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Saltatory and Continuous Calcium Waves and the Rapid
Buffering Approximation

Damián E. Strier, Alejandra C. Ventura, and Silvina Ponce Dawson
Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

ABSTRACT Calcium waves propagate inside cells due to a regenerative mechanism known as calcium-induced calcium
release. Buffer-mediated calcium diffusion in the cytosol plays a crucial role in the process. However, most models of calcium
waves either treat buffers phenomenologically or assume that they are in equilibrium with calcium (the rapid buffering
approximation). In this article we address the issue of whether this approximation provides a good description of wave
propagation. We first compare the timescales present in the problem, and determine the situations in which the equilibrium
hypothesis fails. We then present a series of numerical studies based on the simple fire-diffuse-fire model of wave propagation.
We find that the differences between the full and reduced descriptions may lead to errors that are above experimental resolution
even for relatively fast buffers in the case of saltatory waves. Conversely, in the case of continuous waves, the approximation
may give accurate results even for relatively slow buffers.

INTRODUCTION

The Ca21 ion is the most common signal transduction

element in cells (Alberts et al., 2002). However, prolonged

high intracellular Ca21 levels lead to cell death (Berridge

et al., 1998). Since Ca21 cannot be metabolized, cells need

to control its concentration very tightly. One way in which

cells avoid large intracellular levels is through numerous spe-

cialized binding proteins called buffers. The patterns of

regulation in which Ca21 ions are involved are among the

most striking examples of intracellular spatio-temporal

organization (Berridge et al., 1998), including, among others,

various types of Ca21 waves (Fontanilla and Nuccitelli, 1998;

Lechleiter et al., 1991; Jouaville et al., 1995). This supports

the idea that vital pieces of information are encoded in the

spatio-temporal [Ca21] distribution, much more than what

a static average could ever provide (Lechleiter et al., 1991).

Despite the diversity of mechanisms that underlie Ca21

signals in different cell types, it is generally accepted that

intracellular Ca21 waves are governed by buffer-mediated

Ca21 diffusion between localized sites of Ca21 release (the

sites with Ca21 channels) (Sneyd et al., 1998). These

channels connect the cytosol and the lumen of intracellular

stores, such as the sarcoplasmic reticulum (SR) or endo-

plasmic reticulum (ER), where the (free) Ca21 concentration

can be two or three orders of magnitude higher than in the

cytosol. The open probability of the Ca21 channels that are

located on the membrane of the ER or SR (IP3 and ryanodine

receptors, respectively) is modulated by cytosolic Ca21.

Given that Ca21 itself carries the ‘‘opening message’’, the

release of Ca21 at one site may eventually induce the release

from a channel located further apart. This mechanism is

called calcium-induced calcium release (CICR). For CICR to

occur, Ca21 needs to diffuse between release sites. Release

and intersite diffusion occur simultaneously with buffering

that prevent Ca21 concentration from building up. Thus,

Ca21 buffers directly affect the spatio-temporal organiza-

tion of intracellular Ca21 (Callamaras and Parker, 2000).

Realistic models of Ca21 dynamics must account for their

presence.

Though important for their effect on the Ca21 distribution,

the spatio-temporal behavior of buffers themselves is not of

interest. For this reason, different ways of simplifying the

description of the Ca21 dynamics in the presence of buffers

have been analyzed. In this article, we are interested in the so

called rapid buffering approximation (Wagner and Keizer,

1994; Smith et al., 1996), an approximation that can be

obtained as a particular example of a systematic perturbative

reduction of two-timescale reaction-diffusion systems (Strier

and Dawson, 2000). The rapid buffering approximation

allows Ca21 dynamics to be described in a reduced way,

namely, in terms of a single evolution equation for [Ca21]. A

necessary condition for this reduced description to hold is the

existence of a timescale separation: the reactions with the

buffers must occur much faster than all other processes. In

this way, it may be assumed that buffers and Ca21 are locally

in chemical equilibrium. In many cases the resulting reduced

equation is not of diffusive type (Wagner and Keizer, 1994;

Strier et al., 2002), although it can be rewritten as a reaction-

diffusion equation with a concentration-dependent diffusion

coefficient (Sneyd et al., 1998) (see Model and Methods

section). The perturbative approach that underlies the rapid

buffering approximation requires that the separation between

fast and slow process be uniformly valid in time and space.

However, it does not seem likely that such separation will

hold in the vicinity of an open Ca21 channel (Smith et al.,

1996, 2001; Naraghi and Neher, 1997; Dawson and Uchitel,

2002). Given the small size of the release sites, it is

reasonable to expect the existence of large concentration

gradients of Ca21 that would make diffusion be the fastest

process (faster than the reactions with buffers). This is
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exactly what we investigate in this article. More specifically,

we analyze to what extent Ca21 waves, in which propagation

is mediated by Ca21 release through localized sites, can be ac-

curately described within the rapid buffering approximation.

Some years ago, we introduced the fire-diffuse-fire model

(Dawson et al., 1999; Keizer et al., 1998) to study

intracellular Ca21 wave propagation within a simplified

setting that yet provided a physical insight into the processes

that shape the various signaling modes. Although the fire-

diffuse-fire model includes the spacing between release sites,

both CICR and the presence of buffers are treated in

a simplified manner. The simplicity of the fire-diffuse-fire

model allows an easy, but meaningful, identification of the

relevant space- and timescales that regulate the transition

from saltatory to continuous propagation. Therefore, the fire-

diffuse-fire model provides a natural framework within which

the limits of applicability of the rapid buffering approxima-

tion can be assessed. In the present article we add buffers

explicitly to the fire-diffuse-fire model and then perform the

standard reduction that leads to the rapid buffering approx-

imation to analyze the limits of applicability of the latter.

