Chemometrics and Intelligent Laboratory Systems 140 (2015) 126-132

=
CHEMOMETRICS
I @ anD INTELLIGENT

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemolab

QSPR analysis for the retention index of flavors and fragrances on a
OV-101 column

Cristian Rojas **, Pablo R. Duchowicz ?, Piercosimo Tripaldi ®, Reinaldo Pis Diez ¢

@ Instituto de Investigaciones Fisicoquimicas Tedricas y Aplicadas INIFTA (CCT La Plata-CONICET, UNLP), Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata 1900, Argentina
b aboratorio UDALAB, Facultad de Ciencia y Tecnologia, Universidad del Azuay, Av. 24 de Mayo 7-77 y Herndn Malo, Cuenca, Ecuador
€ Facultad de Ciencias Exactas, Departamento de Quimica, CEQUINOR, Centro de Quimica Inorgdnica (CONICET, UNLP), C.C. 962, La Plata 1900, Argentina

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 27 May 2014

Received in revised form 17 August 2014
Accepted 20 September 2014

Available online 21 November 2014

A predictive quantitative structure-property relationships (QSPR) is developed for modeling the retention index
measured on the OV-101 glass capillary gas chromatography column, in a set of 1208 flavor and fragrance com-
pounds. The 4885 molecular descriptors are calculated using the Dragon software and then are simultaneously
analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset
selection technique. We proceed in three steps, the first one by considering all descriptor blocks, the second
one by excluding conformational descriptors blocks, and the last one by analyzing only 3D-descriptors families.
The models are properly validated through an external test set of compounds. Cross-validation methods such as
leave-one-out and leave-more-out are applied, together with Y-randomization and applicability domain analysis.
The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention
index, while a topological index such as the solvation connectivity index of first order has a high relevance for
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this purpose.
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1. Introduction

Fragrance and flavor substances [1] are strong-smelling organic
compounds. Their major common characteristic is a pleasant odor
(fragrance chemical) or a pleasant taste (flavor chemical). A fragrance
substance is used as a component in a perfume or a perfumed product,
while a flavor substance is used as a flavoring or to enhance the flavor of
beverages and food products. Chromatography techniques are generally
used for analyzing the content and impurity of fragrances and flavors, as
well as for quality control and in-process control, in order to provide
details of their profiles in a few minutes.

In 1977, three publications have appeared for the first time on QSPR
theory, or what is currently known as quantitative structure-retention
relationships (QSRR) [2]. Subsequently, in 1987, a monograph is pub-
lished containing several hundred of publications demonstrating that,
in fact, QSRR methods represent a powerful tool in Chromatography
data analysis [3,4]. The aim of QSRR is to predict retention data for
non-synthesized compounds, from the knowledge of their molecular
structure. The accurate prediction of the retention index (RI) [5]
represents a challenge in QSPR because this requires quality and preci-
sion in the experiments. However, the methodology is useful for chro-
matographers in order to prepare experimental designs [6] and to
optimize the separation of complex mixtures. In addition, reliable
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QSRR methods have been established to understand the molecular
mechanism of retention on diverse stationary phases, and therefore to
rational design new phases of defined properties [2].

Several QSPR studies have been published in past years for the
prediction of the RI parameter on different stationary phase types. In
1989, Staton and Jurs [7] have used the ADAPT software to study a series
of 107 substituted pyrazine compounds taken from the literature, with
Rl values being measured on methyl silicone OV-101 and poly(ethylene
glycol) Carbowax 20M columns. Their results are reliable: R> = 0.994
for OV-101, and R?> = 0.986 for Carbowax 20M. A year later, a similar
study from Anker and Jurs [8] measure Rl on 115 odor compounds (38
alcohols, 11 aldehydes, 19 ketones, and 47 esters) and establishes a
QSPR, leading to R? = 0.998 for OV-101 and R* = 0.992 for Carbowax
20M.

