve its quality. If a better
solution is found, it replaces the current solution by the new one and it continues the
process until it can not improve the current solution. When no improved solutions are
present in the neighborhood, local search is stuck at a local optimal solution.
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Approximated algorithms for the minimum dilation triangulation problem 195

(a) (b)

(c)

Fig. 2 retriang() operator. In (a), ΔSol (a, b) = Δ(Sol) is shown in dashed style. In (b), the edge ab is
added and the dashed edges intersected by ab are deleted. The grey region is retriangulated in a greedy
way (c)

The moves in the search space are performed using the retriang() operator that
works as follows. Let a, b ∈ S, if the dilation of the points a and b determines
the dilation of the current solution Sol, i.e., ΔSol(a, b) = Δ(Sol) (see Fig. 2a),
then a and b are joined by an edge. The edges intersected by ab are deleted and
the region delimited by these edges (see Fig. 2b) is retriangulated in a greedy way.
The edge whose points have the higher dilation is inserted at each step if it does
not intersect with the edges previously added and if a complete triangulation is not
achieved (see Fig. 2c). Therefore the current solution is improved because its dila-
tion has been reduced. Due to the behavior of this operator only a single neighbor is
obtained.

Algorithm 2 describes how the LS-MDT algorithm works. We use the retriang()
operator to obtain the neighbor of a solution.

Algorithm 2 LS-MDT
Generate a random initial solution Sol ∈ E
Sol′ ← retriang(Sol)
while Sol′ improves Sol do

Sol← Sol′
Sol′ ← retriang(Sol)

end while
return Sol
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196 M. G. Dorzán et al.

3.3 Iterated Local Search Algorithm

The quality of the local optimum obtained by a local search method depends on the
initial solution. As we can generate local optimum with high variability, iterated local
search may be used to improve the quality of successive local optimum. This kind of
strategy has been applied first in (Martin et al. 1991) and then generalized in (Lourenco
et al. 2002).

Local search methods build a trajectory in the search space which leads from an
initial solution to a local optimum, where the local search stops. If the neighbors
of that local optimum do not improve its objective function, local search needs to
be modified to escape from a local optimum and continue the search beyond local
optimality. A simple modification consists of iterating calls to the local search routine,
each time starting from a different initial configuration. Iterated Local Search is based
on building a sequence of locally optimal solutions by perturbing the current local
minimum and applying local search after starting from the modified solution. The
perturbation strength has to be sufficient to lead the trajectory to a different attraction
basin leading to a different local optimum.

The proposed algorithm ILS-MDT works as follows. First, a local search is applied
to an initial random solution and yields a local optimum. We use the LS-MDT algorithm
as given in Algorithm 2. At each iteration, a perturbation of Sol is carried out and then,
a local search is applied to the perturbed solution Sol ′. This process iterates until the
number of perturbations is less than 50 and the current solution is improved, always
keeping the best solution found so far Solbest .

Complete details of ILS-MDT can be found in Algorithm 3. The perturb(Sol) pro-
cedure is performed by the perturbation operator where n/5 random local retriangula-
tions over random selected points of S are performed worsening the current solution,
i.e., a point b ∈ S is randomly chosen and all the points adjacent to b form the grey
region that has to be retriangulated (see Fig. 3a). The edges belonging to the region
are deleted and then this region is retriangulated in a random way. The edges of the
region are inserted at random if they do not intersect with the edges previously added
and if a complete triangulation is not achieved (see Fig. 3b).

Algorithm 3 ILS-MDT
Generate a random initial solution Sol ∈ E
Sol← LS-MDT (Sol)
repeat

Sol′ ← perturb(Sol)
Sol← LS-MDT (Sol′)

until termination criterion is reached
return Solbest

3.4 Simulated Annealing Algorithm

Simulated Annealing (SA) applied to optimization problems emerges from the work of
Kirkpatrick et al. (1983) and Černý (1985). SA is based on the principles of statistical
mechanics whereby the annealing process requires heating and then slowly cooling a
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(a) (b)

Fig. 3 In (a), the grey region formed by the adjacent points of b (g, f, a, c) is shown. In (b), random edges
are added to that region

substance to obtain a strong crystalline structure. The strength of the structure depends
on the rate of cooling metals. If the initial temperature is not sufficiently high or a fast
cooling is applied, imperfections (metastable states) are obtained. In this case, the
cooling solid will not attain thermal equilibrium at each temperature. Strong crystals
are grown from careful and slow cooling. SA simulates the energy changes in a system
subjected to a cooling process until it converges to an equilibrium state.

