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Abstract: Given an Orlicz space Lφ, we give very relaxed sufficient conditions on φ to ensure that there exists
a best φ-approximation from any finite dimensional bounded linear subspace S ⊂ Lφ. In addition, given an
operator T, defined from Lφ into itself, we give necessary and sufficient conditions on T to ensure that this is
a best φ-approximation operator from a linear subspace S.
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1 Introduction and notations
Let F be the class of all non decreasing functions φ defined for all real numbers t ≥ 0, with φ(0) ≥ 0. We also
assume a ∆2 condition for the functions φ, which means that there exists a constant Λ = Λφ > 0 such that
φ(2a) ≤ Λφ(a) for a ≥ 0.

Let φ ∈ F, and let (B,A,m) be the Lebesguemeasure space, where B ⊂ ℝ is a bounded set. We denote by
Lφ = Lφ(B,A,m) the Orlicz space given by the class of all A-measurable functions f defined on B such that
∫B φ(|f |) dm < ∞.

Given a set S ⊂ Lφ, an element s∗ ∈ S is called a best φ-approximation of f ∈ Lφ from the approximation
class S if and only if

∫
B

φ(|f − s∗|) dm = inf
s∈S

∫
B

φ(|f − s|) dm =: ES(f ),

and, in this case, we write s∗ ∈ μφ(f/S). The mapping μφ : Lφ → 2S is called the best φ-approximation oper-
ator from S.

In the present paper we consider two problems. The study of existence of the best φ-approximation (i.e.,
μφ(f/S) ̸= 0) and the characterization of all operators that behave as the best φ-approximation operator μφ
defined before.

The problem of existence was extensively treated in [13] for the case where S is a lattice (i.e., if f, g ∈ S,
then min(f, g) ∈ S and max(f, g) ∈ S) and φ is a continuous function. Many cases of best approximation by
linear subspaces are carried out with this setup. For instance, for φ(t) = t2, where the approximation class
is given through a sub σ-algebra (the classical conditional expectation) or through a sub σ-lattice was pri-
mary considered in [3]. Also [13] covers the case where φ(t) = tp, p > 1, by considering a sub σ-algebra. The
concept of p-predictors was treated by Ando and Amemiya in [1], whereas that of sub σ-lattices was treated
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in the seventies in [5]. Another case covered by [13] is when φ(t) = t by considering sub σ-algebras, which
is the concept of conditional medians presented in [19]. We also mention the study of the extended best ap-
proximation operator in [10], where the class S comes from a σ-lattice. We point out that in all these cases
the approximation classes were suitable lattices, and most of them were treated for φ(t) = tp.

In this paper, we obtain that μφ(f/S) ̸= 0 for a wider class of functions φ than the ones considered in [13],
and with a finite dimensional linear subspace of Lφ as the approximation class, for instance, the real polyno-
mials defined on B with degree at most n. We want to emphasize that the set of polynomials is not in general
a lattice. Thus, this approximation class is not considered in [13]. For this case we cannot use themonotonic-
ity argument used in [13] to prove that μφ(f/S) ̸= 0. Also we provide an example where μφ(f/S) = 0 if the left
continuity condition on φ is removed. This result is presented in Section 2.

The characterization problem for the best linear approximation operator has been investigated by many
authors. For the classical conditional expectation, i.e., φ(t) = t2 and where S is a set of measurable functions
with respect to a sub σ-algebra, the first general result appears in [15]. A similar characterization result was
given in [2]. These results were also treated by other authors in [8, 16–18] in the sixties.

A characterization of a non linear operator as a conditional expectation with respect to a sub σ-lattice
appears in [9]. In [12] it was given a characterization of the best approximation operator from a sub σ-lattice
in the Lp space, 1 < p < ∞. The same authors in [14] extended these results considering Orlicz spaces Lφ,
and also gave a characterization of the best approximation operator for σ-algebras as approximation classes.
In [6] Carrizo, Favier and Zó studied the characterization of the extended best φ-approximation operator.

In this paper we obtain, in Theorems 3.4 and 3.12, a characterization of the best φ-approximation op-
erator considering linear subspaces of Lφ. Note that in these theorems, the polynomials can be included as
an approximation class. Also, in Theorem 3.12 we get a characterization of best φ-approximation operators
considering fewer requirements on φ and different hypotheses on the operator T to those in [14], to ensure
that it is a best φ-approximation operator for given a sub σ-algebra.