In 2000, Héberger et al. [9] have built a quantitative structure-
retention relationship for 35 aliphatic ketones and aldehydes, by
means of the partial least squares (PLS) technique. The retention
index is determined using HP-1, HP-50, DB-210, and HP-INNOWax
capillary columns. The authors claim that ketones and aldehydes
cannot be separated in two classes solely on the basis of RI data,
whereas physical properties such as boiling point, molar volume,
molecular weight, molar refraction, and the octanol-water partition
coefficient contain the additional information for appropriately
separating them into such classes.

In 2002, Liu et al. [ 10] have proposed the molecular electronegativity
distance vector to describe the structure of 209 polycyclic aromatic
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hydrocarbons, in a programmed temperature SE-52 capillary-GC col-
umn, and establish a model by means of the multiple linear regression
cross-validated technique. In this research, a better QSPR is achieved
by removing 37 outliers (R*> = 0.987).

In another study in 2007, Lu et al. [11] have analyzed the GC reten-
tion indices of 55 polyhalogenated biphenyl compounds through two
2D-descriptor types including the molecular electronegativity distance
vector based on 13 atomic types (MEDV-13) and the atom-type
electrotopological state (E-state) index. The resulting equation validat-
ed by leave-one-out cross-validation represents a very good model for
calculating RI (R? = 0.984, and R}, = 0.975). Goodner [12] in 2008
has developed a high-quality regression model utilizing the boiling
point and the logarithm of the octanol-water partition coefficient, for
several columns: OV-101 (91 molecules), DB-1 (57 molecules), DB-5
(94 molecules), and DB-Wax (102 compounds). In addition, a combina-
tion of several outlier tests are used, such as the Grubb's test, the Dixon's
Q-test, and a modified “huge” rule.

In 2008, Dua et al. [13] have predicted the retention times on 43 con-
stituents of saffron aroma using the best multi-linear regression (BMLR)
and projection pursuit regression (PPR) methods, leading to acceptable
results for both methods: RZ.,i, = 0.943, RZ&s = 0.872, and RZ.,i, =
0.981, RZ, = 0.946, respectively. Finally, in a recent study of 2012,
Yan et al. [14] have performed a QSRR for 1341 flavor compounds
using four stationary phases of different polarities (OV-101, DB-5, OV-
17, and Carbowax 20M). They select the following descriptors for such
columns: ° y (molecular connectivity index of zero-th order), ! y (molec-
ular connectivity index of first order), ndonr (number of hydrogen-bond
donors), MW (molecular mass), DPSA1 (difference between partial posi-
tively and negatively charged surface areas), FPSA1 (fractional partial
positive surface area), ghmax (maximum positive charge on hydrogen),
1 (dipole moment), ipc (information content from the adjacent matrix),
and * y, (molecular connectivity index for four clusters). Model's stability
and validity are tested by internal and external validation. The squared
leave-one-out correlation coefficient (Q?) show well-correlated models:
0.959,0.953,0.959, and 0.922 on stationary phase OV-101 (°y, ! y, ndonr,
MW), DB-5 (MW, °y, ndonr, ! ), OV-17 (DPSA1, FPSA1, ghmax, i, ipc),
and Carbowax 20M (ndonr, FPSA1, ghmax, g, 4 y.), respectively. All
these QSPR predictive models may be useful for the prediction of the RI
parameter on flavor compounds when experimental data is unavailable.

Given these premises, the main purpose of the present work is to use
anovel data set of 1208 flavor and fragrance volatile compounds having
RI values being measured on the stationary phase methyl silicone OV-
101 for developing a predictive QSPR model. This data set has not yet
been used for QSPR studies. Following this purpose, a large set of molec-
ular descriptors are calculated using the well-known Dragon software;
besides that, the replacement method (RM) is used as a variable subset
selection technique; then, the total-order ranking methodology imple-
mented in DART software [15] is used for choosing the best model
from a pool of models having 1 to 7 descriptors. For validation purposes,
the data set is split intro training, validation, and test set following the k-
means cluster analysis. Therefore, this research would allow us to obtain
a model to predict RI values for both un-evaluated and un-synthesized
flavors/fragrances, and thus it would be useful for people who work
on aroma and flavor chemical synthesis.