MODEL AND METHODS

Full model with explicitly included buffers

The spatio-temporal evolution of the cytosolic Ca21 concentration, [Ca21],

is the result of various processes. In this article we consider Ca21 diffusion,

the interaction with buffers, and the feeding and re-uptake from internal

stores (such as the endoplasmic reticulum), neglecting Ca21 entrance or

removal through the plasma membrane. These processes are thought to be

enough to model intracellular Ca21 waves (see, e.g., De Young and Keizer

(1992)). For the interaction with the buffers, we consider the simplest

possible model. Namely we include only one type of buffer, B, which

interacts with Ca21 according to the scheme:

Ca
21

1B�
k

k9
C; (1)

where C is the buffer with bound Ca21 . We further assume that the Ca21

concentration in the stores, [Ca21]ER, is high enough so that it may be

assumed to be constant. In this way, the evolution is described by the

following set of reaction-diffusion equations:

@½Ca21 �
@t

¼� k½Ca21 �½B�1 k9½C�1 f ðx; tÞ

1 gð½Ca21 �Þ1DCa=
2½Ca21 �; (2)

@½B�
@t

¼ �k½Ca21 �½B�1 k9½C�1DB=
2½B�; (3)

@½C�
@t

¼ k½Ca21 �½B� � k9½C�1DC=
2½C�; (4)

which are to be solved subject to boundary and initial conditions for

[Ca21](x,t), [B](x,t) and [C](x,t). In Eqs. 2–4, [Ca21](x,t), [B](x,t), [C](x,t),

DCa, DB, and DC are the concentrations and diffusion coefficients of the

species in the cytosolic medium, respectively; f(x,t) represents the flow of

Ca21 ions through Ca21 channels (IP3 or ryanodine receptors), whereas

g([Ca21]) represents the re-uptake due to (ATP-operated) pumps and, if

present, a permanent leak. For most buffers, it is reasonable to assume that

the re-uptake into the stores and the permanent leak always occur more

slowly than the binding to the buffers (see De Young and Keizer (1992) and

Smith et al. (1996)). Therefore, as done in Dawson et al. (1999), we will take

g¼ 0. By neglecting the effect of pumps, we can study how the ‘‘first’’ front

propagates but we cannot describe how [Ca21] goes back to its basal level

or the re-entrance of waves. Thus, our study will focus on whether the

dynamics of the front is correctly described by the rapid buffering

approximation or not. We have included only one buffer for simplicity.

Thus, our analysis is only a first step. More detailed studies including more

buffers could be done in the future. Meanwhile, Eq. 2 can be interpreted as

being an effective evolution equation for Ca21 that results from the

interactions with the buffers other than B.

For the general discussion that we present at the beginning of the Results

section, we do not consider any particular form for f(x,t). In the numerical

simulations, we follow Dawson et al. (1999) and consider only plane wave

solutions treating CICR very schematically. Namely, we consider that the

source term, f, is the following sum of contributions from clusters (or sites)

of channels:

f ðx; tÞ ¼ s

d
2
t
+
1‘

i¼�‘

dðx � xiÞQðt � tiÞQðti 1 t � tÞ; (5)

where d is the Dirac delta function, the sites are separated by a distance

d along the direction of propagation, x (i.e., xi ¼ id ), and Q(x) is the step

function, defined by Q(j) ¼ 0 if j\ 0, and Q(j) ¼ 1 otherwise. Thus, the

contribution from the ith site ‘‘turns on’’ or ‘‘fires’’ at time ti (i.e., starts to

release Ca21) when [Ca21] at the site reaches a threshold, [Ca21]th, for the

first time. This is meant to mimic CICR. The site then remains ‘‘on’’ for

a fixed amount of time, t, releasing a total amount, s, of Ca21 ions (Dawson

et al., 1999). Note that the values of ti are not known a priori. Instead, it is the

evolution of the concentration field that sets those values dynamically.

Given an initial condition, a finite value of ti may not exist for some values of

i. The nonexistence of such a finite value implies propagation failure.

Equations 2–4 can be simplified if we assume that at t¼ 0, the total buffer

concentration, [B](t ¼ 0) 1 [C](t ¼ 0), is uniformly distributed over space,

[B]T [ [B](t ¼ 0) 1 [C](t ¼ 0) and DB ¼ DC. In such a case, [B] 1 [C] ¼
[B]T for all times. Thus, we can work with only two variables, [Ca21](x,t)

and [C](x,t), and Eqs. 2–4 (with g ¼ 0) are reduced to:

@½Ca21 �
@t

¼� k½Ca21 �ð½B�T � ½C�Þ1 k9½C�1 f ðx; tÞ

1DCa=
2½Ca21 �; (6)

@½C�
@t

¼ k½Ca21 �ð½B�T � ½C�Þ � k9½C�1DB=
2½C�: (7)

Reduced model using the rapid
buffering approximation

Equations 6 and 7 (with some prescription for f ) provide the full description

of the problem. By assuming that not all of the processes occur on the same

timescales, the slow timescale evolution of the various variables may be

described with fewer differential equations. In particular, if the reactions

with the buffers are the fastest processes during the whole evolution, Eqs. 6

and 7 may be reduced to (Wagner and Keizer, 1994; Strier and Dawson,

2000):