2 Existence of best φ-approximations
In this section we prove the existence of the best φ-approximation when the class S is a finite-dimensional
subspace from L∞(B). For this purpose,wefirstmake some considerations. Forφ ∈ F, we consider the convex
function Φ(x) := ∫

x
0 φ(t)dt, and using the ∆2 condition on φ it is easy to see that

x φ(x)2Λφ
≤ Φ(x) ≤ xφ(x). (2.1)

Next we prove an auxiliary result.

Lemma 2.1. Let φ ∈ F, f ∈ Lφ(B), and let S ⊂ L∞(B) be a finite dimensional space. Then there exists a positive
constant K such that

φ(‖s‖∞) ≤
K
|B| ∫

B

φ(|s|) dm

for every s ∈ S.

Proof. If ‖s‖∞ = 0 the lemma follows at once for K = 1. Suppose that ‖s‖∞ ̸= 0. Using the equivalence of
norms in S, there exists a constant C > 0 such that

Φ(‖s‖∞) ≤ Φ(
C
|B| ∫

B

|s| dm)

for all s ∈ S. Now, by Jensen’s inequality, we have

Φ(‖s‖∞) ≤ K̃ 1
|B| ∫

B

Φ(|s|) dm, (2.2)
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for a constant K̃ which depends only on C and Λφ. Then we use (2.1), to get ‖s‖∞φ(‖s‖∞) ≤ 2ΛφΦ(‖s‖∞).
Now, using (2.2) and (2.1), we obtain

‖s‖∞φ(‖s‖∞) ≤ 2Λφ K̃
1
|B| ∫

B

Φ(|s|) dm

≤ 2Λφ K̃
1
|B| ∫

B

|s|φ(|s|) dm

≤ 2Λφ
K̃
|B|

‖s‖∞ ∫
B

φ(|s|) dm,

and the proof is complete.

The following example shows that the above lemma does not remain valid if the assumption S ⊂ L∞(B) is not
required.

Example 2.2. Let B = [0, 1], φ(x) = √x, and let S be the subspace spanned by the function g(x) = 1
x . Clearly,

g ∈ Lφ, however, g ̸∈ L∞(B).

Theorem 2.3. Let φ ∈ F be a left continuous function, and let S ⊂ L∞(B) be a finite-dimensional subspace.
Then, for f ∈ Lφ, there exists s∗ ∈ S such that

∫
B

φ(|f − s∗|) dm = ES(f ).

Proof. Let {sk}k∈ℕ ⊂ S be such that

∫
B

φ(|f − sk|) dm ≤ ES(f ) +
1
k
.

Then, using the ∆2 condition on φ, we obtain

∫
B

φ(|sk|) dm ≤ Λφ(∫
B

φ(|f − sk|) dm + ∫
B

φ(|f |) dm) ≤ Λφ(ES(f ) + 1 + ∫
B

φ(|f |) dm).

From Lemma 2.1 we get that {φ(‖sk‖L∞(B))}k∈ℕ is bounded. Now, if limx→∞ φ(x) = ∞, then we have that
{‖sk‖L∞(B)}k∈ℕ is uniformly bounded and there exists s∗ ∈ S such that limj→∞‖skj − s∗‖L∞(B) = 0 for some
subsequence {skj }j∈ℕ. Thus, skj − s∗ converges to 0 a.e. on B. Finally, by the left continuity of φ and Fatou’s
Lemma, we have

∫
B

φ(|f − s∗|) dm ≤ ∫
B

lim inf
j→∞

φ(|f − skj |) dm ≤ lim inf
j→∞

∫
B

φ(|f − skj |) dm ≤ ES(f ). (2.3)

On the other hand, if φ(x) is a bounded function, set φ(∞) = limx→∞ φ(x) and suppose that ‖skj‖∞ ↗ ∞ as
j → ∞. For Rkj := skj/‖skj‖∞, we get Rkj → R0, with R0 ∈ S and ‖R0‖∞ = 1, for a subsequence that we call
again by Rkj . Then, using Lebesgue’s dominated theorem, we obtain

lim
j→∞

∫
B

φ(|f − skj |) dm = lim
j→∞

∫
B−{R0=0}

φ(
|f − skj |
‖skj‖∞

‖skj‖∞) dm = φ(∞)|B|.