2. Materials and methods
2.1. Experimental Data set

The chemical domain analyzed involves 1208 aromatic substances
reported by Jennings and Shibamoto [16]. The experimental property
reported by these authors is the Kovats retention index in the non-
polar stationary capillary column (0.28 mm x 50 m), which is coated
with methyl silicone OV-101, admixed with 1 % Carbowax 20M as an
antitailing additive, and programmed from 80 to 200 °C at 2 °C min~ .

The RI values vary in the range from 350 to 2180. The chemical
names, simplified molecular input line entry system (SMILES) notations
as obtained with the Open Babel software [17], and RI values are
presented in Table S1. When a molecule has two or more RI values the
average value is used.

2.2. Molecular descriptors

A crucial problem in QSPR studies is to find a convenient structure
representation. Generally, researchers use molecular descriptors as
structural characterization. Descriptors are the final result of a logical
and mathematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule into an useful
number or the result of some standardized experiment [18]. In this
way, the compounds are first drawn using HyperChem for Windows
[19]. For geometry optimization, the molecular mechanics force field
(MM +) is used, followed by the PM3 semi-empirical method to refine
the structures. The conjugate gradient algorithm, in the Polak-Ribiere
version, is used for the optimizations. The geometries are considered
optimized when the root mean square deviation of the gradient vector
becomes less than 0.01 kcal.(A mol)~!. Geometry optimizations are
also carried out with HyperChem. We compute 4885 molecular descrip-
tors of all types using Dragon version 6.0 [20]. This well-known descrip-
tor database includes twenty-nine descriptor families: 0D-descriptors
(constitutional indices), 1D-descriptors (functional group counts,
atom-centred fragments, molecular properties), 2D-descriptors (ring
descriptors, topological indices, walk and path counts, connectivity
indices, information indices, 2D matrix-based descriptors, 2D autocor-
relations, Burden eigenvalues, P_VSA-like descriptors, edge adjacency
indices, CATS 2D, 2D atom pairs, atom-type E-state indices, ETA indices,
drug-like indices), and 3D-descriptors (Randic molecular profiles,
geometrical descriptors, RDF descriptors, 3D-MoRSE descriptors, WHIM
descriptors, GETAWAY descriptors, charge descriptors, 3D matrix-based
descriptors, 3D autocorrelations, 3D atom pairs) [18]. The first data set
is composed of descriptors belonging to all the blocks. In the second
data set, only non-conformational molecular descriptors are considered.
Finally, in the third data set, we only consider 3D-descriptors. This is
done in order to compare whether 3D-molecular descriptors play an
important role for modeling the RI parameter. In all the cases, we exclude
descriptors with constant and near-constant values and descriptors with
at least one missing value.

2.3. Model development

2.3.1. Molecular descriptor selection in MLR

Another issue to address in the QSPR theory is the selection of the
most useful molecular descriptors from a large number of correlated
variables. A large number of feature selection methods is available to
search for the best descriptors from a pool of variables, and the replace-
ment method (RM) [21,22], employed here, has been successfully
applied elsewhere [23-32]. In brief, the RM is an efficient optimization
tool which generates multivariable linear regression (MLR) models by
searching in a set having D descriptors for an optimal subset having
d<<D ones with smallest RMSD. The quality of the results achieved
with this technique is close to performing an exact (combinatorial)
full search of molecular descriptors, although requires much less com-
putational work. RM algorithm is programmed in Matlab [33].

