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Abstract: Given an Orlicz space L%, we give very relaxed sufficient conditions on ¢ to ensure that there exists
a best p-approximation from any finite dimensional bounded linear subspace S ¢ L?. In addition, given an
operator T, defined from L? into itself, we give necessary and sufficient conditions on T to ensure that this is
a best @p-approximation operator from a linear subspace S.
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1 Introduction and notations

Let J be the class of all non decreasing functions ¢ defined for all real numbers ¢ > 0, with ¢(0) > 0. We also
assume a A, condition for the functions ¢, which means that there exists a constant A = A, > 0 such that
¢(2a) < Ap(a) fora > 0.

Let ¢ € &, and let (B, A, m) be the Lebesgue measure space, where B ¢ R is a bounded set. We denote by
L% = L¥(B, A, m) the Orlicz space given by the class of all A-measurable functions f defined on B such that
[ (If1y dm < co.

Given a set S ¢ L?, an element s* € S is called a best @-approximation of f € L? from the approximation
class S if and only if

[ otr-snyam = inf [ o - sy dm = Es(p),

B B

and, in this case, we write s* € i, (f/S). The mapping p,: LY — 25 is called the best @-approximation oper-
ator from S.

In the present paper we consider two problems. The study of existence of the best ¢-approximation (i.e.,
My (f/S) #+ 0) and the characterization of all operators that behave as the best @-approximation operator p,
defined before.

The problem of existence was extensively treated in [13] for the case where S is a lattice (i.e., if f, g € S,
then min(f, g) € S and max(f, g) € S) and ¢ is a continuous function. Many cases of best approximation by
linear subspaces are carried out with this setup. For instance, for ¢(t) = 2, where the approximation class
is given through a sub ¢-algebra (the classical conditional expectation) or through a sub ¢-lattice was pri-
mary considered in [3]. Also [13] covers the case where ¢(t) = t?, p > 1, by considering a sub ¢-algebra. The
concept of p-predictors was treated by Ando and Amemiya in [1], whereas that of sub o-lattices was treated
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in the seventies in [5]. Another case covered by [13] is when ¢(t) = t by considering sub o-algebras, which
is the concept of conditional medians presented in [19]. We also mention the study of the extended best ap-
proximation operator in [10], where the class S comes from a o-lattice. We point out that in all these cases
the approximation classes were suitable lattices, and most of them were treated for ¢(t) = tP.

In this paper, we obtain that u, (f/S) # 0 for a wider class of functions ¢ than the ones considered in [13],
and with a finite dimensional linear subspace of L? as the approximation class, for instance, the real polyno-
mials defined on B with degree at most n. We want to emphasize that the set of polynomials is not in general
alattice. Thus, this approximation class is not considered in [13]. For this case we cannot use the monotonic-
ity argument used in [13] to prove that u, (f/S) # 0. Also we provide an example where p, (f/S) = 0 if the left
continuity condition on ¢ is removed. This result is presented in Section 2.

The characterization problem for the best linear approximation operator has been investigated by many
authors. For the classical conditional expectation, i.e., ¢(t) = t> and where S is a set of measurable functions
with respect to a sub o-algebra, the first general result appears in [15]. A similar characterization result was
given in [2]. These results were also treated by other authors in [8, 16—18] in the sixties.

A characterization of a non linear operator as a conditional expectation with respect to a sub o-lattice
appears in [9]. In [12] it was given a characterization of the best approximation operator from a sub o-lattice
in the L? space, 1 < p < oo. The same authors in [14] extended these results considering Orlicz spaces L?,
and also gave a characterization of the best approximation operator for o-algebras as approximation classes.
In [6] Carrizo, Favier and Z6 studied the characterization of the extended best ¢-approximation operator.

In this paper we obtain, in Theorems 3.4 and 3.12, a characterization of the best ¢-approximation op-
erator considering linear subspaces of L?. Note that in these theorems, the polynomials can be included as
an approximation class. Also, in Theorem 3.12 we get a characterization of best ¢-approximation operators
considering fewer requirements on ¢ and different hypotheses on the operator T to those in [14], to ensure
that it is a best ¢-approximation operator for given a sub o-algebra.

2 Existence of best ¢-approximations

In this section we prove the existence of the best ¢-approximation when the class S is a finite-dimensional
subspace from L (B). For this purpose, we first make some considerations. For ¢ € F, we consider the convex
function ®(x) := jg @(t)dt, and using the A, condition on ¢ it is easy to see that

p(x)

xm < O(x) < xp(x). (2.1)

Next we prove an auxiliary result.

