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Fisher Vectors for PolSAR Image Classification
Javier Redolfi, Jorge Sánchez, and Ana Georgina Flesia

Abstract— In this letter, we study the application of the Fisher
vector (FV) to the problem of pixelwise supervised classification
of polarimetric synthetic aperture radar images. This is a
challenging problem since information in those images is encoded
as complex-valued covariance matrices. We observe that the real
parts of these matrices preserve the positive semidefiniteness
property of their complex counterpart. Based on this observation,
we derive an FV from a mixture of real Wishart densities and
integrate it with a Potts-like energy model in order to capture
spatial dependencies between neighboring regions. Experimental
results on two challenging data sets show the effectiveness of the
approach.

Index Terms— Fisher vectors (FVs), image classification,
polarimetric synthetic aperture radar (PolSAR).

I. INTRODUCTION

APOLARIMETRIC synthetic aperture radar (PolSAR) is
an active sensing device capable of providing images

that are robust against variations of weather and atmosphere
conditions, irrespective of the time of the day they were
acquired. These properties make PolSAR images a valuable
resource in environmental monitoring applications and for the
automated analysis of terrains and land covers [1]–[6].

PolSAR data are generated by transmitting orthogonally
polarized electromagnetic pulses toward a target and recording
the returned echo for each channel independently. Raw mea-
surements are further processed in order to generate a multi-
channel image with complex-valued entries. As a consequence
of the coherent illumination, the images are contaminated with
a particular form of noise known as speckle [7]. To reduce the
effect of this noise, PolSAR data are aggregated by averaging
local information over small neighborhoods, resulting in the
so-called multilook representation of the PolSAR data [8].

One of the characteristics that make PolSAR images
unique—and perhaps one of the reasons why they are not
widely used—is that the visual information (pixel values) is
encoded in the form of complex-valued vectors or matrices.
This makes the application of standard techniques, known
from the statistical and machine learning literature, very
difficult. Dealing with such data while taking into account
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its underlying structure is a challenging problem and the main
purpose of this letter.

In the classification literature, one of the first methods
proposed to address this problem was the complex Wishart
classifier (CWC) of Lee et al. [1]. The CWC is based on
the idea of fitting a complex Wishart pdf for each class
and classifying pixels based on a maximum a posteriori
criterion. Note that, by fitting a single pdf, the model implicitly
assumes that samples within each class are homogeneous.
Besides classification, the complex Wishart distribution has
also been used successfully as a statistical model for other
image analysis tasks like segmentation or boundary detection
(see [7], [9] and the references therein). To move beyond
the homogeneous case, Gao et al. [2] proposed to extend the
CWC by considering finite mixtures of complex Wishart pdfs.
Experimental results confirmed the advantages of this model
in dealing with nonhomogeneous terrains. Mixture models
have also been considered in [10] and [11] for PolSAR data
modeling and classification. Doulgeris et al. [10] arrive to a
generalization of the complex Wishart pdf by analyzing the
distribution of the sample covariance for the scaled mixture
of Gaussians (SMoG) model. This model originates from
the product of a scalar (scale) and a multivariate complex
Gaussian random variable, where the scalar and Gaussian
terms account for the texture and speckle, respectively. In the
SMoG, the distribution for the covariance of the composite
variable can be estimated by integrating over the distribution
of the scale term. As such, this model can be regarded as a
continuous mixture model.

More recently, Wang et al. [3] proposed a model based on
the polar decomposition of the Mueller matrix and showed
good results. Jiao and Liu [4] proposed the Wishart deep
stacking network (W-DSN) that, as the models proposed in [5]
and [6], takes advantage of powerful techniques developed in
the machine learning literature. However, training this kind of
model requires large amounts of high-quality annotated data,
which in some cases may be difficult or even impractical to
gather.