For the selection of the best model among the MLR models, we use a
novel methodology, which is called total-order ranking that belongs to
multicriteria decision making (MCDM) [34]. This is an useful tool for
selecting the best alternative from a pool of potential candidates that
have some criteria. One of the simplest approaches for the total-order
ranking is the utility function, which is defined by a transformation in
a scale between 0 (minimum utility) and 1 (maximum utility) by an ar-
bitrary function (fy), i.e., linear, inverse linear, normal, etc., that rep-
resents the trend of each criterion throughout its lower and highest
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values as the worst and best conditions, respectively. In this way, each
criterion (yy;) is independently transformed into an utility function
(ugi). Then the overall utility (U;) of each candidate is calculated as an
average value if each criterion has the same weight. Total-order calcula-
tions are carried out using DART software [15].

2.3.2. Model validation

We validated the established QSPR models in order to determine
their predictive power, by predicting the RI on compounds not consid-
ered during the calibration and comparing such values with the exper-
imental ones. Therefore, the whole set of 1208 compounds is split into
training (train), validation (val), and test (test) sets of compounds
[35]. The training set is used to calibrate the model and to obtain its pa-
rameters; the validation set helps to partially validate the model; the
test set includes compounds “never seen” during the calibration and
demonstrates the predictive capability. It is also known that such split-
ting should be done by achieving similar structure-property relation-
ships in the three sets, in other words, the training set molecules
should be representatives of the validation and test set compounds
[36]. There are available in the literature several standard techniques
that allow designing a rational partition of a data set, such as principal
components analysis (PCA), discriminant analysis (DA), cluster analysis
(CA), or methods based on the fuzzy logic theory [37].

In this work, we choose the training, validation and test set com-
pounds by applying a new procedure developed in our group that is
based on the k-means cluster analysis (k-MCA) method [38] imple-
mented in Matlab. The essence of k-MCA is to create k-clusters or groups
of compounds, in such a way that compounds in the same cluster are
very similar in terms of a distance metrics (i.e., Euclidean distance),
and compounds in different clusters are very distinct. Our procedure
applied to the retention index data set involves the following steps:

a. Prepare a matrix (C) that includes the experimental property and
the 1815 non-conformational molecular descriptors. This is done
to consider the structure-property relationship during the classifica-
tion process. Furthermore, only geometry independent descriptors
are used in order to avoid optimization biases. Now the size of C is
1208 x 1816.

b. Remove the linearly dependent variables from the previous matrix.
The new size of C is 1208 x 1137.

c. Standardize C for centering and scaling its matrix elements. This is
done for discerning better the matrix elements.

d. Create N2, clusters with the 1208 compounds through the k-MCA
method, for which the C matrix is used together with the Euclidean
metrics, and 90 runs for the numerical optimization algorithm of k-
MCA in order to achieve the best solution. This computes N cluster
centroid locations, each centroid of 1 x 1137 size. N%.in = Nirain —
Ninin max Where N8, is the number of compounds in train and
Npmin max 1S the number of compounds that have minimum or
maximum values for the experimental property.

e. The training set is designed by including one compound per clus-
ter, which is the compound that is nearer to the centroid in each
cluster. It also includes the Nyin max cOMpounds.

f. Create Ny, clusters with the remaining 1208 — Ni.;; compounds
through the k-MCA method, in the same numerical conditions as

described previously. This computes N, cluster centroid locations.
g. The validation set is designed by including one compound per cluster,
which is the compound that is nearer to the centroid in each cluster.
h. Finally, the test set includes the remaining 1208 — Niain — Nvai
compounds.

We practice the cross-validation technique of leave-one-out (loo)
and leave-more-out (In%o, with n% being the percentile of molecules
removed from the training set). The statistical parameters Ry, % o and
Sin % o (correlation coefficient and standard deviation of leave-more-
out) measure the stability of the QSPR upon inclusion/exclusion of mol-
ecules. The number of cases for random data removal analyzed is 50000.

The Y-randomization procedure [39] is applied in order to verify the
model robustness and to avoid the development of fortuitous correla-
tions. This technique consists on scrambling the experimental property
values in such a way that they do not correspond to the respective com-
pounds. After analyzing 10000 cases of Y-randomization, the standard
deviation obtained (5™"%) has to be a poorer value than the one found
by considering the true calibration (S).