@½Ca21 �
@t

¼ f ðx; tÞ
11Að½Ca21 �Þ

1 dCð½Ca21 �Þ=2½Ca21 �

� Hð½Ca21 �Þ=½Ca21 � � =½Ca21 �; (8)

½C� ¼ ½B�T½Ca
21 �

Kd 1 ½Ca21 �
; (9)
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where

dCð½Ca21 �Þ ¼ DCa 1Að½Ca21 �ÞDB

11Að½Ca21 �Þ
;

Hð½Ca21 �Þ ¼ 2DBAð½Ca21 �Þ
ðKd 1 ½Ca21 �Þð11Að½Ca21 �ÞÞ

;

Að½Ca21 �Þ ¼ Kd½B�T
ðKd 1 ½Ca21 �Þ2 ; (10)

with Kd ¼ k9/k. This description corresponds to the so-called rapid buffering

approximation (Wagner and Keizer, 1994; Smith et al., 1996). As shown in

Sneyd et al. (1998), Eq. 8 can be rewritten as:

@w

@t
¼ DeffðcðwÞÞð=2

w1 f ðx; tÞ1 gðcðwÞÞÞ; (11)

where

w[DCa½Ca21 �1 DB½B�T½Ca
21 �

Kd 1 ½Ca21 �
; (12)

[Ca21] [ c(w) is the (positive) inverse of Eq. 12, and

DeffðcÞ ¼
DCaðKd 1 cÞ2

1DBKd½B�T
ðKd 1 cÞ2

1Kd½B�T
(13)

is an effective (concentration-dependent) diffusion coefficient.

Full model in terms of dimensionless variables

Equations 6 and 7 can be rewritten with fewer free parameters introducing

the dimensionless quantities: ½Ca21�d [ d3ð½Ca21� � ½Ca21�bÞ=s; [C]d [

([C] � [C]b)/[B]T, T [ t/t, and x9 [ x/d. Taking f as given by Eq. 5, Eqs. 6

and 7 read:

@½C�d
@T

¼ k

a
½Ca21 �dð1 � ½C�dÞ � k9½C�d 1bB=9

2½C�d

� k=a

11
k9f

k

½Ca21 �d 1
k

f
ð1 � ½C�dÞ

� 1

11
k9f

k

k91
k

f

� �
; (15)

where =9 means that the derivatives are performed with respect to the

dimensionless coordinate, x9; t9i is the minimum time, t9, such that

[Ca21]d(i,t9) ¼ d3([Ca21]th � [Ca21]b)/s [ 1/G, and all other parameters

are dimensionless and their definitions are given in Table 1.

Numerical method and parameters of
the simulations

We numerically simulate Eqs. 6 and 7 (FDF from now on) and Eq. 8 (RBA

from now on) using finite differences both in space and time with grid size

Dx¼ 0.33 mm and time step Dt¼ 1 ms in most cases. The method is explicit

in time and the size of the steps has been checked to provide accurate results

by comparing them with those predicted using smaller values. A larger value

of Dt is used for the most continuous simulations, but never exceeding Dt ¼
100 ms. In all cases, the models are simulated in one space dimension, x, (the

solutions represent plane waves that propagate in the x direction), using Eq.

5 for the release from Ca21 channels. The boundary conditions are no-flux

and there is only one buffer per simulation. In the simulations it is d ¼ 3.3

mm, s ¼ 3.5 3 10�12 mmol, DCa ¼ 220 mm2/s (Allbritton et al., 1992),

[Ca21]b ¼ 0.05 mM, [Ca21]th ¼ 0.25 mM, and [B]T ¼ 100 mM, unless

otherwise noted. The buffer parameters are listed in Table 2. We call one of

the buffers ‘‘parvalbumin-like’’ since it shares with this protein the values of

k9 and DB. For the on-rate constant, k, we picked a particular one among the

various that can be found in the literature. The other constants correspond to

more or less well-agreed values for the buffers BAPTA, calbindin-D28K, and

EGTA. In this way, we have chosen parameters that correspond to both fast

and slow and endogenous and exogenous buffers. We have also explored

other endogenous buffers, finding similar results to those of the exogenous

ones whenever the rate constants were similar. As initial condition, we use

step functions for [Ca21] and [C], such that [Ca21](x,t¼ 0) 1 [C](x,t¼ 0) ¼
s/d3 1 [Ca21]b 1 [C]b for x\x*, and [Ca21](x,t¼ 0) ¼ [Ca21]b, [C](x,t¼
0) ¼ [C]b for x [ x*, with [Ca21] and [C] related by the equilibrium

condition (Eq. 9) everywhere at t ¼ 0. This initial condition satisfies the

boundary conditions of a rightward traveling wave solution for the full

model: [Ca21] ! [Ca21]left as x ! �‘ and [Ca21] ! [Ca21]b as x ! 1‘,

where [Ca21]b is the basal Ca21 level and [Ca21]left is the solution of

TABLE 1 Dimensionless parameters of the model

Dimensionless parameters

G ¼ s=d3

½Ca21 �th � ½Ca21 �b
k ¼ kt[B]T
k9 ¼ k9t

bCa ¼
tDCa

d2

bB ¼ tDB

d2

a ¼ ½B�Td
3

s

f ¼ ½B�
T

½Ca21 �b

@½Ca21 �d
@T

¼� k½Ca21 �dð1 � ½C�dÞ1ak9½C�d 1bCa=9
2½Ca21 �d 1 +

1‘

i¼�‘

dðx9� iÞQðt9� t9iÞ

Qðt9i 1 1 � t9Þ1 k

11
k9f

k

½Ca21 �d �
ka

f
ð1 � ½C�dÞ1

a

11
k9f

k

k91
k

f

� �
; (14)
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[Ca21]left 1 [B]T[Ca21]left/([Ca21]left 1 Kd) ¼ s/d3 1 [Ca21]b 1 [C]b. The

initial condition is not very important, since we are interested in an

asymptotic wave solution whose shape and speed should be insensitive

to it.

