Research Article

Ana Benavente, Sergio Favier* and Fabián Levis

Existence and characterization of best φ -approximations by linear subspaces

DOI: 10.1515/apam-2015-0069 Received November 10, 2015; revised February 16, 2017; accepted February 19, 2017

Abstract: Given an Orlicz space L^{φ} , we give very relaxed sufficient conditions on φ to ensure that there exists a best φ -approximation from any finite dimensional bounded linear subspace $S \subset L^{\varphi}$. In addition, given an operator *T*, defined from L^{φ} into itself, we give necessary and sufficient conditions on *T* to ensure that this is a best φ -approximation operator from a linear subspace *S*.

Keywords: Orlicz spaces, best approximation, characterization of best approximation operators

MSC 2010: Primary 46E30; secondary 41A10, 41A50

1 Introduction and notations

Let \mathcal{F} be the class of all non decreasing functions φ defined for all real numbers $t \ge 0$, with $\varphi(0) \ge 0$. We also assume a Δ_2 condition for the functions φ , which means that there exists a constant $\Lambda = \Lambda_{\varphi} > 0$ such that $\varphi(2a) \le \Lambda \varphi(a)$ for $a \ge 0$.

Let $\varphi \in \mathcal{F}$, and let (B, \mathcal{A}, m) be the Lebesgue measure space, where $B \subset \mathbb{R}$ is a bounded set. We denote by $L^{\varphi} = L^{\varphi}(B, \mathcal{A}, m)$ the Orlicz space given by the class of all \mathcal{A} -measurable functions f defined on B such that $\int_{\mathbb{R}} \varphi(|f|) dm < \infty$.

Given a set $S \in L^{\varphi}$, an element $s^* \in S$ is called *a best* φ *-approximation of* $f \in L^{\varphi}$ *from the approximation class* S if and only if

$$\int_{B} \varphi(|f-s^*|) dm = \inf_{s \in S} \int_{B} \varphi(|f-s|) dm =: E_S(f),$$

and, in this case, we write $s^* \in \mu_{\varphi}(f/S)$. The mapping $\mu_{\varphi} \colon L^{\varphi} \to 2^S$ is called the *best* φ -*approximation oper-ator* from *S*.

In the present paper we consider two problems. The study of existence of the best φ -approximation (i.e., $\mu_{\varphi}(f/S) \neq \emptyset$) and the characterization of all operators that behave as the best φ -approximation operator μ_{φ} defined before.

The problem of existence was extensively treated in [13] for the case where *S* is a lattice (i.e., if $f, g \in S$, then $\min(f, g) \in S$ and $\max(f, g) \in S$) and φ is a continuous function. Many cases of best approximation by linear subspaces are carried out with this setup. For instance, for $\varphi(t) = t^2$, where the approximation class is given through a sub σ -algebra (the classical conditional expectation) or through a sub σ -lattice was primary considered in [3]. Also [13] covers the case where $\varphi(t) = t^p$, p > 1, by considering a sub σ -algebra. The concept of *p*-predictors was treated by Ando and Amemiya in [1], whereas that of sub σ -lattices was treated

*Corresponding author: Sergio Favier: Instituto de Matemática Aplicada San Luis, UNSL-CONICET; and Departamento de Matemática, FCFMyN, UNSL, Ejército de los Andes 950, 5700 San Luis, Argentina, e-mail: sfavier@unsl.edu.ar

Ana Benavente: Instituto de Matemática Aplicada San Luis, UNSL-CONICET; and Departamento de Matemática, FCFMyN, UNSL, Ejército de los Andes 950, 5700 San Luis, Argentina, e-mail: abenaven@unsl.edu.ar

Fabián Levis: Departamento de Matemática, Universidad Nacional de Río Cuarto and CONICET, Ruta 36 km 601, 5800 Río Cuarto, Argentina, e-mail: flevis@exa.unrc.edu.ar

in the seventies in [5]. Another case covered by [13] is when $\varphi(t) = t$ by considering sub σ -algebras, which is the concept of conditional medians presented in [19]. We also mention the study of the extended best approximation operator in [10], where the class *S* comes from a σ -lattice. We point out that in all these cases the approximation classes were suitable lattices, and most of them were treated for $\varphi(t) = t^p$.

In this paper, we obtain that $\mu_{\varphi}(f/S) \neq \emptyset$ for a wider class of functions φ than the ones considered in [13], and with a finite dimensional linear subspace of L^{φ} as the approximation class, for instance, the real polynomials defined on *B* with degree at most *n*. We want to emphasize that the set of polynomials is not in general a lattice. Thus, this approximation class is not considered in [13]. For this case we cannot use the monotonicity argument used in [13] to prove that $\mu_{\varphi}(f/S) \neq \emptyset$. Also we provide an example where $\mu_{\varphi}(f/S) = \emptyset$ if the left continuity condition on φ is removed. This result is presented in Section 2.