In this letter, we present a first study on the application of a
family of models, originated in the computer vision literature,
and apply it to the problem of terrain-type classification,
i.e., the task of assigning labels to pixels based on the scatter-
ing properties of the target as measured by the PolSAR sensor.
We propose a model that integrates the Fisher vector (FV)
formalism [12], [13] with a Potts-like energy model [14] that
captures the spatial dependency between the variables. In the
FV framework, the image content (pixels, regions, and/or
the whole image) is characterized by a normalized gradient
vector derived from a suitable mixture distribution. In our
case, we consider the real part of the PoLSAR covariances
and derive an FV from a mixture of real Wishart pdfs
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by first showing that these matrices preserve the symmetric
positive semidefiniteness property of their complex counter-
part. We, then, define a Potts-like energy where the unary
terms are computed as the negative inner product between per-
class and pixel-level FVs. Minimization of this energy over the
graph of four-connected pixel locations gives us the desired
classification.

Our main contribution is a novel method for solving
the problem of PolSAR image classification based on FVs
(Sections II-B and III). To the best of our knowledge, this is
the first time the FV is applied to the analysis of PolSAR
imagery. As a second contribution, we made available a set
of ground truth annotations and a well-defined training/testing
procedure based on two popular data sets (Section IV-A) found
in the literature.

II. FUNDAMENTALS

In this section, we introduce the fundamental concepts on
PolSAR image generation and the FV image representation.
For a more detailed treatment of these topics, we refer the
reader to [15] and [16], respectively.

A. PolSAR Data

A PolSAR measures the backscattered signal from a
medium in the four different combinations that result from
transmitting and receiving the radar signal with horizontal and
vertical linear polarizations. The scattering information can be
represented by the following complex-valued matrix:

S =
(

SHH SHV
SVH SVV

)
. (1)

For a reciprocal medium, SHV = SVH holds and the
scattering information can be alternatively encoded as a
vector h = (SHH

√
2SHV SVV)T where T denotes the trans-

pose operator. The “multilook” version of this vector is
obtained by averaging the individual measurements in a local
neighborhood. Alternatively, one can define the multilook
complex covariance as the matrix

C = [ci j ] = 1

m

m∑
k=1

h(k)h(k)†. (2)

Here, h(k) is the scattering vector h at location k, m is the
number of looks, and the superscript † denotes conjugate
transpose. The Hermitian matrix mC is positive semidefi-
nite (PSD) and follows a complex Wishart distribution with
m degrees of freedom (DoF) [8], [17]. It can be shown that
the real part of the matrix C , i.e., �{C} = [�{ci j }], is a
symmetric PSD (SPSD) real matrix (see the Appendix). It can,
thus, be considered as being drawn from a real Wishart pdf
with n DoF. In this case, n is a free parameter that has to be
set empirically.

B. Fisher Vector Principle

Let X = {xi}N
i=1 be an independent identically distributed

sample drawn from a parametric distribution pλ defined over
a sample space �, with λ the parameters of the model.
Let T (X) denote the sufficient statistics of X with respect

to the distribution pλ. The FV of X under pλ is a vecto-
rial representation of the sample that encodes the difference
between T (X) and its expected value under pλ [16]. Formally,
it is defined as the normalized gradient of the log-likelihood
of X with respect to the parameters of the model pλ

g(X) = 1

N

N∑
i=1

Lλ∇λ log pλ(xi ) (3)

where Lλ is the Cholesky factor of the inverse of the Fisher
information matrix and ∇λ denotes the gradient with respect
to λ. Here, pλ can be considered as a universal (class-
independent) model for the generation of samples on �.
The choice of its particular form is constrained by the nature
of � and the particularities of the problem. In our case, we are
constrained to � = S(q), i.e., the space of SPSD q × q
matrices (Section II-A). We must, therefore, seek for a sensible
model on this space. Following [16], we define pλ as a finite
mixture distribution with K components as follows:

pλ(x) :=
K∑

k=1

wk pk(x) (4)

∑K
k=1 wk = 1, wk > 0, ∀k, and pk a Wishart pdf with n DoF,

k = 1, . . . , K . Being a member of the exponential family,
pk can be parameterized as follows:

pk(x) := H (x) exp[vec(ηk)
T vec(x) − �(ηk)]. (5)

vec(·) denotes the vectorization operator, �(ηk) =
log �q(n/2)−(n/2) log | − ηk | is known as log-partition func-
tion, ηk ∈ R

q×q the parameters of the distribution in natural
form, H (x) = |x |(n−q−1)/2 is a normalizer, and �q (·) denotes
the multivariate gamma function.