The algorithm SA-MDT (see Algorithm 4) works as follows. From an initial solu-
tion, it executes a number of iterations where a neighbor of the current solution Sol is
generated in each one of them. The moves that improve the cost function are always
accepted. Otherwise, the neighbor Sol ′ is selected with a given probability that depends
on the current temperature T . This probability is usually called acceptance function
and it is evaluated according to

p
(
T, Sol, Sol ′

) = e−
δ
T (5)

where δ = f (Sol ′)− f (Sol).
M(Tk) moves are performed for each temperature Tk . Finally, the value of Tk is

decreased at each algorithm iteration k. The algorithm continues this way until the
termination condition is met. Once an equilibrium state is reached, the temperature
is gradually decreased according to a cooling schedule such that few nonimproving
solutions are accepted at the end of the search. The best solution found since the
beginning of the search is stored.

Considering the MDT problem, some issues must be considered in the design of
SA algorithm:

– Initial solution: a random triangulation is used.
– Initial temperature T0: different initial temperatures are considered: i) 1000×(n/4);

ii) 1000× (n/2), and iii) the maximum length of the paths of the initial solution.
– Temperature decrement rule R: we use Geometric Decrease (Tk+1 = αTk with

α = 0.95).
– Number of moves at each temperature M(Tk) (Markov chain): we use (i) M(Tk) =

Tk� to ensure that the amount of moves is directly proportional to the actual
temperature. When the temperature Tk is less or equal than the double of the
number of edges, it performs the double of the number of edges moves in order
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Algorithm 4 SA-MDT
Generate an initial solution Sol ∈ E
k ← 0
while termination condition not met do

i ← 0
while i < M(Tk ) do

Sol′ ← N (Sol)
δ← f (Sol′)− f (Sol)
if δ < 0 then

Sol← Sol′
else

Sol← Sol′ with probability p(T, Sol, Sol′) //see Equation (5)
end if
i ← i + 1

end while
Tk+1 ← R(Tk )

k ← k + 1
end while

not to make few moves when the temperature is low. Therefore, when Tk ≤ 2× e,
then M(Tk) = 2 × e, where e is the number of edges of the initial solution; and
(ii) M(Tk) = e.

– Termination condition: the search process is finished when the temperature is less
than or equal to 0.005, i.e., T f = 0.005.

– Neighborhood of a solution N (x): two operators are used.
1. Local random retriangulation (RR) as used in the perturbation operator in ILS-

MDT algorithm.
2. Local greedy retriangulation (GR) is similar to the RR described above, but the

edges are inserted in a greedy way. A point b ∈ S is randomly chosen and all the
points adjacent to b are recovered (see Fig. 4a). Then the grey region that forms
the adjacent points to b is retriangulated using at each step the edges whose
points have the higher dilation (if it does not intersect with that previously
added (see Fig. 4b).

The sequence of application of these operators is based on the fact that the GR oper-
ator can lead to the same solution to which it applies (if the region to retriangulate
is the same). Therefore, it is interleaved with the RR operator to better explore the
search space. The application scheduling for these operators is as follows. GR is
performed g times and RR is performed r times. We considered g ∈ {4, 6, 8} and
r = 2 as will be described later in the next section.

3.5 Random Local Search Algorithm

Initially, the proposed SA algorithm used the operator retriang() (described in Sect.
3.2) to move in the solution space. We observed that such algorithm converged too early
to suboptimal regions (the best solution was achieved during the first temperature).
Therefore we proposed another operator for the SA algorithm to avoid this condition
of premature convergence.

123

Author's personal copy



Approximated algorithms for the minimum dilation triangulation problem 199

(a) (b)

Fig. 4 In (a), the grey region formed by the adjacent points of b (g, f, a, c) is shown. In (b), the edges are
added in a greedy way

On the other hand, the results obtained with operator retriang() were encouraging
with the LS and ILS algorithms (as it will be detailed in the next section of the paper).
Therefore, we propose a new algorithm; we called it RLS algorithm, which starts with
a random initial solution. maxEvals = 2n evaluations are performed, accepting good
and bad solutions. This allows to explore and exploit the search space, always keeping
the best solution found so far Solbest . We consider the operator retriang() but the
retriangulation of the region is calculated in a random manner because better results
were obtained.