Tools for the analysis of the
numerical simulations

There are two important quantities that characterize the front dynamics. One

of them is the velocity of the waves, v, and the other is the number of sites

that are simultaneously firing, N. We compute these two quantities for both

sets of simulations (FDF and RBA). The front velocity is computed as d=dti ;

where dti is the difference between the activation times of the sites located at

positions i and i � 1, respectively. For a given set of parameters and initial

condition, we compute the percentage relative error, (vFDF � vRBA)/vFDF,

between the velocities of both models to evaluate the performance of the

RBA. To compare the shape of the fronts obtained with both models, we let

the systems approach the asymptotic solution. We then pick a time for both

types of simulations such that [Ca21] ¼ [Ca21]th at a release site. We

redefine the time and space origins setting t ¼ 0 at that instant and x ¼ 0 at

that particular site in both simulations. This allows us to study how the

differences between the two solutions evolve with time.

RESULTS

Comparison of timescales and
preliminary analysis

We discuss here whether the assumptions of the rapid

buffering approximation (the ones that underlie the reduction

from Eqs. 6 and 7 to Eq. 8) are correct in the case of Ca21

waves. To do the reduction, we first need to compare the size

of the various terms that appear in Eq. 6. The rapid buffering

approximation holds if k[Ca21][B] and k9[C] are much larger

than f(x,t) and DCa=
2[Ca21]. The problem is that all these

quantities change with time, and their relative sizes may

change during the evolution. Let us assume that initially

there is a spatially uniform distribution of buffers and Ca21,

and that at t¼ 0, the source, f(x,t), is turned on. Let us assume

that the source remains ‘‘on’’ for a finite amount of time, ~tt,

i.e., f(x,t) ¼ 0 for t \ 0 and t [ ~tt, and f(x,t) ¼ F(x) for

0# t# ~tt. Clearly, the initial concentrations must correspond

to a spatially uniform equilibrium solution of Eqs. 6 and 7.

We will describe the [Ca21](t¼ 0) ¼ 0 ¼ [C](t¼ 0), [B](t¼
0) ¼ [B]T case in detail. Other cases can be handled similarly.

For the time being, we will not consider a point source, but

a source that changes in space over a length scale ‘.
Immediately after the source is turned on, the only term

that is different from zero in the right-hand side of Eq. 6 is f.
Therefore, it cannot be neglected in front of the terms related

to the binding with the buffers (as done in Wagner and

Keizer (1994) and Strier and Dawson (2000)). The Ca21

concentration will then start to change due to the presence of

this source. We may assume that, at least during the earliest

stages, [Ca21] ; Ft. Therefore, the term k[Ca21]([B]T �
[C]) in Eq. 6 will be approximately given by kFt[B]T. On the

other hand, given that F depends on space, then, the Ca21

concentration will also depend on space. This means that

=2[Ca21] will be different from zero. Considering j=2Fj ;
F/‘2, we may estimate the size of the diffusion term,

DCaj=2[Ca21]j, as DCaFt/‘
2. Then, only if the length scale

over which the source varies is large enough, we may assume

that the binding term becomes larger than the diffusion term

after the source is turned on. Namely, k½Ca21�ð½B�T�
½C�Þ;kFt½B� � DCaj=2½Ca21�j;DCaFt=‘

2, if the typical

length scale of the source, ‘, satisfies ‘2 � DCa=k½B�. Taking

[B] ; 100 mM, we obtain ‘ � 0:33mm for calbindin-D28K

and ‘ � 0:06mm for BAPTA. This condition is never

satisfied for a single channel, for which the typical pore

width is of the order of some angstroms (Hille, 1992). Now,

the elementary events that eventually give rise to global

signals may be due to the almost coordinated opening of

various channels in a cluster (Yao et al., 1995; Callamaras

and Parker, 2000). Thus, if we neglect the small differences

in the opening times of the individual channels that open in

a cluster, we may consider ‘ as a typical cluster length scale,

which has been estimated as 60 nm in Swillens et al. (1999).

This number is still too small. Thus, immediately after one

such source turns on, diffusion acts on a faster timescale than

the binding to the buffers, and the rapid buffering ap-

proximation cannot be applied. We then expect the rapid

buffering approximation to fail in the case of saltatory waves,

in which the release from individual sites is readily

observable. In the case of more continuous signals, such

as the fertilization wave in the mature egg (Fontanilla and

Nuccitelli, 1998), where channels in several clusters are

releasing Ca21 ions into the cytosol simultaneously (Dawson

et al., 1999), we may assume that the length scale ‘ is the

typical size of the region with simultaneous open channels.