2.3.3. Applicability domain analysis

The applicability domain (AD) of the QSPR model is also explored, as
not even a predictive model is expected to reliably predict the modeled
property for the whole universe of molecules. The AD is a theoretically
defined area that depends on the descriptors and the experimental
property [40]. Only the molecules falling within this AD are not consid-
ered model extrapolations. One possible way to characterize the AD is
based on the leverage approach [41], which allows to verify whether a
new compound can be considered as interpolated (with reduced uncer-
tainty, reliable prediction) or extrapolated outside the domain (unreli-
able prediction). Each compound i has a calculated leverage value (h;),
and there exists a warning leverage value (h™); Table S2 includes the
definitions for h; and h*. When h; > h* for a test set compound, then a
warning should be given: it means that the prediction is the result of
substantial extrapolation of the model and could not be treated as
reliable.

2.34. Degree of contribution of selected descriptors

In order to find out the relative importance of the j-th descriptor
in the linear model, we standardize its regression coefficient (b, see
Table S2). The larger the absolute value of b}, the greater the importance
of such descriptor [42].

3. Results and discussion

As a first step, we apply the k-MCA clustering-based procedure for
splitting the data set of 1208 compounds into Ny, = 400, Ny = 405,
and Nisr = 403 set compounds (refer to Table S1), thus ensuring the
design of balanced sets of compounds. The Ny;.i; = 400 and Ny, = 405
cluster centroid locations, in terms of descriptor values that minimize
the squared sum of Euclidean distances of compounds located within
them are provided in two matrices, respectively, as the C1.txt and C2.txt
files from the Supplementary Material.

The RM variable subset selection method provides a way to explore
a pool containing (a) 2895 molecular descriptors of all the blocks,

Table 1
The best QSPR models obtained by considering all descriptor blocks. The chosen result appears in bold.
d RZain RMSD1ain RZ, RMSD, i R max U Molecular descriptors
1 0.87 124.38 0.89 107.12 0.00 0.167 X1sol
2 0.89 112.46 0.92 91.93 0.00 0.470 Chi0_EA, GATS1p
3 0.91 101.71 0.93 83.58 0.88 0.568 nHDon, RDF010e, Sp
4 0.92 97.75 0.94 79.65 0.88 0.721 nHDon, DP02, RDFO10e, Sp
5 0.92 95.44 0.94 78.31 0.32 0.784 PDI, Hy, ATSC2s, EE_B(s), X1sol
6 0.93 91.47 0.95 76.19 0.76 0.682 H-050, R1s+, Mor05p, RDF010s, ATSC2s, X1sol
7 0.93 89.07 0.94 76.94 0.76 0.683 H-050, nCconj, R2s+, Mor05p, RDF010s, ATSC2s, X1sol
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The best QSPR models obtained by non-conformational descriptor blocks. The chosen result appears in bold.