The characterization problem for the best linear approximation operator has been investigated by many authors. For the classical conditional expectation, i.e., $\varphi(t) = t^2$ and where *S* is a set of measurable functions with respect to a sub σ -algebra, the first general result appears in [15]. A similar characterization result was given in [2]. These results were also treated by other authors in [8, 16–18] in the sixties.

A characterization of a non linear operator as a conditional expectation with respect to a sub σ -lattice appears in [9]. In [12] it was given a characterization of the best approximation operator from a sub σ -lattice in the L^p space, $1 . The same authors in [14] extended these results considering Orlicz spaces <math>L^{\varphi}$, and also gave a characterization of the best approximation operator for σ -algebras as approximation classes. In [6] Carrizo, Favier and Zó studied the characterization of the extended best φ -approximation operator.

In this paper we obtain, in Theorems 3.4 and 3.12, a characterization of the best φ -approximation operator considering linear subspaces of L^{φ} . Note that in these theorems, the polynomials can be included as an approximation class. Also, in Theorem 3.12 we get a characterization of best φ -approximation operators considering fewer requirements on φ and different hypotheses on the operator *T* to those in [14], to ensure that it is a best φ -approximation operator for given a sub σ -algebra.

2 Existence of best φ -approximations

In this section we prove the existence of the best φ -approximation when the class *S* is a finite-dimensional subspace from $L^{\infty}(B)$. For this purpose, we first make some considerations. For $\varphi \in \mathcal{F}$, we consider the convex function $\Phi(x) := \int_{0}^{x} \varphi(t) dt$, and using the Δ_2 condition on φ it is easy to see that

$$x\frac{\varphi(x)}{2\Lambda_{\varphi}} \le \Phi(x) \le x\varphi(x).$$
(2.1)

Next we prove an auxiliary result.

Lemma 2.1. Let $\varphi \in \mathcal{F}$, $f \in L^{\varphi}(B)$, and let $S \subset L^{\infty}(B)$ be a finite dimensional space. Then there exists a positive constant K such that

$$\varphi(\|s\|_{\infty}) \leq \frac{K}{|B|} \int_{B} \varphi(|s|) \, dm$$

for every $s \in S$.

Proof. If $||s||_{\infty} = 0$ the lemma follows at once for K = 1. Suppose that $||s||_{\infty} \neq 0$. Using the equivalence of norms in *S*, there exists a constant C > 0 such that

$$\Phi(\|s\|_{\infty}) \le \Phi\left(\frac{C}{|B|} \int_{B} |s| \, dm\right)$$

for all $s \in S$. Now, by Jensen's inequality, we have

$$\Phi(\|s\|_{\infty}) \le \tilde{K} \frac{1}{|B|} \int_{B} \Phi(|s|) \, dm, \tag{2.2}$$

for a constant \tilde{K} which depends only on C and Λ_{φ} . Then we use (2.1), to get $\|s\|_{\infty}\varphi(\|s\|_{\infty}) \le 2\Lambda_{\varphi}\Phi(\|s\|_{\infty})$. Now, using (2.2) and (2.1), we obtain

$$\begin{split} \|s\|_{\infty}\varphi(\|s\|_{\infty}) &\leq 2\Lambda_{\varphi}\tilde{K}\frac{1}{|B|}\int_{B}\Phi(|s|)\,dm\\ &\leq 2\Lambda_{\varphi}\tilde{K}\frac{1}{|B|}\int_{B}|s|\varphi(|s|)\,dm\\ &\leq 2\Lambda_{\varphi}\frac{\tilde{K}}{|B|}\|s\|_{\infty}\int_{B}\varphi(|s|)\,dm, \end{split}$$

and the proof is complete.

The following example shows that the above lemma does not remain valid if the assumption $S \in L^{\infty}(B)$ is not required.

Example 2.2. Let B = [0, 1], $\varphi(x) = \sqrt{x}$, and let *S* be the subspace spanned by the function $g(x) = \frac{1}{x}$. Clearly, $g \in L^{\varphi}$, however, $g \notin L^{\infty}(B)$.

Theorem 2.3. Let $\varphi \in \mathcal{F}$ be a left continuous function, and let $S \in L^{\infty}(B)$ be a finite-dimensional subspace. Then, for $f \in L^{\varphi}$, there exists $s^* \in S$ such that

$$\int_B \varphi(|f-s^*|)\,dm=E_S(f).$$

Proof. Let $\{s_k\}_{k \in \mathbb{N}} \subset S$ be such that

$$\int_{B} \varphi(|f-s_k|) \, dm \leq E_S(f) + \frac{1}{k}.$$

Then, using the Δ_2 condition on φ , we obtain

$$\int_{B} \varphi(|s_k|) \, dm \leq \Lambda_{\varphi} \Big(\int_{B} \varphi(|f-s_k|) \, dm + \int_{B} \varphi(|f|) \, dm \Big) \leq \Lambda_{\varphi} \Big(E_S(f) + 1 + \int_{B} \varphi(|f|) \, dm \Big).$$