The algorithm RLS-MDT is showed in Algorithm 5 remaining that the operator
retriang() returns a single neighbor.

Algorithm 5 RLS-MDT
Generate an initial solution Sol ∈ E
k ← 0
while k < maxEvals do

Sol← retriang(Sol)
k ← k + 1

end while
return Solbest

4 Experimental Evaluation and Statistical Analysis

After reviewing the literature on the presented issues we found no collections of
instances for the MDT problem. Therefore, no results are available for comparing our
proposed algorithms with some others previously studied. The collections of prob-
lem instances were designed by the authors, using an instance generator with dif-
ferent functions of Computational Geometry Algorithms Library.2 A collection of 10
instances respectively of size 40/80/120/160/200 were generated; i.e., a total of 50
problem instances, each one is called LDn-i , the size of the instance i , 1 ≤ i ≤ 10, is
denoted by n. The points are randomly generated, uniformly distributed with coordi-

2 http://www.cgal.org.
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nates x, y ∈ [0, 1000]. For implementation purposes, there are non collinear points.
The proposed algorithms were implemented in C language.

This paper shows the results obtained for instances LDn-i, with n = 40, 80, 120,

160, 200 and 1 ≤ i ≤ 4. For stochastic algorithms (LS-MDT, ILS-MDT, SA-MDT, and
RLS-MDT ) twenty-five runs were carried out with different initial seeds and different
triangulations for each run.

The statistical validation of results is necessary to establish a conclusion on an
experimental analysis. Statistical tests allow us to determine whether the differences
observed in results obtained are significant with respect to the choices taken and
whether the conclusions remarked are supported by the experimentation carried out.
We can find different studies that propose methods for conducting comparisons among
various approaches (Demšar 2006; Markatou et al. 2005).

We performed the Kolmogorov-Smirnov test to determine if the samples follow
a Normal distribution. As all samples have a non-Normal distribution we used non-
parametric statistical tests to evaluate the algorithms. In order to carry out a com-
parison which involves more than two algorithms Kruskal–Wallis test was used for
multiple comparisons with independent samples (Derrac et al. 2011). The idea of this
test is to rank all the results from all algorithms together and then apply a one-way
ANOVA to the ranks rather than to the original results. In order to compare the perfor-
mance of the algorithms on the whole set of instances, we applied the Friedman test
for related samples. These tests help to determine if there are significant differences
among the results obtained by the algorithms but do not show which algorithms have
significant differences in their results. We used the post-hoc Tukey test to find which
algorithms’ results are significantly different from one another. These tests are well-
known and they are usually included in standard statistics packages (such as Matlab,
R, etc.).

Due to the complexity involved in tuning the parameters of metaheuristic tech-
niques, we used Sequential Parameter Optimization (SPO) (Bartz-Beielstein 2006)
for tuning the parameters required by SA. SPO is a framework for tuning and under-
standing of algorithms by active experimentation and employs methods from error
statistics to obtain reliable results. SPO is a heuristic that combines classical and mod-
ern statistical techniques. The Sequential Parameter Optimization Toolbox (SPOT)
(Bartz-Beielstein 2010) is an implementation of the SPO framework. It has been suc-
cessfully applied to numerous heuristics for practical and theoretical optimization
problems. SPOT provides tools for tuning many parameters simultaneously and it
is well-suited for optimization problems and it can reach good results with only a
few model-building experiments since it builds a surrogate model during its sequence
of runs. This is constantly refined as the tuning progresses. SPOT has been made
available as an R-package.3 SPOT employs a sequentially improved model to esti-
mate the relationship between algorithm input variables and its output. Therefore
SPOT looks for two goals: one goal is to enable determining good parameter set-
tings, thus SPOT may be used as a tuner. Secondly, variable interactions can be
revealed for helping in understanding how the tested algorithm works when confronted

3 http://CRAN.R-project.org/package=SPOT.
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Table 1 Tunable parameters
and their ROI

The best tuning results are
shown in column “Best”

ROI Best

M(Tk ) [1, 2] 1

N (x) [1, 3] 3

T0 [1, 3] 3

with a specific problem or how changes in the problem influence the algorithm’s
performance.