d Réain RMSDtrain RZ, RMSD,,4 R,-Zj max U Molecular descriptors

1 0.87 124.38 0.89 107.12 0.00 0.167 X1sol

2 0.89 112.46 0.92 91.93 0.00 0.489 ChiO_EA, GATS1p

3 0.91 105.09 0.93 83.80 0.19 0.699 PDI, Hy, X1sol

4 091 100.94 093 8299 017 0.806 PDI, H-050, SpMax1_Bh(s), X1sol

5 0.92 96.43 0.94 82.74 0.38 0.770 PDI, 0-058, H-050, ATSC4s, X1sol

6 0.93 94.00 0.93 85.15 0.76 0.602 0-058, H-050, C-044, ATSC4e, H_Dt, X1sol

7 0.93 91.09 0.94 80.11 0.32 0.763 PDI, Hy, C-044, C-033, ATSC2s, EE_B(s), X1sol

(b) 1815 non-conformational descriptors, and (c) 1080 3D-descriptors. In
this way, we try to identify whether 3D-descriptors are really important
for modeling the RI parameter in the OV-101 column. Tables 1-3 summa-
rize the best MLR models found having 1-7 descriptors. The meaning for
each involved descriptor is supplied in Table S3. It is appreciated that the
RMSDy;4in and RMSDyes; parameters do not have a significant variation be-
tween models of the same size (d). Therefore, this finding clearly demon-
strates that 3D-descriptors can be avoided for modeling the RI property.
This can be considered as an important result, as any model that includes
quantum chemical descriptors usually involves a relatively difficult calcu-
lation of the optimum molecular geometry, involving high computational
costs and long times. The exclusion of 3D structural aspects also avoids
problems associated with ambiguities, resulting from an incorrect geom-
etry optimization due to the existence of compounds in various confor-
mational states. Such kind of problems may also lead to the loose of
predictive capability of the QSPR when applied to the prediction of an ex-
ternal test set of compounds.

For the selection of the optimal model for each data set, we use the
total-order ranking as an utility function. We consider the six quality
parameter models given by the RM, that is, R2..in, R2.1, RMSDyain, RMSDya;,
R% max and d. A linear function is used for representing Réin and R,
whereas RMSDy;,in, RMSD,,;, and Rﬁ- max are modulated by an inverse
linear function. A normal function is considered for the number of
descriptors in the model d. In this way, we keep the model size as small
as possible (Ockham's razor), in order to avoid any possible fortuitous
correlation or an increased correlation between descriptors. DART results
of utility (U) for each model is given in Tables 1-3, and the best one is
placed in bold according to the highest utility value. Thus, we choose
the following four-descriptor structure-retention relationship that
includes non-conformational descriptors:

RI = —1104.8 + 169.3 X150l + 26.0SpMax1_Bh(s) + 136.5H—050
+1370.2PDI (1)

Nigain = 400, d = 4, Ri = 0.914, S,y = 100.9, F = 1049, R, = 0.172

0(3S) =5, Rb = 0.912, Sppp = 102.3, Rayg50 = 0.907, S500,0 = 105.0, S™™ = 335.1
Nya =405, R%; = 0.935, S, = 83.0

Niegt = 403, Risgy = 0.927, Soe = 78.6

Here, F is the Fisher parameter, Rjj max2 denotes the maximum
squared correlation coefficient between descriptor pairs, and o(3S) indi-
cates the number of outlier compounds having a residual (difference be-
tween experimental and calculated property) greater than three-times

Strain-

This model is predictive using the external test set: the percentages
of explained variances are R, = 91 %, R2. = 94 %, and Rz = 93 %.In
addition, the root mean square deviations are RMSDy.i, = 100.9,
RMSD,, = 83.0, and RMSDs; = 78.6. The established QSPR also
shows the internal validation process of cross-validation through the
exclusion of one molecule at a time and also by excluding 20 % of
them (80 molecules). The Y-randomization procedure demonstrates
that Sirain <S¢ (335.1), and thus a valid structure-property rela-
tionship is achieved. We check that Eq. (1) accomplishes with the
validation criteria suggested by Golbraikh and Tropsha to assure
predictive capability [43]:

R:,>0.5(0.912)

R%>0.6(0.927)

1—R2/R%.<0.1(0.000) or 1 —RZ /R%.4;<0.1(0.008)
0.85<k(0.99) <1.15 and 0.85<k (1.00)<1.15

R:>0.5(0.917)

The R3, Ro?, k, k, and R2, parameters are defined in Table S2.

Fig. 1 plots the predicted RI as a function of the experimental values
for the training, validation, and test sets (numerical data are provided in
Table S4), showing that there exists a tendency for the points to have a
straight line trend. The dispersion plot of residuals for the selected
model (i.e., residuals as a function of predicted RI) is shown in Fig. 2,
which reveals that residuals tend to obey a random pattern around
the zero line, suggesting that the assumption of the MLR technique is
fulfilled. The five outliers from Eq. (1) are compounds 523, 961, 1057,
1058, and 1202. After checking the literature to be certain that their
experimental IR values and molecular structures are correct (which
they are), we can assume that this irregular behavior may be attributed
to the wide structural diversity of the molecules considered in the
analyzed data set.