In the case of the fertilization wave, this size is given by the

width of the wave front that we estimated as 47 mm (Dawson

et al., 1999). Thus, for this situation, we may assume that the

terms related to the binding and unbinding with the buffers

become larger than the diffusion term immediately after the

channels open, so that they may be treated as acting on

a faster timescale. Now, as mentioned in the Model and

Methods section, the resulting equation (Eq. 8) can be

TABLE 2 Parameters for the endogenous and exogenous Ca21 buffers used in the simulations and corresponding timescales

Buffer k [mM�1s�1] k9 [s�1] Kd [mM] DB

�
mm2

s

�
tR[s] tDB

[s]

EGTA 1.5 0.3 0.20 113 6.7 3 10�3 0.096

Parvalbumin-like 6 1 0.17 36 1.7 3 10�3 0.302

Calbindin-D28K 20 8.6 0.43 27 5.0 3 10�4 0.403

BAPTA 600 100 0.17 95 1.7 3 10�5 0.115
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rewritten in terms of the effective diffusion coefficient of Eq.

13. This concentration-dependent diffusion coefficient tends

to produce steeper fronts (Sneyd et al., 1998), i.e., larger

concentration gradients, than the equivalent case with

a constant coefficient. Thus, the validity of the rapid-

buffering approximation has to be reassessed once the

solution is obtained in this case.

We then conclude that the rapid buffering approximation

may not provide a correct description of intracellular Ca21

waves, especially in the saltatory case in which the release

from very localized regions is noticeable. We present in

the following sections the results from various numerical

simulations with which we assess the limitations of this

approximation.

Numerical results: analysis in terms of
dimensional variables

We present here the results obtained with numerical

simulations of the FDF and the RBA models as described

in the Model and Methods section. We focus first on how

the differences between both models depend on the relation-

ships among the relevant timescales of the problem. We can

distinguish four timescales in the full description: one

associated to the source, t, one associated to the reactions,

tR, and two associated to diffusion, tDCa
¼ d2=DCa and

tDB
¼ d2=DB. The definition of a diffusive timescale depends

on a choice of length scale. We have chosen that length scale

as the intersite distance, d. The limitation of this definition

will become evident later. A proper timescale associated to

the reaction with the buffer, tR, can be obtained by linearizing

the corresponding terms around the equilibrium solution, as

done in Wagner and Keizer (1994). Following this procedure,

one arrives at tR ¼ 1/(k9 1 k([Ca21] 1 [B])). Given that the

buffer concentration is large compared to [Ca21], we can

neglect the dependence on the Ca21 concentration and define

tR ¼ 1/(k9 1 k[B]T). This is good enough for our purposes,

and simplifies the analysis. We will limit our analyses to cases

in which tR\tDCa
\tDB

. The fact that tDCa
\tDB

is a conse-

quence of DB\DCa. This condition is physically reasonable

since Ca21 ions are smaller and lighter than buffer molecules.

Therefore, by varying t in the simulations, we can explore the

following regimes:

ðIÞ t\tR\tDCa
\tDB

; ðIIÞ tR\t\tDCa
\tDB

;
ðIIIÞ tR\tDCa

\t\tDB
; ðIVÞ tR\tDCa

\tDB
\t:

(16)

The first two cases correspond to saltatory behaviors, and the

last two to continuous ones. tR being the smallest timescale

of the problem is a necessary condition for the rapid

buffering approximation to hold. Thus, we do not expect the

approximation to work properly in Case I.

We show in Fig. 1 the percentage relative error, 100 3

(vFDF � vRBA)/vFDF, as a function of t for the four buffers of

Table 2. The other characteristic times, tR, tDB
, and tDCa

, are

indicated in the figures. We may observe that the errors

mainly decrease as t increases, although the curves are not

exactly monotone for EGTA or calbindin-D28K. Roughly

speaking, we may say that the errors increase as the reaction

timescale, tR, increases, although the error for parvalbumin

is slightly larger than the one of EGTA for small values of t.

In the case of calbindin-D28K, the error decreases noticeably

for some value of t that is less than an order of magnitude

smaller than tR. Despite this drop, it stays relatively high

(;20%) even for t � tR. In Fig. 1, A–C, the error drops

abruptly (to a very small value) when t becomes larger than

the intersite diffusion times, tDCa
and tDB

. For the fastest

buffer, BAPTA, the error is ;30% for t ¼ tR and drops to

below 10% when t becomes an order of magnitude larger

than tR. As in the case of calbindin-D28K, for larger values of

t, the error stays at a level that is relatively insensitive to

changes in t, until t becomes larger than tDCa
and tDB

, when

the error becomes negligible. As discussed in Dawson et al.

(1999), the relationship between t and the intersite diffusion

time rules whether the propagation is saltatory or continuous.

Saltatory or continuous waves are characterized by a different

number of simultaneously firing sites. The big arrows in Fig.

1 point at the simulations of the FDF model with the smallest

value of t for which there are at least two simultaneously

firing sites at the front. We call this value of t, t*. We present

an analytic estimation of t* in the Appendix. There is

FIGURE 1 Percentage relative error between the FDF and the RBA
models as a function of t for the four buffers of Table 2: EGTA (A),

parvalbumin-like (B), calbindin-D28K (C), and BAPTA (D). The relevant

timescales, other than t, are indicated as tR, tDCa
, and tDB

. The big arrow

points at the simulation of the FDF with the smallest value of t, t*, for

which there are at least two simultaneously firing sites during the

propagation of the wave. Parameter values in the main text.
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a change of behavior in the error associated to this transition,

i.e., when there is a jump from ‘‘point source dimension’’ (‘
; 0) to intersite distance (‘ ; d). This also shows that, for