All SPOT-tuning experiments for the SA-MDT algorithm were performed with the
following settings (see Bartz-Beielstein 2010 for further details): 50 sequence steps,
five new design points in each step, up to two repeats per design point, and seven
initial design points. Random Forest was used as a fast surrogate model building tool.
Latin hypercube sampling was chosen as the generator of design points.

The Region Of Interest (ROI) contains the interesting value ranges of the algorithm
parameters that should be optimized. These ranges are specified by two design points
(high and low limit value). Categorical variables are encoded as numerical values. The
ROI of the tunable parameters of SA-MDT is composed as follows.

– Number of moves at each temperature M(Tk): (1) Tk and (2) number of edges of
the initial solution.

– Neighborhood of a solutionN (x): local retriangulation interleaving with (1) r = 4,
g = 2, (2) r = 6, g = 2, and (3) r = 8, g = 2.

– Initial temperature (T0): (1) 1000× (n/4), (2) 1000× (n/2), and (3) the maximum
length of the paths in the initial solution.

In Table 1 the SPOT results are shown considering the tunable parameters. We
obtained better results with Tk moves at each temperature (M(Tk) = Tk), using local
retriangulation interleaving with r = 8 and g = 2 and with a initial temperature equal
the maximum length of the paths in the initial solution.

4.1 Comparing best results of the proposed algorithms

In this section we present the best results obtained by the proposed algorithms. It should
be noticed that G-MDT is a deterministic algorithm and therefore yields a single result
per instance. Table 2 shows the best values obtained with the proposed algorithms (the
lowest dilations are bolded): G-MDT, LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S ,
and RLS-MDT. SA-M DT+L S is an improvement of the SA-MDT algorithm by applying
local search (LS-MDT ) to the best solution obtained for each instance. In the second
column, the dilation of the Delaunay triangulation is shown in order to compare our
results with a known triangulation that have a upper bound of 1.998 (Xia 2011).

In the third column we show the results obtained with the greedy algorithm proposed
in (Klein 2006a). We called it OV-MDT because it computes the Obstacle Value of the
edges for approximating the minimum dilation triangulation. We use the Java-applet
available at (Klein 2006b) to obtain the results. It should be noted that the used applet
is a time-consuming process and the instances considered in (Klein 2006b) do not
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Table 2 Best results of DT, OV-MDT, G-MDT, LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S , and RLS-
MDT algorithms

Instance LD DT OV-MDT G-MDT LS-MDT ILS-MDT SA-MDT SA-M DT+L S RLS-MDT

40-1 1.31871 1.32863 1.37203 1.30959 1.29467 1.29467 1.29467 1.29467

40-2 1.37491 1.36881 1.37491 1.36881 1.36881 1.36881 1.36881 1.36881

40-3 1.32268 1.32268 1.36026 1.32268 1.32268 1.32268 1.32268 1.32268

40-4 1.35391 1.32330 1.34919 1.32330 1.32330 1.32557 1.32330 1.32330

80-1 1.33034 1.32363 1.39394 1.32363 1.32363 1.40844 1.32363 1.32363

80-2 1.40500 1.35181 1.38199 1.35339 1.32418 1.50331 1.32418 1.32418

80-3 1.37791 1.30519 1.36180 1.34065 1.31457 1.37791 1.33739 1.30519

80-4 1.42547 1.34239 1.39362 1.33176 1.31583 1.47561 1.31583 1.31583

120-1 1.37428 1.34442 1.42386 1.35398 1.34825 1.72082 1.34442 1.34442

120-2 1.33973 1.31194 1.37778 1.31194 1.30366 1.65921 1.31194 1.31194

120-3 1.37724 1.34016 1.43027 1.40314 1.31985 1.74912 1.34664 1.29786

120-4 1.38529 1.33600 1.39972 1.35152 1.34272 1.68163 1.34918 1.33600

160-1 1.34365 1.31050 1.43076 1.35236 1.33384 1.95530 1.34834 1.31050

160-2 1.35409 NA 1.33260 1.36463 1.33260 1.97896 1.33260 1.33260

160-3 1.35797 1.33278 1.37723 1.37178 1.36352 1.87574 1.36352 1.32995

160-4 1.37922 1.34941 1.37922 1.37922 1.35037 1.87033 1.35943 1.34941

200-1 1.35751 NA 1.42220 1.41867 1.35751 2.08064 1.37162 1.35751

200-2 1.39512 NA 1.39512 1.36451 1.36350 2.06324 1.37118 1.36350

200-3 1.41962 NA 1.45763 1.40645 1.40645 2.09818 1.40645 1.40645

200-4 1.36965 NA 1.40765 1.35499 1.35251 2.00110 1.37509 1.35251

The lowest dilations are bolded

exceed ten points. The word NA means that the applet did not produce a result (the
applet halted due to an error condition).