Among the descriptors appearing in the QSPR, there are two 2D-
descriptors: a connectivity index (X1sol) and a Burden eingenvalue
(SpMax1_Bh(s)), while there are two 1D-descriptors: an atom-centred
fragment (H — 050) and a molecular property (PDI). Such descriptors
selected by RM are enough to study this data set. The maximum squared
correlation coefficient between X1sol and PDI descriptors is R,Zj max =
0.172 (see correlation matrix in Table S5). This value reflects a low
correlation between such variables, which indicates that they are not

Table 3
The best QSPR models obtained using 3D-descriptor blocks. The chosen result appears in bold.
d RZ.in RMSDrain RZ, RMSD, i R max U Molecular descriptors
1 0.84 138.11 0.88 114.04 0.00 0.167 G2
2 0.86 129.98 0.90 101.54 0.06 0.404 Mor11p, G2
3 0.88 119.99 0.91 99.11 0.37 0.536 Mor03p, Mor18v, G2
4 0.89 112.28 0.91 96.21 0.57 0.678 DP08, TDBO3p, SpMAD_RG, G2
5 091 103.07 093 88.61 0.81 0.714 Rle+, H2v, RDF025p, RDF010p, Chi_RG
6 0.91 101.98 0.93 87.37 0.81 0.667 R1m+, H2v, RDF010s, RDF025p, RDFO10p, Chi_RG
7 0.92 100.29 0.92 89.79 0.81 0.640 Q2, R2s+, L2m, RDF010s, RDF025p, RDF010p, Chi_RG
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Fig. 1. Experimental versus predicted retention index according to the QSPR model for methyl silicone OV-101 column.

collinear, and each one includes different aspects of the molecular struc-
ture that succeed in combining with the remaining variables of Eq. (1)
[44]. The numerical values taken by the four descriptors are included
in Table S6.

The relative degree of contribution of each descriptor (bj)
reveals that X1sol has the greatest importance in the equation:
X1sol (0.86) > PDI (0.21) > H — 050 (0.16) > SpMax1 _ Bh(s) (0.09).
Moreover, as these descriptors take on positive numerical values, it is
concluded that the sign of each regression coefficient in Eq. (1) has a
synergistic effect on RI value. Therefore, higher values for the four
descriptors for a given compound would lead to a higher predicted RI
value.

Analyzing the most relevant descriptor X1sol proposed by Zefirov
and Palyulin [45], this descriptor has been defined to model the solva-
tion entropy and to describe dispersion interactions in solution. This
connectivity index is used for studying alkyl sulfides, and among several
topological indices, it is well correlated to their boiling point. In fact, it is
well known that boiling points govern the retention in gas chromatog-
raphy for apolar stationary phases. Its calculations involve an hydrogen
and fluorine-depleted graphs. The product of the principal quantum

numbers of the two vertices incident to the considered edge are divided
by the squared root of the product of the corresponding vertices degree,
then a summation goes over all the considered edges, and finally it is
multiplied for a normalization factor that allows coinciding the indices
for compounds containing only second-row atoms [18].