From Lemma 2.1 we get that $\{\varphi(\|s_k\|_{L^{\infty}(B)})\}_{k \in \mathbb{N}}$ is bounded. Now, if $\lim_{x \to \infty} \varphi(x) = \infty$, then we have that $\{\|s_k\|_{L^{\infty}(B)}\}_{k \in \mathbb{N}}$ is uniformly bounded and there exists $s^* \in S$ such that $\lim_{j \to \infty} \|s_{k_j} - s^*\|_{L^{\infty}(B)} = 0$ for some subsequence $\{s_{k_j}\}_{j \in \mathbb{N}}$. Thus, $s_{k_j} - s^*$ converges to 0 a.e. on *B*. Finally, by the left continuity of φ and Fatou's Lemma, we have

$$\int_{B} \varphi(|f-s^*|) \, dm \leq \int_{B} \liminf_{j \to \infty} \varphi(|f-s_{k_j}|) \, dm \leq \liminf_{j \to \infty} \int_{B} \varphi(|f-s_{k_j}|) \, dm \leq E_{\mathcal{S}}(f).$$
(2.3)

On the other hand, if $\varphi(x)$ is a bounded function, set $\varphi(\infty) = \lim_{x\to\infty} \varphi(x)$ and suppose that $||s_{k_j}||_{\infty} \nearrow \infty$ as $j \to \infty$. For $R_{k_j} := s_{k_j}/||s_{k_j}||_{\infty}$, we get $R_{k_j} \to R_0$, with $R_0 \in S$ and $||R_0||_{\infty} = 1$, for a subsequence that we call again by R_{k_j} . Then, using Lebesgue's dominated theorem, we obtain

$$\lim_{j\to\infty}\int_B \varphi(|f-s_{k_j}|)\,dm=\lim_{j\to\infty}\int_{B-\{R_0=0\}}\varphi\Big(\frac{|f-s_{k_j}|}{\|s_{k_j}\|_{\infty}}\|s_{k_j}\|_{\infty}\Big)\,dm=\varphi(\infty)|B|.$$

Then

$$E_{\mathcal{S}}(f) = \varphi(\infty)|B| \leq \int_{B} \varphi(|f|) \, dm \leq \varphi(\infty)|B|,$$

which implies $0 \in \mu_{\varphi}(f/S)$ and the proof is complete.

The next example shows that the left continuity condition on φ has to be enforced.

Example 2.4. Let φ be the following non decreasing and non left continuous function

$$\varphi(x) = \begin{cases} x & \text{if } 0 \le x < \frac{1}{2}, \\ 2x + 1 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Set B = [0, 1], $f(x) = \chi_{[0, \frac{1}{2}]}(x)$ and, as the approximation class, $S = \Pi^0$. Then the approximation problem is to minimize the function $F(x) = \varphi(x) + \varphi(1 - x)$ for $0 \le x \le 1$. Then $F(x) = |x - \frac{1}{2}| + \frac{5}{2}$ for $x \ne \frac{1}{2}$ and $F(\frac{1}{2}) = 4$, so the minimum is not reached.

In the next example we show that the best polynomial approximation may not be unique.

Example 2.5. Let B = [0, 1] and $S = \Pi^0$ be the set of all constant functions, and let $f(x) = \chi_{[0, 1/2]}(x)$ and $\varphi(x) = \sqrt{x}$. Then a direct calculation gives $\mu_{\varphi}(f/S) = \{0, 1\}$.

Theorem 2.6. Let $\varphi \in \mathcal{F}$ be a left continuous function such that $\lim_{x\to\infty} \varphi(x) = \infty$, and let $S \in L^{\infty}(B)$ be a finitedimensional subspace. Then $\mu_{\varphi}(f/S)$ is a compact set in $(S, \|\cdot\|_{L^{\infty}(B)})$.

Proof. Let $\{s_k\}_{k\in\mathbb{N}} \subset \mu_{\varphi}(f/S)$ be such that $\int_B \varphi(|f - s_k|) dm = E_S(f)$. According to Lemma 2.1, we have that $\{\|s_k\|_{L^{\infty}(B)}\}_{k\in\mathbb{N}}$ is bounded. So, there exist $s^* \in S$ and a subsequence of $\{s_k\}_{k\in\mathbb{N}}$, denoted again by $\{s_k\}$, such that $\lim_{k\to\infty} \|s^* - s_k\|_{L^{\infty}(B)} = 0$. Using (2.3), we have that $s^* \in \mu_{\varphi}(f/S)$, which means that $\mu_{\varphi}(f/S)$ is sequentially compact in $(S, \|\cdot\|_{L_{\infty}(B)})$, and this completes the proof.