No results of other algorithms were found in the literature by the authors against
which we can compare our results.

We observed that all the results obtained by the proposed algorithms are less than
1.998 and the Delaunay triangulation never obtains better results for the instances
considered. The G-MDT algorithm obtained solutions of poor quality with respect to
those of the other algorithms, even for the smallest instances. The RLS-MDT algorithm
obtained the lowest (best) dilations for all problem instances (except for LD-120-2).
We observed that the OV-MDT algorithm did not obtain better results than RLS-MDT.
Although in some instances equal best values were obtained with some algorithms,
the RLS-MDT algorithm is less complex and faster than the other algorithms, as it will
be shown later in this section.

4.2 Comparing the performance of the proposed algorithms

In Table 3 we present the median values (the lowest are bolded) obtained by the
proposed algorithms: LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S , and RLS-MDT.
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Table 3 Median values for LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S , and RLS-MDT algorithms

Instance LD LS-MDT (1) ILS-MDT (2) SA-MDT (3) SA-M DT+L S (4) RLS-MDT (5)

40-1 1.36786 1.33142 1.35891 1.33142 1.33142

40-2 1.36881 1.36881 1.36881 1.36881 1.36881

40-3 1.36333 1.32268 1.32268 1.32268 1.32268

40-4 1.34919 1.32557 1.34919 1.32330 1.32330

80-1 1.38273 1.32363 1.65695 1.36237 1.32363

80-2 1.38199 1.32418 1.62768 1.37217 1.35630

80-3 1.38183 1.34662 1.56403 1.37791 1.34745

80-4 1.38201 1.33176 1.62907 1.34413 1.31583

120-1 1.41295 1.35398 1.90133 1.42386 1.35398

120-2 1.37696 1.31194 1.84388 1.38851 1.31194

120-3 1.48917 1.35736 1.88084 1.41905 1.31182

120-4 1.44444 1.35868 1.86884 1.40879 1.33600

160-1 1.41974 1.36817 2.11985 1.41974 1.31452

160-2 1.41918 1.36463 2.13222 1.42867 1.33260

160-3 1.44772 1.37597 2.12003 1.43008 1.32995

160-4 1.42350 1.36432 2.13973 1.39009 1.35943

200-1 1.49990 1.38670 2.34612 1.44980 1.35751

200-2 1.40806 1.38744 2.28723 1.39112 1.38744

200-3 1.43856 1.40645 2.32721 1.44293 1.40645

200-4 1.46962 1.37217 2.35554 1.45886 1.35251

The lowest median values are bolded

We observed that the RLS-MDT algorithm obtained the lowest median values for all
problem instances (except for LD-80-2 and LD-80-3).

Table 4 is used to show if there were significant differences between the proposed
algorithms using the Kruskal–Wallis test. In the “KW test” column we show the
p-value and, if the p-value is below 0.05, the last two columns show which algorithms’
results had significant differences with respect to those obtained by ILS-MDT (2) and
RLS-MDT (5) (because these algorithms obtained the best Best and Median values).
For example, if the p-value associated to the instance i is lower than 0.05 and in the
“Tukey test w.r.t. (5)” column is shown “1,3”, this means that the results of the RLS-
MDT algorithm (5) had significant differences with respect to those of the LS-MDT
(1) and SA-MDT (3) algorithms for the instance i .

We observed that there was always a significant difference between the algorithms
(1.e−16 < p-value≤ 0.0015). Smaller p-values were obtained while larger instances
are considered, i.e., the difference was much larger when considering sets with more
points. Considering the best and median values obtained by the ILS-MDT and RLS-
MDT algorithms, we noted that they had similar performances for the whole set
of instances. This situation was observed in the absence of significant differences
between these two algorithms. Although both algorithms had similar performances,
the RLS-MDT algorithm performed fewer evaluations than the others, as it can be
seen in Fig. 5 where the convergence plots of the algorithms are shown, except for
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Table 4 p-values of Kruskal–Wallis and Tukey tests for LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S , and
RLS-MDT algorithms