Lemma 2.1. Letp € F,f € L¥(B), and let S c L*°(B) be a finite dimensional space. Then there exists a positive
constant K such that

K
Plslle) < 72 ! o(lsl) dm

foreverys € S.

Proof. If |s|lo = O the lemma follows at once for K = 1. Suppose that ||s|« # 0. Using the equivalence of
norms in S, there exists a constant C > 0 such that

O(Islleo) < @(% j|s| dm)
B

forall s € S. Now, by Jensen’s inequality, we have

O(Islle0) < K|—1| j o (|s]) dm, (2.2)

B
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for a constant K which depends only on C and Ayp. Then we use (2.1), to get [Slleo@(lISlleo) < 2A5P(lISlloo)-
Now, using (2.2) and (2.1), we obtain

[~

Isllco@(llslico) < 2ApK O(|s]) dm

S

=
O e, 0 e

< 20 K— |Islo(ls]) dm

B

K
< ZA(pEIISIIm j @(Is) dm,
B

and the proof is complete. O

The following example shows that the above lemma does not remain valid if the assumption S ¢ L°°(B) is not
required.

Example 2.2. Let B = [0, 1], ¢(x) = v/x, and let S be the subspace spanned by the function g(x) = % Clearly,
g € L%, however, g ¢ L (B).

Theorem 2.3. Let ¢ € F be a left continuous function, and let S ¢ L*(B) be a finite-dimensional subspace.
Then, for f € L?, there exists s* € S such that

jcouf— s*]) dm = Es(f).

B

Proof. Let {sx}xen C S be such that

jgouf— sil) dm < Es(f) + %
B

Then, using the A, condition on ¢, we obtain

[ gtsihdm < ag( [ 90f - s dm+ [ @urhdm) < ag(Esth + 1+ | pf) dm).
B B B

B

From Lemma 2.1 we get that {@([[SkllL~))}ken is bounded. Now, if limy_,o, ¢(x) = co, then we have that
{lIskllLe(B)} ke is uniformly bounded and there exists s* € S such that lim;_.llS; — $*[lL=(8) = O for some
subsequence {Sk;}jen. Thus, Sk; — S™ converges to 0 a.e. on B. Finally, by the left continuity of ¢ and Fatou’s
Lemma, we have

[ otr=sndm < [timint p(f - sy ) dm < limint [ @ -5 dm < Es(f. (23)
B B B

On the other hand, if ¢(x) is a bounded function, set ¢(co) = limy—q, ¢(x) and suppose that [|s,llcc / 00 as
Jj — oo. For Ry, := s;/lskllcos We get Ry, — Ro, with Rg € S and ||Rolle = 1, for a subsequence that we call
again by Ry;. Then, using Lebesgue’s dominated theorem, we obtain

. . If = skl
im [ g(f - shdm=lim [ p( T Clsylen) dm = p(co)IB.
j—oo j—oo ISk;llco
B ~{Ro=0}
Then
Es(f) = ¢(00)|B| < JQD(IfI) dm < ¢(00)|B|,
B

which implies O € y,(f/S) and the proof is complete. O

The next example shows that the left continuity condition on ¢ has to be enforced.
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Example 2.4. Let ¢ be the following non decreasing and non left continuous function

X ifo<x<3,
px) = el
2x+1 if3<x<1.

Set B = [0, 1], f(x) = Xi0,1] (x) and, as the approximation class, S = I1°. Then the approximation problem is to
minimize the function F(x) = ¢(x) + ¢(1 - x) for 0 < x < 1. Then F(x) = |[x — 1| + 3 forx #  and F(3) = 4, so
the minimum is not reached.

In the next example we show that the best polynomial approximation may not be unique.

Example 2.5. Let B = [0, 1] and S = II° be the set of all constant functions, and let f(x) = X0,1/21(x) and
@(x) = v/x. Then a direct calculation gives up(f/S) = {0, 1}

Theorem 2.6. Let ¢ € F be aleft continuous function such thatlimy_,, @(x) = oo, andlet S ¢ L*°(B) be a finite-
dimensional subspace. Then u,(f/S) is a compact set in (S, || - |z (B))-

Proof. Let {si}ren C Up(f/S) be such that fB o(If - skl) dm = Es(f). According to Lemma 2.1, we have that
{lIskllLe(B)}ken is bounded. So, there exist s* € S and a subsequence of {si}xen, denoted again by {si}, such
that limy_colls* — Skllize(s) = 0. Using (2.3), we have that s* € u,(f/S), which means that p,(f/S) is sequen-
tially compact in (S, || - ., (B)), and this completes the proof. O

Remark 2.7. The hypothesis limy_,o, ¢(x) = co in Theorem 2.6 cannot be removed. In fact, we can consider
@(x) = 1 and then p, (f/I1") = II" for any measurable function f.