very saltatory propagation, the diffusion times that need to be

compared with tR are smaller than tDCa
and tDB

. Thus, even

if tR\tDCa
; tDB

; t, the RBA may not be good. As the number

of simultaneously firing sites increases, the relevant length

scale goes from being almost zero to being d, and the

diffusion times that need to be compared with tR become

tDCa
and tDB

. From Fig. 1, we may conclude that, unless

there is a huge separation between tR and the other

timescales (as in the case of BAPTA), the signal needs to

become more or less continuous to guarantee a good

performance of the RBA. Quite surprisingly, an abrupt drop

in the error may also be observed in the case of the slowest

buffers (Fig. 1, A and B). However, in the case of EGTA,

(Fig. 1 A), it occurs for a larger ratio between t and the

diffusion times than for the other buffers. The front profile in

this case shows that even for t ¼ 0.1 [ t*, the individual

release sites are readily distinguishable: the calcium

concentration is more or less concentrated around the fir-

ing sites and, although there are several active sites, the

propagation does not look continuous. The signal is not

spread very smoothly in space, and those large gradients are

the reason behind the differences between the predictions of

both models, as we describe later. Therefore, it is not just

the number of simultaneously firing sites that marks the

transition to a better performance of the RBA, but the spatial

‘‘continuity’’ or ‘‘discreteness’’ of the signal, which is also

determined by tDca
and tDB

. Comparing the four buffers of

Fig. 1, we may conclude that, if t*� tR, the value t ¼ t*

provides a good estimate of the point at which the transition

to a more continuous propagation occurs or, equivalently, at

which the error of the RBA drops abruptly. For the slower

buffers for which the condition t*� tR does not hold, the

error of the RBA can become very small if t is much larger

than all other timescales, including tDB
.

To further explore the reasons behind the improvement in

the rapid buffering approximation as the value t ¼ t* is

crossed, we compare in Fig. 2 the fronts that we obtain with

both models for three values of t. The parameters used for

the simulations are the same as in Fig. 1 C (calbindin-D28K),

with the exception of [B]T ¼ 170 mM and [Ca21]th ¼ 0.07

mM for which t* ¼ 0.06 s. We include in Fig. 2 A a plot of

the error as a function of t where the values used for the

simulations in Fig. 2, B–E, are indicated with squares. We

show in Fig. 2, B–E, the profiles obtained with the FDF
(solid curves) and the RBA models (dashed curves) at three

times during the evolution using t ¼ 0.03 s (B and C), t ¼
0.1 s (D), and t ¼ 10 s (E). The values of t chosen

correspond to decreasing errors of the RBA from B and C to E
(see Fig. 2 A). In all cases the dotted lines correspond to the

profiles at t¼ 0, at which [Ca21](x¼ 0, t¼ 0) ¼ [Ca21]th for

both the FDF and the RBA simulations. The two subsequent

times are indicated with the labels t1 and t2. We observe in D

that at t¼ 0 the front given by the RBA is steeper than the one

given by the FDF. Something similar occurs in B although it

cannot be observed within the resolution of the figure. We

observe in B and D that at t¼ t1 (immediately after the source

is turned on), the peak concentration is higher for the FDF
than for the RBA model. This occurs because of the finite

buffering time of the FDF model. Eventually the RBA
‘‘catches up’’ with the FDF. When the site stops releasing

Ca21, the signal is spread over a wider region in the FDF
than in the RBA. This is evident at the later time, t2, of Fig.

2 B. This behavior, together with the existence of a steeper

front for the RBA at t ¼ 0, can be understood in terms of the

effective diffusion coefficient defined in Eq. 13. According

to Eq. 13, Ca21 diffuses faster in regions of higher [Ca21],

FIGURE 2 Comparison of the profiles obtained with the FDF (solid

curves) and the RBA (dashed curves) models (B–E) for calbindin-D28K with

all parameters the same as those in Fig. 1 C, except for [B]T ¼ 170 mM and

[Ca21]th ¼ 0.07 mM, and percentage relative error as a function of t for the

same parameters (A). t ¼ 0.03 s (B and C), t ¼ 0.1 s (D), and t ¼ 10 s (E). In

all cases the dotted lines correspond to the profiles at t ¼ 0. The other times

shown are: t1 ¼ 0.020 s, t2 ¼ 0.166 s (B); t ¼ 22 s (C); t1 ¼ 0.120 s, t2 ¼
0.336 s (D), and t1 ¼ 68 s, t2 ¼ 136 s (E). Solid squares in B–E represent the

sites of release. Open squares in A correspond to the parameter values of the

simulations in B–E.
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which results in steeper fronts than if diffusion were

everywhere the same. Thus, the RBA tends to generate

steeper fronts than those obtained with the full model.

Steeper fronts correspond to larger concentration gradients,

making the RBA worse. In the case of a very saltatory

propagation (Fig. 2 B), this difference in steepness results in

a noticeable difference between the time intervals that

separate two subsequent firings in the RBA and the FDF
models: whereas at time t2 the site at x � 3 mm is already

firing according to the FDF, it has not started yet according to

the RBA. This leads to errors in the wave velocity that result

in fronts that drift apart with time, as shown in Fig. 2 C,

where we plot the fronts predicted by the FDF and the RBA at

a much later time. As propagation becomes more continuous,

the fronts start to behave more similarly, as can be observed

by comparing Fig. 2, B and D. Although in Fig. 2 D at t ¼ t2
the site at x � 3 mm is already firing according to the FDF
while it is about to start in the RBA, the peak concentration at

x � 3 mm is smaller than in Fig. 2 B. Thus, the difference

between both simulations in this case is smaller than in Fig. 2

B. In the example of Fig. 2 D, the second site starts to fire

before the first one has stopped, and the gradient at the site

that reaches threshold is slightly smaller than in Fig. 2 B.