Instance LD K–W test Tukey test w.r.t. (5) Tukey test w.r.t. (2)

40-1 5.4988e−008 1 1

40-2 0.0015 1 1

40-3 2.5823e−008 1 1

40-4 1.1102e−016 1, 2, 3 1, 3, 5

80-1 1.e−16 1, 3, 4 1, 3, 4

80-2 1.e−16 1, 2, 3 1, 3, 4, 5

80-3 1.e−16 1, 3 1, 3, 4

80-4 1.e−16 1, 3 1, 3

120-1 1.e−16 1, 3, 4 1, 3, 4

120-2 1.e−16 1, 3, 4 1, 3, 4

120-3 1.e−16 1, 3, 4 1, 3

120-4 1.e−16 1, 2, 3, 4 1, 3, 5

160-1 1.e−16 1, 2, 3, 4 1, 3, 4, 5

160-2 1.e−16 1, 3, 4 1, 3, 4

160-3 1.e−16 1, 2, 3, 4 1, 3, 5

160-4 1.e−16 1, 3, 4 1, 3, 4

200-1 1.e−16 1, 3, 4 1, 3

200-2 1.e−16 1, 3, 4 1, 3, 4

200-3 1.e−16 1, 3, 4 1, 3, 4

200-4 1.e−16 1, 3, 4 1, 3, 4

the SA-MDT algorithm because it performs many evaluations and this produces an
unreadable plot. The x-axis represents the number of evaluations of the objective
function and the y-axis represents the objective value for each evaluation. We plotted
the data with logarithmic scale for the y-axis for a better display of the results. In each
plot we magnified some interesting regions to observe the behavior of the algorithms.
We observed that the LS-MDT and ILS-MDT algorithms behaved equal until the first
perturbation of ILS-MDT (the first peak in the dotted function). The LS-MDT algorithm
performed less evaluations while the ILS-MDT algorithm performed more evaluations,
getting better results. This agrees with the theoretical aspects of both strategies. The
RLS-MDT algorithm differs from others because it uses the RR operator instead of the
GR operator (see magnified plots). RLS-MDT does not converge to a single value, it
moves between suboptimal solutions until it consumes the given evaluations. Although
the RLS-MDT algorithm accepts bad solutions to further explore the solution space,
such solutions are not so bad (not very sharp peaks in the plots).

In Fig. 6 we present the results of the Tukey post-hoc test based on the Friedman test
using two performance metrics (best and median) in order to compare the performance
of the algorithms on the whole set of instances. Therefore we determined if there are
significant differences between the algorithms and showed which algorithm behaved
better than the others. In the x-axis, the confidence interval of mean ranks (given
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Fig. 5 Example of the behavior of the LS-MDT, ILS-MDT, and RLS-MDT algorithms for an instance of
(a) 40, (b) 80, (c) 160, and (d) 200 points
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Fig. 6 Friedman test using (a) the best values and (b) the median values over the whole set of instances

by the Friedman test) is shown. As G-MDT is a deterministic algorithm, we use the
single result as the best and median values. Using the best and median values for
the remaining algorithms as well, the test yielded a p-value = 1.8919e−011 and a
p-value = 4.2943e−013, respectively. Therefore, there were significative differences
between the proposed algorithms. In both cases, we observed a better performance of
RLS-MDT and ILS-MDT because they have the first rankings of the test.
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Table 5 Runtimes of DT, OV-MDT, G-MDT, LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S , and RLS-MDT
algorithms