Then
ES(f ) = φ(∞)|B| ≤ ∫

B

φ(|f |) dm ≤ φ(∞)|B|,

which implies 0 ∈ μφ(f/S) and the proof is complete.

The next example shows that the left continuity condition on φ has to be enforced.
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Example 2.4. Let φ be the following non decreasing and non left continuous function

φ(x) =
{
{
{

x if 0 ≤ x < 1
2 ,

2x + 1 if 1
2 ≤ x ≤ 1.

Set B = [0, 1], f(x) = χ[0, 12 ](x) and, as the approximation class, S = Π0. Then the approximation problem is to
minimize the function F(x) = φ(x) + φ(1 − x) for 0 ≤ x ≤ 1. Then F(x) = |x − 1

2 | +
5
2 for x ̸= 1

2 and F(
1
2 ) = 4, so

the minimum is not reached.

In the next example we show that the best polynomial approximation may not be unique.

Example 2.5. Let B = [0, 1] and S = Π0 be the set of all constant functions, and let f(x) = χ[0,1/2](x) and
φ(x) = √x. Then a direct calculation gives μφ(f/S) = {0, 1}.

Theorem 2.6. Letφ ∈ F bea left continuous function such that limx→∞ φ(x) = ∞, and let S ⊂ L∞(B)beafinite-
dimensional subspace. Then μφ(f/S) is a compact set in (S, ‖ ⋅ ‖L∞(B)).

Proof. Let {sk}k∈ℕ ⊂ μφ(f/S) be such that ∫B φ(|f − sk|) dm = ES(f ). According to Lemma 2.1, we have that
{‖sk‖L∞(B)}k∈ℕ is bounded. So, there exist s∗ ∈ S and a subsequence of {sk}k∈ℕ, denoted again by {sk}, such
that limk→∞‖s∗ − sk‖L∞(B) = 0. Using (2.3), we have that s∗ ∈ μφ(f/S), which means that μφ(f/S) is sequen-
tially compact in (S, ‖ ⋅ ‖L∞(B)), and this completes the proof.

Remark 2.7. The hypothesis limx→∞ φ(x) = ∞ in Theorem 2.6 cannot be removed. In fact, we can consider
φ(x) = 1 and then μφ(f/Πn) = Πn for any measurable function f .

3 Characterization of best φ-approximation operators
For C ⊂ Lφ, we denote by Cφ the set of all limits of sequences on C, by considering

dφ(f, g) = ∫
B

φ(|f − g|) dm.

Let T : Lφ → Lφ be a single-valued operator. We denote the range of T by

RT = {T(f ) : f ∈ Lφ}.

In this sectionwedenote by F̃ the set of functionsφ inFwhich satisfyφ(0) = 0 and limx→∞ φ(x) = ∞.We
give necessary and sufficient conditions on an operator T to assure that it is a best φ-approximation operator.
To this end, we introduce the following definition.

Definition 3.1. A single-valued operator T : Lφ → Lφ is called:
(i) quasiadditive if T(f + Tg) = Tf + Tg for all f, g ∈ Lφ,
(ii) quasihomogeneous if T(αTf ) = αTf for all f ∈ Lφ and α ∈ ℝ,
(iii) quasialgebraic if T(1) = 1 and T(Tg Tf ) = Tg Tf for all f, g ∈ L∞(B),
(iv) φ-closed if limn→∞ dφ(fn , f ) = 0 and limn→∞ dφ(Tfn , g) = 0 imply Tf = g,
(v) φ-expectation invariant if ∫B φ(|f − Tf |) dm ≤ ∫B φ(|f |) dm for all f ∈ Lφ,
(vi) φ-bounded if RT ⊂ RT ∩ L∞(B)φ.

The following examples show that the best φ-approximation operators satisfy most of the conditions given
in the last definition.

Example 3.2. It is easy to check the following:
(i) Let φ be any convex function with φ(0) = 0, and let S be the class of algebraic polynomials with real

coefficients of degree at most n defined on anymeasurable and bounded set B inℝ. Then the operator T,
defined by T(f ) = μφ(f/S), f ∈ Lφ, satisfies (i), (ii) and (v) of Definition 3.1.
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(ii) Let φ(t) = tp, 1 < p < ∞, B = [0, 1], and S = span{χ[0, 12 ), χ[ 12 ,1]}. Then the operator T, defined by
T(f ) = μφ(f/S), satisfies (i)–(vi) of Definition 3.1.