Remark 2.7. The hypothesis $\lim_{x\to\infty} \varphi(x) = \infty$ in Theorem 2.6 cannot be removed. In fact, we can consider $\varphi(x) = 1$ and then $\mu_{\varphi}(f/\Pi^n) = \Pi^n$ for any measurable function *f*.

3 Characterization of best φ -approximation operators

For $C \in L^{\varphi}$, we denote by \overline{C}^{φ} the set of all limits of sequences on *C*, by considering

$$d_{\varphi}(f,g) = \int_{B} \varphi(|f-g|) \, dm.$$

Let $T: L^{\varphi} \to L^{\varphi}$ be a single-valued operator. We denote the range of *T* by

$$R_T = \{T(f) : f \in L^{\varphi}\}.$$

In this section we denote by $\widetilde{\mathcal{F}}$ the set of functions φ in \mathcal{F} which satisfy $\varphi(0) = 0$ and $\lim_{x\to\infty} \varphi(x) = \infty$. We give necessary and sufficient conditions on an operator T to assure that it is a best φ -approximation operator. To this end, we introduce the following definition.

Definition 3.1. A single-valued operator $T: L^{\varphi} \to L^{\varphi}$ is called:

- (i) quasiadditive if T(f + Tg) = Tf + Tg for all $f, g \in L^{\varphi}$,
- (ii) quasihomogeneous if $T(\alpha T f) = \alpha T f$ for all $f \in L^{\varphi}$ and $\alpha \in \mathbb{R}$,
- (iii) quasialgebraic if T(1) = 1 and T(Tg Tf) = Tg Tf for all $f, g \in L^{\infty}(B)$,
- (iv) φ -closed if $\lim_{n\to\infty} d_{\varphi}(f_n, f) = 0$ and $\lim_{n\to\infty} d_{\varphi}(Tf_n, g) = 0$ imply Tf = g,
- (v) φ -expectation invariant if $\int_{B} \varphi(|f Tf|) dm \leq \int_{B} \varphi(|f|) dm$ for all $f \in L^{\varphi}$,
- (vi) φ -bounded if $R_T \subset \overline{R_T \cap L^{\infty}(B)}^{\varphi}$.

The following examples show that the best φ -approximation operators satisfy most of the conditions given in the last definition.

Example 3.2. It is easy to check the following:

(i) Let φ be any convex function with φ(0) = 0, and let S be the class of algebraic polynomials with real coefficients of degree at most n defined on any measurable and bounded set B in ℝ. Then the operator T, defined by T(f) = μ_φ(f/S), f ∈ L^φ, satisfies (i), (ii) and (v) of Definition 3.1.

(ii) Let $\varphi(t) = t^p$, 1 , <math>B = [0, 1], and $S = \text{span}\{\chi_{[0, \frac{1}{2})}, \chi_{[\frac{1}{2}, 1]}\}$. Then the operator *T*, defined by $T(f) = \mu_{\varphi}(f/S)$, satisfies (i)–(vi) of Definition 3.1.

Next we need some auxiliary results.

Lemma 3.3. If the operator $T: L^{\varphi} \to L^{\varphi}$ is quasiadditive and T0 = 0, then $R_T = \{f \in L^{\varphi} : Tf = f\}$. In addition, if T is φ -closed, then $\overline{R_T}^{\varphi} = R_T$.

Proof. Set $S = \{f \in L^{\varphi} : Tf = f\}$. Clearly, $S \subset R_T$. On the other hand, since *T* is quasiadditive and T0 = 0,

$$T(Tf) = Tf$$
 for all $f \in L^{\varphi}$.

Therefore, $R_T \subset S$.

Now, let $g \in \overline{R_T}^{\varphi}$. Then there exists a sequence $\{g_k\}_{k \in \mathbb{N}} \subset R_T$ such that $\lim_{k \to \infty} d_{\varphi}(Tg_k, g) = 0$. Since $T(Tg_k) = Tg_k$, $\lim_{k \to \infty} d_{\varphi}(T(Tg_k), g) = 0$. As *T* is φ -closed, we have Tg = g, and so $g \in R_T$.

The following theorem gives sufficient conditions for an operator *T* to be a best φ -approximation operator.

Theorem 3.4. Let $\varphi \in \widetilde{\mathcal{F}}$. If the operator $T: L^{\varphi} \to L^{\varphi}$ is quasiadditive, quasihomogeneous and φ -expectation invariant, then $Tf \in \mu_{\varphi}(f/R_T)$ for all $f \in L^{\varphi}$.