Instance LD DT OV-MDT G-MDT LS-MDT ILS-MDT SA-MDT SA-M DT+L S RLS-MDT

40-1 0.0045 53.2532 0.439 0.032 0.737 863.163 863.196 0.250

40-2 0.0054 51.3404 0.191 0.032 0.471 998.381 998.413 0.227

40-3 0.0059 50.614 0.168 0.048 0.540 809.903 809.950 0.208

40-4 0.0063 66.7724 0.161 0.031 0.192 839.972 840.003 0.156

80-1 0.0108 1067.791 1.802 0.308 7.895 9931.709 9932.017 2.972

80-2 0.0113 854.6675 1.862 0.322 7.943 11046.521 11046.843 2.111

80-3 0.0114 1124.764 1.813 0.289 7.814 9646.330 9646.619 2.543

80-4 0.011 857.2655 1.846 0.367 7.947 15960.365 15960.732 2.744

120-1 0.0134 9196.828 7.952 1.615 43.575 69768.200 69769.815 7.888

120-2 0.0145 9223.472 7.929 1.521 30.039 66366.500 66368.021 7.990

120-3 0.0141 10816.831 8.150 1.777 30.877 76360.000 76361.777 9.332

120-4 0.0166 10360.759 8.503 1.554 29.988 66969.000 66970.554 7.644

160-1 0.0319 92250.185 23.005 5.556 86.127 209016.600 209022.156 26.306

160-2 0.0323 – 24.176 4.688 82.365 247275.400 247280.088 24.705

160-3 0.0311 61097.471 23.844 4.763 73.718 247970.600 247975.363 26.985

160-4 0.0333 64406.581 24.354 5.193 78.879 202503.600 202508.793 23.069

200-1 0.0497 – 54.947 11.136 176.614 479645.600 479656.736 52.146

200-2 0.0489 – 55.643 20.301 174.671 507958.400 507978.701 53.070

200-3 0.0495 – 56.711 12.638 173.478 556564.200 556576.838 60.524

200-4 0.0499 – 57.107 12.179 174.970 507628.200 507640.379 48.743

4.3 Runtime analysis

In this subsection we compare and analyze the computational effort of the studied
algorithms applied to the MDT problem.

Table 5 shows the runtimes (in seconds) that each algorithm consumes to solve
the problem instances considered. For a different point of view, Fig. 7 shows these
data graphically. The x-axis and y-axis represent respectively, the problem instances
studied in the experimental evaluation and the consumed time (in seconds and plotted
in logarithmic scale).

The SA-MDT and SA-M DT+L S algorithms had similar runtimes due to the fact that
SA-M DT+L S performs only a local search over the best solution found by breakSA-
MDT. Besides, both algorithms reach the highest runtimes since they perform more
function evaluations with respect to the remaining proposed algorithms. Although the
DT algorithm is the fastest one, its results are not competitive with respect to the
results of the other methods. As expected, ILS-MDT is slower than LS-MDT because
ILS-MDT repeatedly calls the local search process. The runtimes of RLS-MDT and G-
MDT are similar; however, RLS-MDT obtains much better quality results. A runtime
comparison between the proposed algorithms against OV-MDT could be unfair since
this algorithm is implemented as an applet. Nevertheless, we also show the runtimes
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Fig. 7 Runtimes of DT, OV-MDT, G-MDT, LS-MDT, ILS-MDT, SA-MDT, SA-M DT+L S , and RLS-MDT
algorithms

for OV-MDT in order to include it in the overall runtime analysis. Considering this
fact, OV-MDT is the second slowest algorithm. Even though RLS-MDT and ILS-MDT
algorithms have similar performances, ILS-MDT is slower than RLS-MDT (by an
average factor of 3.18).

5 Conclusions

The design of approximated algorithms for solving the Minimum Dilation Triangula-
tion problem for sets of points in the plane and their respective experimental evaluation
and statistical analysis were presented. In this paper we showed how some metaheuris-
tic techniques can be used to find high quality triangulations of minimum dilation. We
have created a set of instances for the experimental study since no reference to bench-
marks for these problems were found in the literature. They are available at the research
project site (http://www.dirinfo.unsl.edu.ar/bd2/GeometriaComp/).

Considering the experimental evaluation, we assessed the applicability of the LS,
ILS, SA, and RLS algorithms for the MDT problem. The respective performances were
analyzed with nonparametric statistical tests. The statistical analysis showed that RLS-
MDT and ILS-MDT have similar performances and they are competitive with respect to
the other algorithms in the problem instances considered. RLS-MDT obtained the best
objective values for all the studied instances (except for LD120-2). The improvement
achieved over the results of the greedy strategy resulted in a reduction on the dilation
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values between 0.4 % and 9.2 %. Although RLS-MDT and ILS-MDT behave similarly,
the RLS-MDT algorithm required less functions evaluations and it is faster than ILS-
MDT. It should be noted that the existing algorithm (OV-MDT ) yielded no results for
four of the instances considered. Our best algorithm (RLS-MDT ) outperformed 50 %
of the instances considered and obtained the same results for the other instances.

The future work will address us to go further in our research in order to propose and
design alternative metaheuristics such as genetic algorithms or ant colony optimization
algorithms so as to analyze their performances with respect to the MDT problem.
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