Buydens and Massart [46] have also demonstrated that topological
indices (i.e., molecular connectivity) and structural parameters are
very useful for describing the interactions between molecules of the
same family and a stationary phase. Molecular connectivity has a good
correlation with both polar and non-polar stationary phases, showing
its efficiency for these calculations. In a subsequent study, the same
authors [47] use a combination of topological, physicochemical, and
quantum chemical descriptors. Their results show that for non-polar
stationary phases the topological parameters are able to explain a
large part of the total variance; however, for a polar stationary phase
using these topological descriptors, an electronic parameter is neces-
sary. Pompe and Novi¢ [48] have used topological descriptors for
improving the prediction capabilities of GC-RIL. They select 16 molecular
descriptors which optimize the R? parameter. Comparing their results
with ours, Eq. (1) presented in our study is a much simpler model for
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Fig. 2. Dispersion plot of residuals for the QSPR model.
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Table 4
A comparison of various QSPR models taken from the literature for the OV-101 column.
Reference Compound family Number of compounds Number of descriptors Rétain RMSDtrain Rk RMSDyest
[7] Substituted pyrazines 107 6 0.994 214 0.992 324
[8] Alcohols, aldehydes, ketones, and esters 115 7 0.998 111 -2 -
[49] Alkylbenzenes 39 7 1.000 34 0.999 -
Alkylnaphthalenes 15 5 1.000 1.7 0.999 -
Alkyl aryl carbamates (Group 1) 27 for the three groups 3 1.000 14 - -
Alkyl aryl carbamates (Group 2) 4 1.000 0.6 - -
Alkyl aryl carbamates (Group 3) 4 0.994 7.0 - -
[12] Fragrance compounds 91 5 0.994 - - -
[14] Flavor compounds 297 4 0.961 59.6 0.959 58.0
This work Flavors and Fragrances 1208 4 0914 100.9 0.927 78.6

¢ Not available

a non-polar column considering four molecular descriptors; therefore,
our QSPR can be easily interpreted and applied for prediction purposes.

Table 4 presents a comparison of the model obtained in this work to
similar ones taken from the literature. It is noted that when a QSRR
model is built by considering only a group or a few groups of com-
pounds having a similar structures, the results lead to a good correlation
with R? close to one. On the other hand, when all three groups of alkyl
aryl carbamates are considered, it leads to a low R> = 0.230. The results
are poorer when a greater number of compounds are considered having
diverse chemical structures, although it is always possible to split the
data set into training and test sets [7,14]. In our case, the data set is
4.1 times bigger than the largest one previously analyzed [14]. In
addition, three QSRR studies from Table 4 do not perform external
validation [8,12,49]. The model found in the current work has the
smallest number of uncorrelated descriptors. This result is good for
both calibration and external validation, and the model can be used
for prediction purposes. Due to the wide range of chemical structures
considered for building the QSPR model, compounds that can be
predicted belong to the volatile families, such as aromatic hydrocarbons,
alcohols, acids, ketones, aldehydes, ethers, acid esters, amines, etc., for
which RI should be in the range 350 to 2180 and the leverage value
should lie below the warning leverage value (h* = 0.0375) established
in the present model.

The AD of Eq. (1) reveals that nine compounds from the validation
set (129,316, 723, 854, 950,972, 1097, 1102, 1205) and five compounds
from the test set (18, 38, 772, 1037, 1198) have leverage values
(Table S7) over the warning leverage h* = 0.0375. After an exhaustive
control analysis of these compounds at the source, we do not find any
mistakes. Hence, we assume that this particular behavior is due to the
complexity of the data set, i.e., the structural heterogeneity of the
molecules considered in this study. In fact, QSRR studies regarding gas
chromatography responses are usually carried out by considering only
a few families of compounds [3,7-14,27,50-58].

4. Conclusions

A successful application of the QSPR theory is presented for the
prediction of the gas chromatographic retention index of 1208 flavor
and fragrance compounds in the non-polar stationary capillary column
OV-101. We develop a model with acceptable predictive power on the
test set, which can be used to predict this property for un-evaluated
and un-synthesized flavors or fragrances. Furthermore, the utility
function demonstrates to be a useful tool for selecting the best model
among a pool of seven ones having six criteria to be considered. We
have also demonstrated that the solvation connectivity index of first
order is strongly correlated to the RI as a synergistic effect. Our model
complements previous reported results from the literature, and it
produces a more general and predictive quantitative structure-retention
relationship. Finally, 3D-molecular descriptors do not improve the param-
eters quality of the QSPR model. In this context, the conformation-
independent QSPR method continues to emerge as an alternative

approach for developing models based on constitutional and topological
molecular features of compounds.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2014.09.020.
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