With the above-mentioned definitions, the FV for a sam-
ple X results in a vector of dimensionality D = K (q2 + 1).
This vector is subsequently power- and L2-normalized
since this was shown to improve the overall classification
performance [13].

C. Model Parameter Estimation

The distribution given by (4) is a loose model for the
generation of samples in any image, regardless of the classes
they might belong to. Its parameters must, thus, be estimated
based on a diverse set of elements sampled at random from
the images under consideration. Let X = {xi }N

i=1 be such a
sample. To estimate the parameters of the model, we use the
expectation–maximization (EM) algorithm [18]. EM iterates
the following two steps.

1) E-Step: Compute the soft assignment of samples to
mixture components for each element of the training set

γk(xi) = wk pk(xi )∑K
j=1 w j p j (xi )

(6)

k = 1, . . . , K and i = 1, . . . , N , using the current
estimates of the parameters.

2) M-Step: Update the parameters of the model using the
posteriors computed in the E-Step. For the mixture of
real Wishart pdfs with fixed n, and parameterized as
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in (5), the update equations adopt a particularly simple
form

wk = 1

N

N∑
i=1

γk(xi ), ηk = −n

2

(∑N
i=1 γk(xi )xi∑N

i=1 γk(xi)

)−1

(7)

for k = 1, . . . , K .

These two steps are repeated until the expected complete data
log-likelihood ceases to improve or until a maximum number
of iterations are reached. Initialization of the algorithm can
be performed by randomly sampling K prototypes from the
training set or by running a clustering algorithm on a subset
of the data [19].

III. PIXELWISE CLASSIFICATION WITH THE FV
We adopt a simple model consisting of the following

Potts-like energy over the graph of four-connected pixel
locations:

E(Y) =
∑
i∈|V |

φi (yi) + λ
∑

{i, j }∈E
I[yi �= y j ] (8)

where Y is labeling over the graph (V, E) with vertices i ∈ V
and edges (i, j) ∈ E , I[z] denotes the indicator function that
equals 1 if its predicate is true and 0 otherwise, λ ∈ R,
and φi (yi ) is a unary term that penalizes the (incorrect)
assignment of location i to class label yi . In our case,
φi (yi ) is defined as the negative inner product between the
FV computed on a local neighborhood at location i and a
per-class FV computed using all training samples for class
yi ∈ {1, . . . , C}

φi (y) = −〈g(Xi ), gy〉 (9)

with Xi the sample extracted from a 3 × 3 neighborhood
centered on location i , and gy the FV computed from training
samples of class y. The formulation above can be seen as a
nearest mean classifier [20] with an additional spatial regular-
ity constraint given by the second term in (8). The labeling
Ŷ = arg minY E(Y) gives us the desired classification.

IV. EXPERIMENTS

We begin this section by providing a detailed description
of the data and evaluation procedure we have followed in our
experiments. Next, we evaluate different aspects of our model
and compare its performance with other methods found in the
literature. To facilitate reproducibility, data and scripts will be
available at the project Web site.1

A. Data Set
For evaluation, we consider a subset of the images that

were available trough PolSARpro2 by the European Space
Agency. This subset consists of two fully polarimetric images
in the L-band acquired by the NASA/JPL Airborne Synthetic
Aperture Radar (AIRSAR) sensor over the San Francisco
Bay (SFB) area, USA, and over an agricultural region in
the Flevoland (FL) province in the Netherlands. Figs. 1 and
2 show the pseudocolor representation of the polarimetric

1http://ciii.frc.utn.edu.ar/JavierAndresRedolfi/sartb
2https://earth.esa.int/web/polsarpro

Fig. 1. (Left) SFB image. (Right) Ground truth labels. Training samples are
marked as black squares (best viewed with magnification).