3 Characterization of best ¢-approximation operators
For C c L%, we denote by C” the set of all limits of sequences on C, by considering

d,(f, 8) = jsouf—gndm.

B

Let T: LY — L? be a single-valued operator. We denote the range of T by
Ry ={T(f): f € L?}.

In this section we denote by F the set of functions ¢ in F which satisfy ¢(0) = 0 and lim,_,«, @(x) = co. We
give necessary and sufficient conditions on an operator T to assure that it is a best ¢-approximation operator.
To this end, we introduce the following definition.

Definition 3.1. A single-valued operator T: L? — L? is called:

(i) quasiadditive if T(f + Tg) = Tf + Tgforall f, g € L?,

(ii) quasihomogeneous if T(aTf) = aTf forall f € L? and a € R,

(iii) quasialgebraic if T(1) = 1 and T(Tg Tf) = Tg Tf for all f, g € L*°(B),

(iv) p-closed if limy_.co dg(fn, f) = 0 and limp_—co dy(Tfn, g) = 0 imply Tf = g,
(v) ¢-expectation invariant if IB o(f -Tfl)dm < IB o(Ifl)dmforallf € L?,
(vi) p-bounded if Rt ¢ Ry N L®(B)".

The following examples show that the best p-approximation operators satisfy most of the conditions given
in the last definition.

Example 3.2. It is easy to check the following:

(i) Let ¢ be any convex function with ¢(0) = 0, and let S be the class of algebraic polynomials with real
coefficients of degree at most n defined on any measurable and bounded set B in R. Then the operator T,
defined by T(f) = uy(f/S), f € L?, satisfies (i), (ii) and (v) of Definition 3.1.
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(i) Let @(t) = tP,1 < p < 00, B=[0,1],and S = span{x[o,%),)([%,l]}. Then the operator T, defined by
T(f) = uyp(f1S), satisfies (i)—(vi) of Definition 3.1.

Next we need some auxiliary results.

Lemma 3.3. Ifthe operator T: LY — L% is quasiadditive and TO = O, then Rt = {f € LY : Tf = f}. In addition,
if T is -closed, then R7’ = Rr.

Proof. SetS = {f € L? : Tf = f}. Clearly, S ¢ Rr. On the other hand, since T is quasiadditive and T0 = 0,
T(Tf)=Tf forallf e L?.

Therefore, Rt c S.
Now, let g € R_T(p. Then there exists a sequence {gi}xen € R7 such that limy_., dy(Tgy, g) = 0. Since
T(Tgy) = Tg, limy 0 dp(T(TgG1), ) = 0. As T is ¢-closed, we have Tg = g, and so g € Ry. O

The following theorem gives sufficient conditions for an operator T to be a best ¢-approximation operator.

Theorem 3.4. Let ¢ € 7. If the operator T: L? — L? is quasiadditive, quasihomogeneous and ¢-expectation
invariant, then Tf € py(f/Ry) forallf € LY.

Proof. We have TO = 0, since T is quasihomogeneous. So, Lemma 3.3 shows that Ry = {f € L? : Tf = f}. As
T is also quasiadditive, we obtain

Tf-Tg=Tf+T(-Tg) =T(f + T(-Tg)) = T(f - Tg), f,geL?. (3.1)

Letf € LY and P € R \ {Tf}. Since TP = P, according to (3.1), we have T(f - TP) = Tf - TP = Tf — P # 0. As
T is p-expectation invariant, we get

jgouf— Tf|) dm = pr(lf— TP - (Tf - TP))) dm

B B
- pr(lf— TP - T(f - TP))) dm
B
< [ @ar- 1Py dm
B
- pr(lf—PI) dm.
B
Therefore, Tf € py(f/R7). O

Remark 3.5. Under the same hypotheses of Theorem 3.4, if u,(f/Rr) is a singleton for all f € L?, then
Tf = uy(f/Ry) for all f € L?. This is the case, for example, if Definition 3.1 (v) is considered with a strict
inequality.

If we also assume the uniqueness of the best ¢-approximation for all f € L?, we get the following character-
ization result.