Next we need some auxiliary results.

Lemma 3.3. If the operator T : Lφ → Lφ is quasiadditive and T0 = 0, then RT = {f ∈ Lφ : Tf = f }. In addition,
if T is φ-closed, then RT

φ
= RT .

Proof. Set S = {f ∈ Lφ : Tf = f }. Clearly, S ⊂ RT . On the other hand, since T is quasiadditive and T0 = 0,

T(Tf ) = Tf for all f ∈ Lφ .

Therefore, RT ⊂ S.
Now, let g ∈ RT

φ. Then there exists a sequence {gk}k∈ℕ ⊂ RT such that limk→∞ dφ(Tgk , g) = 0. Since
T(Tgk) = Tgk, limk→∞ dφ(T(Tgk), g) = 0. As T is φ-closed, we have Tg = g, and so g ∈ RT .

The following theorem gives sufficient conditions for an operator T to be a best φ-approximation operator.

Theorem 3.4. Let φ ∈ F̃. If the operator T : Lφ → Lφ is quasiadditive, quasihomogeneous and φ-expectation
invariant, then Tf ∈ μφ(f/RT) for all f ∈ Lφ.

Proof. We have T0 = 0, since T is quasihomogeneous. So, Lemma 3.3 shows that RT = {f ∈ Lφ : Tf = f }. As
T is also quasiadditive, we obtain

Tf − Tg = Tf + T(−Tg) = T(f + T(−Tg)) = T(f − Tg), f, g ∈ Lφ . (3.1)

Let f ∈ Lφ and P ∈ RT \ {Tf }. Since TP = P, according to (3.1), we have T(f − TP) = Tf − TP = Tf − P ̸= 0. As
T is φ-expectation invariant, we get

∫
B

φ(|f − Tf |) dm = ∫
B

φ(|f − TP − (Tf − TP)|) dm

= ∫
B

φ(|f − TP − T(f − TP)|) dm

≤ ∫
B

φ(|f − TP|) dm

= ∫
B

φ(|f − P|) dm.

Therefore, Tf ∈ μφ(f/RT).

Remark 3.5. Under the same hypotheses of Theorem 3.4, if μφ(f/RT) is a singleton for all f ∈ Lφ, then
Tf = μφ(f/RT) for all f ∈ Lφ. This is the case, for example, if Definition 3.1 (v) is considered with a strict
inequality.

If we also assume the uniqueness of the best φ-approximation for all f ∈ Lφ, we get the following character-
ization result.

Theorem 3.6. Let φ ∈ F̃, and let T : Lφ → Lφ be an operator. Assume that μφ(f/RT) is a singleton for all f ∈ Lφ.
Then the following statements are equivalent:
(i) RT is a subspace of Lφ, and Tf = μφ(f/RT) for all f ∈ Lφ.
(ii) T is quasiadditive, quasihomogeneous and φ-expectation invariant.

Proof. (i)⇒ (ii) Let f, g ∈ Lφ and α ∈ ℝ. Clearly, T is φ-expectation invariant. Since ∫B φ(|αf − αT(f )|) dm = 0
for f ∈ RT , T is quasihomogeneous. Finally, an easy computation shows that Tf + Tg = μφ((f + Tg)/RT) and
consequently T(f + Tg) = Tf + Tg, i.e., T is quasiadditive.

(ii)⇒ (i) Let f ∈ Lφ. By hypothesis and Theorem 3.4, we have

Tf = μφ(f/RT).
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Now, we claim that RT is a subspace of Lφ. Indeed, let P, Q ∈ RT and α, β ∈ ℝ. Since T is quasihomogeneous,
T(βQ) = βQ, which implies

T(αP + βQ) = T(αP + T(βQ)) = T(αP) + T(βQ) = αP + βQ,

because T is quasiadditive. This completes the proof.

The next corollary provides special cases of best φ-approximation operators assuming additional properties
on φ.

Corollary 3.7. Let φ ∈ F̃ be a differentiable strictly convex function with φ�(0) = 0. Let T : Lφ → Lφ be a quasi-
additive and quasihomogeneous operator that satisfies

∫
B

φ�(|f − Tf |) sgn(f − Tf )T(f ) dm ≥ 0 for all f ∈ Lφ .

Then RT is a subspace of Lφ and Tf = μφ(f/RT).