Fig. 2. (Left) FL image. (Right) Ground truth labels. Training samples are
marked as black squares (best viewed with magnification).

data (left) and the ground truth labels (right) for the SFB
and FL regions, respectively. Segmentation masks for these
two sets are based on [2] and [21]. For SFB, we cropped
the original 900 × 1024 image and considered a region of
500 × 500 pixels since we have not ground truth annotations
for the rest of the image. For FL, we consider the full
750 × 1024 image.

For evaluation, we generate 10 different train/test splits and
report the mean accuracy (and standard deviation) over the
10 runs. Train/test splits are generated following a process that
lies between two common strategies found in the literature,
namely, random selection [3]–[5] and manual annotation of
training and testing samples [10], [22], [23]. The process is
as follows. For each class, we sample r annotated pixels,
and at each pixel location, we crop a small window of size
s × s pixels. To enforce data variability, we only consider
nonoverlapping windows. Following this procedure, we end up
with rs2 samples per class that we use for training, while the
rest is used for testing. From now on, we set r = 4 and s = 5.

We make the following observations. First, a sample drawn
as described above is—by construction—composed of r sub-
sets of s2 neighboring pixels. It has, therefore, the ability to
retain some of the local dependencies that may exist between
pixels in a window of size s × s. These dependencies are
less likely to be reflected on a sample drawn at random.
Second, the process is not biased due to the subjectivity of
manual selection, favoring reproducibility and fairness when
comparing results.

B. Implementation Details
Classifying an image with our model involves the follow-

ing steps: 1) fitting the parameters of the mixture distribu-
tion (4); 2) computing FVs’ signatures at each pixel location;
and 3) solving the classification problem posed by (8). Details
regarding each step are next provided. First, images are
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Fig. 3. Mean accuracy and standard deviation measured on the SFB subset
for different choices of n and K .

converted to the multilook complex covariance format (2)
using PolSARPro v4.2. The parameters of the mixture
model (4) are estimated under a maximum-likelihood criterion
with the EM algorithm using around 1 K points chosen at
random, as described in Section II-C. In practice, we consider
only those whose determinant is within the 95th percentile of
the sample population. Empirically, we observed this has the
effect of reducing the noise during estimation by removing
samples that are badly conditioned. Once the model has
been fitted, FVs are computed pixelwise as in [16]. Finally,
the inference problem associated to the minimization of (8) is
solved via graph cuts using the approximate solver of [24] as
implemented in the GCO library.3

C. Selection of Parameters n and K
In this section, we evaluate the impact on the classification

accuracy of the two main free parameters in our model, i.e., the
effective number of DoF, n [see (5)], and the number of
mixture components, K [see (4)]. Evaluation is performed
on SFB. Fig. 3 shows the results obtained on the SFB subset
for different values of n and K . From Fig. 3, we see that
K has the highest influence on the overall accuracy. The best
performance is obtained with n ∈ {5, 6} and K = 16, although
it is quite stable within this range. In what follows, we set
n = 5 and K = 16.

D. Comparison With Other Methods
We first compare our approach to two common models

found in the literature, namely, the CWC4 [1] and a sys-
tem similar to that of [2] but restricted to mixtures of real
Wishart pdfs (RWM). In both cases, we fit a model for each
class and use the negative log-likelihood as unary potentials
in (8). Evaluation is performed on both the SFB and FL data
sets and results are shown in Table I. Parameters for
the RWM method were chosen following the procedure
described in Section IV-C. From Table I, we observe that
CWC and RWM perform similarly, with our approach outper-
forming both methods by a large margin. The larger variability
observed with CWC and RWM can be attributed to the low
number of samples available for some of the classes in order

3http://vision.csd.uwo.ca/code/
4CWC can be regarded as a model based on fitting a per-class mixture of

complex Wishart pdfs with a single component (K = 1). Results are shown
following this convention.