Theorem 3.6. Letp € F,andlet T: L? — L? be an operator. Assume that u,(f/Rt) is a singleton for all f € L?.
Then the following statements are equivalent:

(i) Rrisasubspaceof L?, and Tf = py(f/R7) for all f € L?.

(i) T is quasiadditive, quasihomogeneous and @-expectation invariant.

Proof. (i) = (ii) Let f, g € LY and a € R. Clearly, T is ¢-expectation invariant. Since IB o(af —aT(f))dm =0
for f € Ry, T is quasihomogeneous. Finally, an easy computation shows that Tf + Tg = u,((f + Tg)/R1) and
consequently T(f + Tg) = Tf + Tg, i.e., T is quasiadditive.

(ii) = (i) Let f € L?. By hypothesis and Theorem 3.4, we have

If = up(f/R1).
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Now, we claim that Rt is a subspace of L?. Indeed, let P, Q € Rt and a, 8 € R. Since T is quasihomogeneous,
T(BQ) = BQ, which implies

T(aP + BQ) = T(aP + T(BQ)) = T(aP) + T(BQ) = aP + BQ,

because T is quasiadditive. This completes the proof. O

The next corollary provides special cases of best ¢-approximation operators assuming additional properties
on ¢.

Corollary 3.7. Let ¢ € T be a differentiable strictly convex function with ¢'(0) = 0. Let T: LY — L? be a quasi-
additive and quasihomogeneous operator that satisfies

I o'(If - Tf)sen(f - TAHT()dm >0 forallf € L?.
B
Then Rr is a subspace of LY and Tf = uy(f/RT).

Proof. Let f € L? be such that Tf + 0 and consider r: (0, 1] — R, a strictly convex function defined by

10 = ¢ (@l = 17 + €17) - (1 - 1) dm.

B

By hypothesis, we have

[oarnam- [ oar-1ryam = ry = v, te 0,11
B

B

So, [11, pp. 16-17] implies that

J<ﬂ(|f|) dm - J o(f - Tf) dm > lim r(t) > Jgo’(lf— Tf) sgn(f - TA)T(f) dm = 0,

B B B

i.e., T is p-expectation invariant. Since u,(f/R7) is a singleton for all f € L?, Theorem 3.6 completes the
proof. O

We point out that the extended best polynomial approximation operator given in [7], defined on LP~1(B),
satisfies the hypothesis of Corollary 3.7.
In the following we consider additional properties on T, which allow us to obtain specific subspaces Rr.

Definition 3.8. Let S be a subspace of L. We say that S is measurable if there exists a sub og-algebra of A,
say £, such that S is the class of all £-measurable functions in L%, i.e., S = L?(B, £, m). The subspace S is
called bounded if S ¢ Sn Lo (B)" .

Lemma 3.9. Let S c L? be a subspace. If S is measurable, then s’ _s.

Proof. By hypothesis, S = L?(B, £, m) for some o-subalgebra £ of A.If g € S then there exists a sequence
{gr}ken C S such that
lim dy(gk, g) = 0. (3.2)
k%m

Hence, there exists a subsequence of {gx}ken, Which is denoted in the same way, such that limy_,o, gx = g a.e.
on B. So, g is an £-measurable function. In addition, from (3.2) we have g € L? and consequently g € S. This
completes the proof. O

Example 3.10. The subspace S given in Example 3.2 (b) is bounded and measurable. Indeed, it is easy to
check that S = L?(B, £, m) ¢ L®(B), where £ is the sub o-algebra {0, [0, 3), [, 1], B}.

Lemma 3.11. Let ¢ € F and let T: L? — L? be a quasiadditive, quasialgebraic and ¢-closed operator. Then
theset L ={A c B: T(xa) = xa} is a sub g-algebra of A.
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Proof. Clearly, B € £, since T(1) = 1. Let A1, Ay € £.AS xa,n4, = X4, X4, = T(xa,)T(x4,), we have

T(xa,n4,) = T(T(xa,)T(X4,)) = T(Xa,)T(X4,) = Xa:XA, = XA1nA,- (3.3)

According to (3.3), we have xa,\4, = X4, — X4:n4, = X4, — T(Xa,na,), hence (3.1) implies

T(xana,) = T(xa, — T(Xa,n4,)) = T(xa,) — T(X41n4,) = X4: — X414, = XA1\4, - (3.4)

By (3.4), we get

T(XA1UA2) = T(XAl +XA2\A1) = T(XAl + T(XAZ\Al)) = T(XA1) + T(XAl\AZ) =XA; + XA\Ay = XA1UA; - (3.5)