Proof. Let f ∈ Lφ be such that Tf ̸= 0 and consider r : (0, 1] → ℝ, a strictly convex function defined by

r(t) = 1
t ∫
B

(φ(|f − Tf + tTf |) − φ(|f − Tf |)) dm.

By hypothesis, we have

∫
B

φ(|f |) dm − ∫
B

φ(|f − Tf |) dm = r(1) ≥ r(t), t ∈ (0, 1].

So, [11, pp. 16–17] implies that

∫
B

φ(|f |) dm − ∫
B

φ(|f − Tf |) dm ≥ lim
t→0+ r(t) ≥ ∫

B

φ�(|f − Tf |) sgn(f − Tf )T(f ) dm ≥ 0,

i.e., T is φ-expectation invariant. Since μφ(f/RT) is a singleton for all f ∈ Lφ, Theorem 3.6 completes the
proof.

We point out that the extended best polynomial approximation operator given in [7], defined on Lp−1(B),
satisfies the hypothesis of Corollary 3.7.

In the following we consider additional properties on T, which allow us to obtain specific subspaces RT .

Definition 3.8. Let S be a subspace of Lφ. We say that S is measurable if there exists a sub σ-algebra of A,
say L, such that S is the class of all L-measurable functions in Lφ, i.e., S = Lφ(B,L,m). The subspace S is
called bounded if S ⊂ S ∩ L∞(B)φ.

Lemma 3.9. Let S ⊂ Lφ be a subspace. If S is measurable, then Sφ = S.

Proof. By hypothesis, S = Lφ(B,L,m) for some σ-subalgebra L of A. If g ∈ Sφ, then there exists a sequence
{gk}k∈ℕ ⊂ S such that

lim
k→∞

dφ(gk , g) = 0. (3.2)

Hence, there exists a subsequence of {gk}k∈ℕ, which is denoted in the sameway, such that limk→∞ gk = g a.e.
on B. So, g is anL-measurable function. In addition, from (3.2) we have g ∈ Lφ and consequently g ∈ S. This
completes the proof.

Example 3.10. The subspace S given in Example 3.2 (b) is bounded and measurable. Indeed, it is easy to
check that S = Lφ(B,L,m) ⊂ L∞(B), where L is the sub σ-algebra {0, [0, 12 ), [

1
2 , 1], B}.

Lemma 3.11. Let φ ∈ F̃ and let T : Lφ → Lφ be a quasiadditive, quasialgebraic and φ-closed operator. Then
the set L = {A ⊂ B : T(χA) = χA} is a sub σ-algebra ofA.
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Proof. Clearly, B ∈ L, since T(1) = 1. Let A1, A2 ∈ L. As χA1∩A2 = χA1χA2 = T(χA1 )T(χA2 ), we have

T(χA1∩A2 ) = T(T(χA1 )T(χA2 )) = T(χA1 )T(χA1 ) = χA1χA2 = χA1∩A2 . (3.3)

According to (3.3), we have χA1\A2 = χA1 − χA1∩A2 = χA1 − T(χA1∩A2 ), hence (3.1) implies

T(χA1\A2 ) = T(χA1 − T(χA1∩A2 )) = T(χA1 ) − T(χA1∩A2 ) = χA1 − χA1∩A2 = χA1\A2 . (3.4)

By (3.4), we get

T(χA1∪A2 ) = T(χA1 + χA2\A1 ) = T(χA1 + T(χA2\A1 )) = T(χA1 ) + T(χA1\A2 ) = χA1 + χA1\A2 = χA1∪A2 . (3.5)

Now, let {Ak}k∈ℕ ⊂ L. From (3.5) we obtain that gN := χ⋃Nk=1 Ak ∈ L, N ∈ ℕ, and {gN}N∈ℕ is a nondecreasing
sequence such that limN→∞ dφ(gN , g) = 0, where g = χ⋃∞k=1 Ak . Since T(gN) = gN , N ∈ ℕ, and T is φ-closed, it
follows that T(g) = g.

Theorem 3.12. Letφ ∈ F̃ and let T : Lφ → Lφ be an operator. Assume that μφ(f/RT) is a singleton for all f ∈ Lφ.
If T is quasiadditive, quasialgebraic, φ-closed, φ-expectation invariant and φ-bounded, then RT is a bounded
measurable linear subspace of Lφ and Tf = μφ(f/RT) for all f ∈ Lφ.