TABLE I

MEAN ACCURACY ON SFB AND FL FOR THE CWC,
RWM, AND THE FV-BASED APPROACHES

Fig. 4. (Left) CM for the FV-based model on the FL image. (Right)
Classification results on the full image and test regions only.

to properly fit the models. On the contrary, in the FV case,
the underlying pdf is class independent and it was fitted from
a more diverse and bigger set of samples.

In Fig. 4, we show the confusion matrix (CM) as well as
classification results obtained with our model on the FL image.
From the CM, we observe that for most of the classes,
the method behaves accurately. The worst case is for the
Rapeseed class that is often confused with the classes Wheat
and Wheat2. There is also some confusion between the classes
Watter and BareSoil, as well as between Grasses and Lucerne.

Next, we compare our model against two other methods
recently proposed in the literature. The first is a method based
on a polar decomposition of the Mueller matrix [3] while
the second corresponds to the W-DSN of [4]. For a fair
comparison, we followed the same evaluation procedures as
those chosen by the authors in the reference works. Evaluation
is performed on the FL subset only.

In the first case, results are reported on 11 of the 15 classes,
as in [3]. Models are trained using 2000 samples drawn at
random. Our results along with those reported by the authors
are shown in Table II. From Table II, it can be observed that
our model performs better on all cases except for the Water
class. The mean accuracy of our system (0.9728) is 4% above
the other methods.

We also compare our model with the deep-learning-based
approach of [4]. In this case, following the configuration
of the authors, classification performance is reported as the
mean accuracy over the 15 classes, where 5% of the (labeled)
samples are used for training and the remaining 95% for
testing. The W-DSN system achieved an average accuracy
(over the 15 classes) of 0.9268 while ours achieved a score
of 0.9688, which represents a gain of 4% compared with
W-DSN.

Finally, we report computation times for the different
parts of our algorithm. With our implementation, fitting
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TABLE II

COMPARISON WITH THE BEST PERFORMING METHOD OF [3] IN FL

the mixture takes approximately 1 min on an Intel
Core i7-2600K CPU machine. FV computation takes an aver-
age of 100 μs per pixel. It is by far the most costly operation.
However, since FVs are computed on each pixel location
independently, this operation could be trivially parallelized.
Our implementation, however, does not exploit parallelism at
this level. Inference depends on the size of the image as well
as on the number of classes. Solving the inference problem
for our largest image took approximately 12 s.

V. CONCLUSION

In this letter, we applied the FV framework to the problem
of classification of PolSAR images and obtained encouraging
results on two data sets commonly used in the literature.
A natural extension of our model is the use of mixtures of
complex Wishart pdfs or more complex models specifically
tailored to PolSAR data [25]. These lines of research will be
pursued in future works.

APPENDIX

A matrix C ∈ C
q×q is said to be PSD if z∗Cz ≥ 0 and

∀z ∈ C
q \ {0}. Since R

q ⊂ C
q , it follows that x T Cx ≥ 0 and

∀x ∈ R
q \ {0}, i.e., the complex matrix C is also PSD on R

q .
Without loss of generality, let us consider the case m = 1
in (2) and let h = (h1, . . . , hq )T . Since C is Hermitian, the
bilinear form on R

q above can be written as

x T Cx =
∑

i

x2
i |hi |2 +

∑
i

∑
j<i

xi x j (ci j + ci j )

=
∑

i

x2
i �{cii } + 2

∑
i

∑
j<i

xi x j�{ci j }

= xT �{C}x ≥ 0.

However, note that in general xT �{C}x = xT �{hh∗}x �=
xT �{h}�{h}T x , and for the multilook case [m > 1 in (2)],
the matrix �{mC} cannot be considered as generated by a
Wishart distribution with m DoF, as we did before. In our
case, the number of DoF is a parameter that has to be set
empirically.
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