Now, let {Ay}kenw € £. From (3.5) we obtain that gy := XUy, a € L, N € N, and {gn}nen iS @ nondecreasing
sequence such that limy .o, dy(gn, §) = 0, where g = XU, A Since T(gn) = gn, N € N, and T is ¢-closed, it
follows that T(g) = g. O

Theorem 3.12. Letg € Fandlet T: LY — L? be anoperator. Assume that py(f/Rt) is a singletonforallf € LY.
If T is quasiadditive, quasialgebraic, ¢-closed, p-expectation invariant and @-bounded, then Rt is a bounded
measurable linear subspace of L? and Tf = u,(f/Rr) for all f € L?.

Proof. Since T is quasialgebraic, it is quasihomogeneous and T0 = 0. By Lemma 3.3, we have
Rr={feLl?:Tf =f}.
Let £ be the sub ¢-algebra given in Lemma 3.11, and let A;, A, € £, a1, a> € RR. By hypothesis, we have

T(aixa, + a2xa,) = T(ar1xa, + 22T(xa,)) = T(a1xa, + T(a2T(x4,)))
T(a1xa,) + T(a2T(xa,)) = T(a1T(xa,)) + T(a2T(x4,))
a1 T(XAl) + Ay T(XAz) =a1XA, + A2)X4A,-

Therefore, a1x4, + a2xa, € Rr. So, linear combinations of characteristic functions of sets of £ are in Rr. The
facts that the totality of such functions is dense in L?(B, £, m) with respect to dy, and T is ¢-closed, imply
T(f) = f forall f € LY(B, £, m). Hence,

L?(B, L, m) c Ry. (3.6)

We claim that
RrnL®(B) c L?B, L, m). 3.7)

Indeed, let g € Ry N L°°(B). Then there exist a, 8 € R such that a < g < 8. Hence,

j<p(|g|) dm < p(jmax{lal, |B}|)m(B) < oo,
B

and so g € L?. Set I = [a, B], and let M be the Borel ¢g-algebra on I. Now, we will prove that if D € M, then
g7 1(D) € £, and consequently g € L?(B, £, m).
We consider the Lebesgue-Stieltjes measure pig: M — [0, m(B)] given by

Ug(C) = m(g~(C)) for C e M. (3.8)

Since (I, M, pg) is a finite measure space, from (3.8), [4, Proposition 7.2, p. 80] and [4, Proposition 1.8, p. 43],
we have
I o(|h]) dug = J @(lhogl)dm whenever h: I — Ris a M-measurable function. (3.9)
1 B

Let D € M and k € IN. As ¢(0*) = 0, there exists €x > 0 such that
(e ) < L mln{L L}
PR < a ™M) m(n
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Since, g is a regular measure, there exist an open set U and a closed set F such that F c D c U c I and
Uug(U\ F) < @(ex). By Urysohn’s lemma, there exists a continuous function f: I — [0, 1] such that flr =1
and f|nv) = 0. So,

jco(lf—xmmug: j of - xo) ditg < Pg(U\F) < 5. (3.10)
1 U\F

On the other hand, by Weierstrass’ theorem there exists a polynomial Pk on I such that |Px(x) — f(x)| < € for

all x € I, and so
1

J<P(|Pk - f) dug < p(erym(I) < TR
1

Therefore, (3.9) and (3.10) imply that

J ©(|Px(g) = Xg-1 ) dm = | @(|(Px — Xp) > gl) dm = J @(|Px — xpl) dug
B T

B
1
<A [ QP f dug + A [ 9UUf - xoD dg < 1.
I I

and consequently limy_,, dy(Px(8), Xg-1(p)) = O.
Since g2 = TgTg = T(TgTg) = T(g?), by induction we see that g" = T(g"), n € N, i.e., g" € R, n € N. By
Theorem 3.6, it follows that R is a subspace of L¥. Hence, Py(g) € Rt, k € N, and so

Jim dy(T(P(8)), Xg-10) = O-

As T is ¢-closed, we have Txg-1(p) = Xg-1(p), and therefore g~1(D) € £.

Now, from (3.6), (3.7) and Lemmas 3.3 and 3.9, we get Ry nLOO(B)‘p c L?(B, £, m) c Rr. Since T is
¢-bounded, we have Rt = L?(B, £, m).

Finally, Theorem 3.6 completes the proof. O

Funding: Research partially supported by CONICET, Universidad Nacional de San Luis and Universidad
Nacional de Rio Cuarto.
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