Proof. Since T is quasialgebraic, it is quasihomogeneous and T0 = 0. By Lemma 3.3, we have

RT = {f ∈ Lφ : Tf = f }.

Let L be the sub σ-algebra given in Lemma 3.11, and let A1, A2 ∈ L, α1, α2 ∈ ℝ. By hypothesis, we have

T(α1χA1 + α2χA2 ) = T(α1χA1 + α2T(χA2 )) = T(α1χA1 + T(α2T(χA2 )))

= T(α1χA1 ) + T(α2T(χA2 )) = T(α1T(χA1 )) + T(α2T(χA2 ))

= α1T(χA1 ) + α2T(χA2 ) = α1χA1 + α2χA2 .

Therefore, α1χA1 + α2χA2 ∈ RT . So, linear combinations of characteristic functions of sets of L are in RT . The
facts that the totality of such functions is dense in Lφ(B,L,m) with respect to dφ, and T is φ-closed, imply
T(f ) = f for all f ∈ Lφ(B,L,m). Hence,

Lφ(B,L,m) ⊂ RT . (3.6)

We claim that
RT ∩ L∞(B) ⊂ Lφ(B,L,m). (3.7)

Indeed, let g ∈ RT ∩ L∞(B). Then there exist α, β ∈ ℝ such that α ≤ g ≤ β. Hence,

∫
B

φ(|g|) dm ≤ φ(!!!!max{|α|, |β|}!!!!)m(B) < ∞,

and so g ∈ Lφ. Set I = [α, β], and let M be the Borel σ-algebra on I. Now, we will prove that if D ∈ M, then
g−1(D) ∈ L, and consequently g ∈ Lφ(B,L,m).

We consider the Lebesgue–Stieltjes measure μg : M → [0,m(B)] given by

μg(C) = m(g−1(C)) for C ∈ M. (3.8)

Since (I,M, μg) is a finitemeasure space, from (3.8), [4, Proposition 7.2, p. 80] and [4, Proposition 1.8, p. 43],
we have

∫
I

φ(|h|) dμg = ∫
B

φ(|h ∘ g|) dm whenever h : I → ℝ is aM-measurable function. (3.9)

Let D ∈ M and k ∈ ℕ. As φ(0+) = 0, there exists ϵk > 0 such that

φ(ϵk) <
1

2kΛ min{ 1
φ(1) ,

1
m(I)}

.
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Since, μg is a regular measure, there exist an open set U and a closed set F such that F ⊂ D ⊂ U ⊂ I and
μg(U \ F) < φ(ϵk). By Urysohn’s lemma, there exists a continuous function f : I → [0, 1] such that f |F = 1
and f |(I\U) = 0. So,

∫
I

φ(|f − χD|) dμg = ∫
U\F

φ(|f − χD|) dμg ≤ φ(1)μg(U \ F) < 1
2kΛ . (3.10)

On the other hand, by Weierstrass’ theorem there exists a polynomial Pk on I such that |Pk(x) − f(x)| < ϵk for
all x ∈ I, and so

∫
I

φ(|Pk − f |) dμg ≤ φ(ϵk)m(I) < 1
2kΛ .

Therefore, (3.9) and (3.10) imply that

∫
B

φ(|Pk(g) − χg−1(D)|) dm = ∫
B

φ(|(Pk − χD) ∘ g|) dm = ∫
I

φ(|Pk − χD|) dμg

≤ Λ∫
I

φ(|Pk − f |) dμg + Λ∫
I

φ(|f − χD|) dμg <
1
k
,

and consequently limk→∞ dφ(Pk(g), χg−1(D)) = 0.
Since g2 = TgTg = T(TgTg) = T(g2), by induction we see that gn = T(gn), n ∈ ℕ, i.e., gn ∈ RT , n ∈ ℕ. By

Theorem 3.6, it follows that RT is a subspace of Lφ. Hence, Pk(g) ∈ RT , k ∈ ℕ, and so

lim
k→∞

dφ(T(Pk(g)), χg−1(D)) = 0.

As T is φ-closed, we have Tχg−1(D) = χg−1(D), and therefore g−1(D) ∈ L.
Now, from (3.6), (3.7) and Lemmas 3.3 and 3.9, we get RT ∩ L∞(B)φ ⊂ Lφ(B,L,m) ⊂ RT . Since T is

φ-bounded, we have RT = Lφ(B,L,m).
Finally, Theorem 3.6 completes the proof.
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