Proof. We have T0 = 0, since T is quasihomogeneous. So, Lemma 3.3 shows that $R_T = \{f \in L^{\varphi} : Tf = f\}$. As T is also quasiadditive, we obtain

$$Tf - Tg = Tf + T(-Tg) = T(f + T(-Tg)) = T(f - Tg), \quad f, g \in L^{\varphi}.$$
(3.1)

Let $f \in L^{\varphi}$ and $P \in R_T \setminus \{Tf\}$. Since TP = P, according to (3.1), we have $T(f - TP) = Tf - TP = Tf - P \neq 0$. As *T* is φ -expectation invariant, we get

$$\int_{B} \varphi(|f - Tf|) dm = \int_{B} \varphi(|f - TP - (Tf - TP)|) dm$$
$$= \int_{B} \varphi(|f - TP - T(f - TP)|) dm$$
$$\leq \int_{B} \varphi(|f - TP|) dm$$
$$= \int_{B} \varphi(|f - P|) dm.$$

Therefore, $Tf \in \mu_{\varphi}(f/R_T)$.

Remark 3.5. Under the same hypotheses of Theorem 3.4, if $\mu_{\varphi}(f/R_T)$ is a singleton for all $f \in L^{\varphi}$, then $Tf = \mu_{\varphi}(f/R_T)$ for all $f \in L^{\varphi}$. This is the case, for example, if Definition 3.1 (v) is considered with a strict inequality.

If we also assume the uniqueness of the best φ -approximation for all $f \in L^{\varphi}$, we get the following characterization result.

Theorem 3.6. Let $\varphi \in \widetilde{\mathcal{F}}$, and let $T: L^{\varphi} \to L^{\varphi}$ be an operator. Assume that $\mu_{\varphi}(f/R_T)$ is a singleton for all $f \in L^{\varphi}$. Then the following statements are equivalent:

(i) R_T is a subspace of L^{φ} , and $Tf = \mu_{\varphi}(f/R_T)$ for all $f \in L^{\varphi}$.

(ii) *T* is quasiadditive, quasihomogeneous and φ -expectation invariant.

Proof. (i) \Rightarrow (ii) Let $f, g \in L^{\varphi}$ and $\alpha \in \mathbb{R}$. Clearly, T is φ -expectation invariant. Since $\int_{B} \varphi(|\alpha f - \alpha T(f)|) dm = 0$ for $f \in R_T$, T is quasihomogeneous. Finally, an easy computation shows that $Tf + Tg = \mu_{\varphi}((f + Tg)/R_T)$ and consequently T(f + Tg) = Tf + Tg, i.e., T is quasiadditive.

(ii) \Rightarrow (i) Let $f \in L^{\varphi}$. By hypothesis and Theorem 3.4, we have

$$Tf = \mu_{\varphi}(f/R_T).$$

Now, we claim that R_T is a subspace of L^{φ} . Indeed, let $P, Q \in R_T$ and $\alpha, \beta \in \mathbb{R}$. Since T is quasihomogeneous, $T(\beta Q) = \beta Q$, which implies

$$T(\alpha P + \beta Q) = T(\alpha P + T(\beta Q)) = T(\alpha P) + T(\beta Q) = \alpha P + \beta Q,$$

because *T* is quasiadditive. This completes the proof.

The next corollary provides special cases of best φ -approximation operators assuming additional properties on φ .

Corollary 3.7. Let $\varphi \in \widetilde{\mathcal{F}}$ be a differentiable strictly convex function with $\varphi'(0) = 0$. Let $T: L^{\varphi} \to L^{\varphi}$ be a quasiadditive and quasihomogeneous operator that satisfies

$$\int_{B} \varphi'(|f - Tf|) \operatorname{sgn}(f - Tf)T(f) \, dm \ge 0 \quad \text{for all } f \in L^{\varphi}.$$

Then R_T is a subspace of L^{φ} and $Tf = \mu_{\varphi}(f/R_T)$.

Proof. Let $f \in L^{\varphi}$ be such that $Tf \neq 0$ and consider $r: (0, 1] \to \mathbb{R}$, a strictly convex function defined by

$$r(t) = \frac{1}{t} \int_{B} \left(\varphi(|f - Tf + tTf|) - \varphi(|f - Tf|) \right) dm$$

By hypothesis, we have

$$\int_{B} \varphi(|f|) dm - \int_{B} \varphi(|f - Tf|) dm = r(1) \ge r(t), \quad t \in (0, 1].$$

So, [11, pp. 16–17] implies that

$$\int_{B} \varphi(|f|) \, dm - \int_{B} \varphi(|f - Tf|) \, dm \geq \lim_{t \to 0^+} r(t) \geq \int_{B} \varphi'(|f - Tf|) \operatorname{sgn}(f - Tf) T(f) \, dm \geq 0,$$

i.e., *T* is φ -expectation invariant. Since $\mu_{\varphi}(f/R_T)$ is a singleton for all $f \in L^{\varphi}$, Theorem 3.6 completes the proof.

We point out that the extended best polynomial approximation operator given in [7], defined on $L^{p-1}(B)$, satisfies the hypothesis of Corollary 3.7.

In the following we consider additional properties on T, which allow us to obtain specific subspaces R_T .