Finally, in the very continuous case, the differences between

the RBA and the FDF are unnoticeable, as shown in Fig. 2 E,

where the solutions of both models are plotted at three times

although it is impossible to distinguish them.

We may conclude from this discussion that the error of the

RBA is most sensitive to the typical length scale over which

there is Ca21 release. There are other parameters besides t that

also affect the way the front is spread in space—among them,

the relationship between the effective Ca21 diffusion co-

efficient and the rate at which Ca21 ions are injected in the

cytosol, s/t. The number of simultaneously firing sites also

depends on the threshold value for firing, [Ca21]th. We

analyze the effect of these other parameters in Fig. 3, where

we plot the percentage relative error as a function of t, for

simulations done with the reaction rate constants of calbindin-

D28K and various values of s (Fig. 3, A and E), DCa (B), DB

(C), [Ca21]th (D), and [B]T (F). In those figures where the

corresponding parameter was not changed, we used s ¼ 3.5

3 10�12mmol,DCa¼ 220mm2/s,DB¼ 27mm2/s, [Ca21]th¼
0.25 mM, and [B]T ¼ 100 mM, with the exception of Fig. 3 D,

for which we used s ¼ 5.5 3 10�12 mmol. The reaction

timescales in Fig. 3, A–D, are the same as those of Fig. 1 C.

We show in Fig. 3 A how the error is affected by the total

number of ions released by a site, s. In this case, the

diffusion timescales are the same as those of Fig. 1 C. We see

that, for a given value of t, the error increases as s increases.

This may be associated to the fact that larger Ca21 gradients

build up near an open source if more ions are released during

the same amount of time t. Larger Ca21 gradients imply that

the diffusive spread of Ca21 becomes larger as compared

to the rate at which Ca21 is consumed by the reaction with

the buffer, breaking the assumption that underlies the rapid

buffering approximation. This seems to contradict some of

the results reported in Smith et al. (1996). We discuss how

to reconcile both observations in the last section. We also

observe in Fig. 3 A that t* decreases as s increases. This is

reasonable since a larger value of s implies a larger [Ca21] in

the medium which, for a fixed threshold, [Ca21]th, allows the

occurrence of simultaneously firing sites at smaller t values.

Correlated with this behavior, the value of t at which the

error drops abruptly also decreases with increasing s. We

also observe that when t is bigger than the diffusion times,

the error becomes pretty much insensitive to the value of s.

We show in Fig. 3 B how the error is affected by the rate at

which Ca21 diffuses, DCa. This is not merely a mathematical

exercise (which, yet, provides information on the physics of

the problem). From a biological point of view, having

a different value of DCa could be associated to the effect of

other buffers that are not explicitly included in the model.

We can observe in Fig. 3 B that, for a given value of t, the

error increases as DCa increases. This is reasonable, since

increasing DCa decreases the diffusion timescale, making it

closer to the reaction one. However, the error can be pretty

large even if tR � tDCa
\t. In this figure, tDCa

is 0.218 s for

the lowest curve, 0.049 s for the middle one, and 0.036 s for

the upper one, whereas tR ¼ 5 3 10�4 s. As expected, the

value of t* decreases as DCa increases (since a larger value

of DCa favors the occurrence of simultaneously firing sites).

Consequently, the value of t at which the error drops ab-

ruptly also decreases with increasing DCa. Thus, increas-

ing DCa plays a dual role: by making the diffusion time

smaller and closer to the reaction timescale, it makes the RBA
less reliable; however, it facilitates, at the same time, the

existence of simultaneously firing sites, a feature that im-

proves the predicting power of the RBA. As in the previous

case, when the RBA begins to work, the error becomes insen-

sitive to the value of DCa.

We show in Fig. 3 C how the error is affected by the rate at

which the buffer diffuses, DB. Contrary to the case of DCa,

given a value of t, the error decreases as DB increases

(whereas DB \ DCa). This occurs because increasing DB

tends to homogenize the distributions, smoothing large

gradients and favoring the existence of spatially spread fronts

without affecting the relative size of the various terms that

are involved in the evolution equation for [Ca21] (as DCa

does). tDB
is 0.054 s for the lower curve, 0.403 s for the

middle one, and goes to infinity for the upper one. Contrary

to the previous cases, when the approximation begins to

work, the error becomes more sensitive to the value of DB.

t* decreases as DB increases, for the same reasons for which

it decreases when DCa increases.

We show in Fig. 3 D how the error is affected by the

threshold concentration for firing, [Ca21]th (i.e., the ex-

citability of the medium). In this case, for a given value of t,

the error decreases as [Ca21]th increases. A larger value

[Ca21]th implies that it will take longer for a signal that starts

at a particular site to ‘‘ignite’’ the following site. This could
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result in a smaller [Ca21] gradient and the accuracy of the

RBA would be improved. As shown in the following section,

working with dimensionless parameters provides a better

understanding of why the error decreases with increasing

[Ca21]th. As expected, the value of t* increases with

[Ca21]th. As in Fig. 3, A and B, the error becomes insensitive

to [Ca21]th when the approximation works.