Definition 3.8. Let *S* be a subspace of L^{φ} . We say that *S* is *measurable* if there exists a sub σ -algebra of \mathcal{A} , say \mathcal{L} , such that *S* is the class of all \mathcal{L} -measurable functions in L^{φ} , i.e., $S = L^{\varphi}(B, \mathcal{L}, m)$. The subspace *S* is called *bounded* if $S \subset \overline{S \cap L^{\infty}(B)}^{\varphi}$.

Lemma 3.9. Let $S \subset L^{\varphi}$ be a subspace. If S is measurable, then $\overline{S}^{\varphi} = S$.

Proof. By hypothesis, $S = L^{\varphi}(B, \mathcal{L}, m)$ for some σ -subalgebra \mathcal{L} of \mathcal{A} . If $g \in \overline{S}^{\varphi}$, then there exists a sequence $\{g_k\}_{k \in \mathbb{N}} \subset S$ such that

$$\lim_{k \to \infty} d_{\varphi}(g_k, g) = 0. \tag{3.2}$$

Hence, there exists a subsequence of $\{g_k\}_{k \in \mathbb{N}}$, which is denoted in the same way, such that $\lim_{k\to\infty} g_k = g$ a.e. on *B*. So, *g* is an \mathcal{L} -measurable function. In addition, from (3.2) we have $g \in L^{\varphi}$ and consequently $g \in S$. This completes the proof.

Example 3.10. The subspace *S* given in Example 3.2 (b) is bounded and measurable. Indeed, it is easy to check that $S = L^{\varphi}(B, \mathcal{L}, m) \subset L^{\infty}(B)$, where \mathcal{L} is the sub σ -algebra { \emptyset , [0, $\frac{1}{2}$), [$\frac{1}{2}$, 1], *B*}.

Lemma 3.11. Let $\varphi \in \widetilde{\mathcal{F}}$ and let $T: L^{\varphi} \to L^{\varphi}$ be a quasiadditive, quasialgebraic and φ -closed operator. Then the set $\mathcal{L} = \{A \in B : T(\chi_A) = \chi_A\}$ is a sub σ -algebra of \mathcal{A} .

Proof. Clearly, $B \in \mathcal{L}$, since T(1) = 1. Let $A_1, A_2 \in \mathcal{L}$. As $\chi_{A_1 \cap A_2} = \chi_{A_1} \chi_{A_2} = T(\chi_{A_1})T(\chi_{A_2})$, we have

$$T(\chi_{A_1 \cap A_2}) = T(T(\chi_{A_1})T(\chi_{A_2})) = T(\chi_{A_1})T(\chi_{A_1}) = \chi_{A_1}\chi_{A_2} = \chi_{A_1 \cap A_2}.$$
(3.3)

According to (3.3), we have $\chi_{A_1 \setminus A_2} = \chi_{A_1} - \chi_{A_1 \cap A_2} = \chi_{A_1} - T(\chi_{A_1 \cap A_2})$, hence (3.1) implies

$$T(\chi_{A_1 \setminus A_2}) = T(\chi_{A_1} - T(\chi_{A_1 \cap A_2})) = T(\chi_{A_1}) - T(\chi_{A_1 \cap A_2}) = \chi_{A_1} - \chi_{A_1 \cap A_2} = \chi_{A_1 \setminus A_2}.$$
(3.4)

By (3.4), we get

$$T(\chi_{A_1\cup A_2}) = T(\chi_{A_1} + \chi_{A_2\setminus A_1}) = T(\chi_{A_1} + T(\chi_{A_2\setminus A_1})) = T(\chi_{A_1}) + T(\chi_{A_1\setminus A_2}) = \chi_{A_1} + \chi_{A_1\setminus A_2} = \chi_{A_1\cup A_2}.$$
 (3.5)

Now, let $\{A_k\}_{k \in \mathbb{N}} \subset \mathcal{L}$. From (3.5) we obtain that $g_N := \chi_{\bigcup_{k=1}^N A_k} \in \mathcal{L}$, $N \in \mathbb{N}$, and $\{g_N\}_{N \in \mathbb{N}}$ is a nondecreasing sequence such that $\lim_{N \to \infty} d_{\varphi}(g_N, g) = 0$, where $g = \chi_{\bigcup_{k=1}^\infty A_k}$. Since $T(g_N) = g_N$, $N \in \mathbb{N}$, and T is φ -closed, it follows that T(g) = g.

Theorem 3.12. Let $\varphi \in \widetilde{\mathcal{F}}$ and let $T: L^{\varphi} \to L^{\varphi}$ be an operator. Assume that $\mu_{\varphi}(f/R_T)$ is a singleton for all $f \in L^{\varphi}$. If T is quasiadditive, quasialgebraic, φ -closed, φ -expectation invariant and φ -bounded, then R_T is a bounded measurable linear subspace of L^{φ} and $Tf = \mu_{\varphi}(f/R_T)$ for all $f \in L^{\varphi}$.

Proof. Since T is quasialgebraic, it is quasihomogeneous and T0 = 0. By Lemma 3.3, we have

$$R_T = \{f \in L^{\varphi} : Tf = f\}.$$

Let \mathcal{L} be the sub σ -algebra given in Lemma 3.11, and let $A_1, A_2 \in \mathcal{L}, \alpha_1, \alpha_2 \in \mathbb{R}$. By hypothesis, we have

$$T(\alpha_1 \chi_{A_1} + \alpha_2 \chi_{A_2}) = T(\alpha_1 \chi_{A_1} + \alpha_2 T(\chi_{A_2})) = T(\alpha_1 \chi_{A_1} + T(\alpha_2 T(\chi_{A_2})))$$

= $T(\alpha_1 \chi_{A_1}) + T(\alpha_2 T(\chi_{A_2})) = T(\alpha_1 T(\chi_{A_1})) + T(\alpha_2 T(\chi_{A_2}))$
= $\alpha_1 T(\chi_{A_1}) + \alpha_2 T(\chi_{A_2}) = \alpha_1 \chi_{A_1} + \alpha_2 \chi_{A_2}.$

Therefore, $\alpha_1 \chi_{A_1} + \alpha_2 \chi_{A_2} \in R_T$. So, linear combinations of characteristic functions of sets of \mathcal{L} are in R_T . The facts that the totality of such functions is dense in $L^{\varphi}(B, \mathcal{L}, m)$ with respect to d_{φ} , and T is φ -closed, imply T(f) = f for all $f \in L^{\varphi}(B, \mathcal{L}, m)$. Hence,

$$L^{\varphi}(B,\mathcal{L},m) \in R_T. \tag{3.6}$$

We claim that

$$R_T \cap L^{\infty}(B) \subset L^{\varphi}(B, \mathcal{L}, m).$$
(3.7)

Indeed, let $g \in R_T \cap L^{\infty}(B)$. Then there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha \leq g \leq \beta$. Hence,

$$\int_{B} \varphi(|g|) \, dm \leq \varphi(\left| \max\{|\alpha|, |\beta|\} \right|) m(B) < \infty,$$

and so $g \in L^{\varphi}$. Set $I = [\alpha, \beta]$, and let \mathcal{M} be the Borel σ -algebra on I. Now, we will prove that if $D \in \mathcal{M}$, then $g^{-1}(D) \in \mathcal{L}$, and consequently $g \in L^{\varphi}(B, \mathcal{L}, m)$.

We consider the Lebesgue–Stieltjes measure $\mu_g \colon \mathcal{M} \to [0, m(B)]$ given by

$$\mu_g(\mathcal{C}) = m(g^{-1}(\mathcal{C})) \quad \text{for } \mathcal{C} \in \mathcal{M}.$$
(3.8)

Since (I, \mathcal{M}, μ_g) is a finite measure space, from (3.8), [4, Proposition 7.2, p. 80] and [4, Proposition 1.8, p. 43], we have

$$\int_{I} \varphi(|h|) \, d\mu_g = \int_{B} \varphi(|h \circ g|) \, dm \quad \text{whenever } h: I \to \mathbb{R} \text{ is a } \mathcal{M}\text{-measurable function.}$$
(3.9)

Let $D \in \mathcal{M}$ and $k \in \mathbb{N}$. As $\varphi(0^+) = 0$, there exists $\epsilon_k > 0$ such that

$$\varphi(\epsilon_k) < \frac{1}{2k\Lambda} \min\left\{\frac{1}{\varphi(1)}, \frac{1}{m(I)}\right\}.$$

8 — A. Benavente, S. Favier and F. Levis, Best φ -approximations

Since, μ_g is a regular measure, there exist an open set U and a closed set F such that $F \in D \in U \in I$ and $\mu_g(U \setminus F) < \varphi(\epsilon_k)$. By Urysohn's lemma, there exists a continuous function $f: I \to [0, 1]$ such that $f|_F = 1$ and $f|_{(I \setminus U)} = 0$. So,

$$\int_{I} \varphi(|f - \chi_D|) \, d\mu_g = \int_{U \setminus F} \varphi(|f - \chi_D|) \, d\mu_g \le \varphi(1) \mu_g(U \setminus F) < \frac{1}{2k\Lambda}.$$
(3.10)

On the other hand, by Weierstrass' theorem there exists a polynomial P_k on I such that $|P_k(x) - f(x)| < \epsilon_k$ for all $x \in I$, and so

$$\varphi(|P_k-f|)\,d\mu_g\leq\varphi(\epsilon_k)m(I)<\frac{1}{2k\Lambda}.$$

Therefore, (3.9) and (3.10) imply that

$$\int_{B} \varphi(|P_{k}(g) - \chi_{g^{-1}(D)}|) dm = \int_{B} \varphi(|(P_{k} - \chi_{D}) \circ g|) dm = \int_{I} \varphi(|P_{k} - \chi_{D}|) d\mu_{g}$$
$$\leq \Lambda \int_{I} \varphi(|P_{k} - f|) d\mu_{g} + \Lambda \int_{I} \varphi(|f - \chi_{D}|) d\mu_{g} < \frac{1}{k},$$

and consequently $\lim_{k\to\infty} d_{\varphi}(P_k(g), \chi_{g^{-1}(D)}) = 0$.

Since $g^2 = TgTg = T(TgTg) = T(g^2)$, by induction we see that $g^n = T(g^n)$, $n \in \mathbb{N}$, i.e., $g^n \in R_T$, $n \in \mathbb{N}$. By Theorem 3.6, it follows that R_T is a subspace of L^{φ} . Hence, $P_k(g) \in R_T$, $k \in \mathbb{N}$, and so

$$\lim_{k\to\infty}d_\varphi(T(P_k(g)),\chi_{g^{-1}(D)})=0.$$

As *T* is φ -closed, we have $T\chi_{g^{-1}(D)} = \chi_{g^{-1}(D)}$, and therefore $g^{-1}(D) \in \mathcal{L}$.

Now, from (3.6), (3.7) and Lemmas 3.3 and 3.9, we get $\overline{R_T \cap L^{\infty}(B)}^{\varphi} \subset L^{\varphi}(B, \mathcal{L}, m) \subset R_T$. Since *T* is φ -bounded, we have $R_T = L^{\varphi}(B, \mathcal{L}, m)$.

Finally, Theorem 3.6 completes the proof.

Funding: Research partially supported by CONICET, Universidad Nacional de San Luis and Universidad Nacional de Río Cuarto.

References

- [1] T. Ando and L. Amemiya, Almost everywhere convergence of prediction sequences in $L_p(1 , Z. Wahrschein$ lichkeitstheor. Verw. Geb. 4 (1965), 113–120.
- [2] R. R. Bahadur, Measurable subspaces and subalgebras, Proc. Amer. Math. Soc. 6 (1955), 565–570.
- [3] R. E. Barlow, D. J. Bartholomew, J. M. Bremmer and H. D. Brunk, *Statistical Inference Under Order Restrictions*, John Wiley and Sons, New York, 1972.
- [4] C. Bennet and R. Sharpley, Interpolation of Operators, Academic Press, USA, 1988.
- [5] H. D. Brunk, Uniform inequalities for conditional *p*-means given σ -lattices, *Ann. Probab.* **3** (1975), 1025–1030.
- [6] I. Carrizo, S. Favier and F. Zó, A characterization of extended best φ -approximation operator, *Numer. Funct. Anal. Optim.* **32** (2011), no. 3, 254–266.
- [7] H. Cuenya, Extension of the operator of best polynomial approximation in $L^{p}(\Omega)$, J. Math. Anal. Appl. **376** (2011), 565–575.
- [8] R. G. Douglas, Contractive projections on an L_1 space, *Pacific J. Math.* **15** (1965), 443–462.
- [9] R. L. Dykstra, A characterization of a conditional expectation with respect to a *σ*-lattice, *Ann. Math. Statist.* 41 (1970), 698–701.
- [10] S. Favier and F. Zó, Extension of the best approximation operator in Orlicz space and weak-type inequalities, Abstr. Appl. Anal. 6 (2001), 101–114.
- [11] R. B. Holmes, A Course on Optimization and Best Approximation, Lecture Notes in Math. 257, Springer, Berlin, 1972.
- [12] D. Landers and L. Rogge, Characterization of *p*-predictors, *Proc. Amer. Math. Soc.* **76** (1979), no. 2, 307–309.
- [13] D. Landers and L. Rogge, Best approximants in L_{Φ} -spaces, Z. Wahrscheinlichkeitstheor. Verw. Geb. **51** (1980), 215–237.

- [14] D. Landers and L. Rogge, A characterization of best ϕ -approximants, *Trans. Amer. Math. Soc.* 267 (1981), no. 1, 259–264.
- [15] S. C. Moy, Characterizations of conditional expectation as a transformation on function sapaces, *Pacific J. Math.* **4** (1954), 47–63.
- [16] M. P. Olson, A characterization of conditional probability, *Pacific J. Math.* **15** (1965), 971–983.
- [17] J. Pfanzagl, Characterizations of conditional expectations, Ann. Math. Statist **38** (1967), 415–421.
- [18] G. C. Rota, On the representations of averaging operators, *Rend. Semin. Mat. Univ. Padova* **30** (1960), 52–64.
- [19] T. Shintani and T. Ando, Best approximants in L₁-space, Z. Wahrscheinlichkeitstheor. Verw. Geb. **33** (1975), 33–39.