The quantity t is involved in two parameters that have

a clear physical meaning: the rate at which Ca21 ions are

injected, s/t, and the time during which a site remains open,

t. Increasing the injection rate while leaving the open

duration time fixed is equivalent to increasing s, something

that is illustrated in Fig. 3 A. As expected, this makes the

RBA less reliable. Now, the fact that the errors of the RBA
systematically decrease as t increases could be related to

a smaller injection rate or to a longer duration time. Actually,

both changes should improve the approximation: a smaller

s/t allows the buffer to become in equilibrium with Ca21

more easily, whereas having a longer duration facilitates the

existence of simultaneously firing sites. To distinguish

between these two situations, we compare in Fig. 3 E a series

of simulations done varying both s and t in such a way that

s/t ¼ 30 3 10�12 mmol/s is the same in all of them. We may

observe that the RBA improves as the duration of release is

increased, even when there is only one firing site. This agrees

with observations reported in Smith et al. (1996) on the

performance of the rapid buffering approximation in the

presence of a single point source, as discussed in the last

section.

Finally, we study in Fig. 3 F how the error is affected by

the total buffer concentration, [B]T. We observe here that

the error changes nonmonotonically with [B]T: when the

propagation is very saltatory, the error is larger for [B]T ¼ 80

mM than for both [B]T ¼ 10 mM and [B]T ¼ 100 mM. We

discuss this behavior in the last section. We also observe that

t* increases with [B]T. This can be understood in the

following way. Increasing [B]T increases the relative weight

of DB to DCa in determining the effective rate at which Ca21

ions diffuse (see Eq. 13). Since DB \ DCa, increasing [B]T

decreases the effective Ca21 diffusion coefficient, favoring

in this way saltatory over continuous propagation, which is

reflected in a larger value of t*. Finally, we can observe that,

for more continuous propagation (larger values of t), the

error is a monotonically decreasing function of [B]T. As

discussed in the last section, this is so because in this regime

the way the error behaves with the various parameters is

dominated by how they affect the concentration gradient

(with the error decreasing as the gradients are smoothed out).

Numerical results: an analysis in terms of
dimensionless parameters

Although intuitive, the discussion of the previous section has

the complication of the large number of parameters that have

FIGURE 3 Percentage relative error between the FDF and the RBA models as a function of various parameters: s (A), DCa (B), DB (C), [Ca21]th (D), t, and s

when s/t is constant (E) and [B]T (F). All simulations were done with calbindin-D28K as the only buffer. More details in the main text.
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an effect on the performance of the RBA. Thus, it is very

difficult to explore the parameter space to determine the

region of validity of the RBA. On the other hand, the same

parameter may have a different effect depending on the other

parameter values. To decrease the number of parameters

to a minimum, we decided to introduce dimensionless

quantities and recast the discussion on the limitations of the

RBA in terms of a smaller number of (dimensionless)

parameters. This new approach allows us to obtain results

that are independent of the particular buffer that is used in the

simulation. It also allows us to understand how combinations

of parameters, which usually have a physical meaning, affect

the accuracy of the RBA. In terms of the dimensionless

variables, the wave solutions that travel to the right satisfy

½Ca21�d1a½C�d ! 1, as x ! �‘ and ½Ca21�d ! 0 as

x ! �‘. Therefore, these solutions are just characterized

by the seven parameters of Table 1.

Some of the dimensionless parameters are ratios of

timescales, or, equivalently, of rate constants, all of them

with respect to t. bCa and bB are dimensionless diffusive

rates of Ca21 and buffer, respectively, whereas k and k9 are

dimensionless reaction rates, from which a dimensionless

reaction timescale, tR9 ¼ 1/(k 1 k9), can be defined as

before. By changing two of these dimensionless timescales,

we can explore the regimes II–IV defined in Eq. 16,

visualizing the errors on a single two-dimensional plot.

Given that it is expected that the RBA will not work in regime

I, this way of looking at the problem provides a full

description of the cases in which the performance of the RBA
is not known a priori. We show such a plot in Fig. 4 A, where

the percentage relative error is plotted using a color code as

a function of bCa and bB. Three curves are superimposed on

the figure: bCa ¼ 1, bB ¼ 1, and bCa ¼ bB. These curves

divide the bCa � bB plane in regions that correspond to the

different regimes of Eq. 16, as indicated in the figure. As

explained before, only the regions above the bCa ¼ bB curve

are physiologically meaningful. On the other hand, since tR9

¼ 5 3 10�3 in this figure, the reaction timescale is at least

two orders of magnitude smaller than all the other timescales.

Since G, k, k9, a, and f remain constant in this figure, this

bCa � bB plane only allows comparisons between buffers

with the same dissociation constant, Kd ¼ k9/k.

Moving on Fig. 4 A along a horizontal line from left to

right is equivalent to increasing DB, leaving the other

parameters fixed. We can observe that the error gets smaller,

whereas in the physiological meaningful region, bCa [ bB.

Moving along a vertical line from bottom to top corresponds

to increasing DCa. We can observe that the error gets larger.

Thus, if we move along a straight line of the form bCa ¼
mbB, with m[ 0, the error can either get larger or smaller

depending on the value of m. Furthermore, it can have

a nonmonotone behavior depending on m, as shown in Fig.

4 B. Increasing t while leaving the other parameters fixed is

somewhat similar to moving along a straight line with m ¼
DCa/DB[ 1. If we take DB equal to the diffusion coefficient

of calbindin-D28K, for example, the error does not behave

monotonically. We think that the nonmonotone behavior

observed in Fig. 1, A and C, is a consequence of the par-

ticular ratio of diffusion coefficients that occur for EGTA and

calbindin-D28K.

We present in Fig. 5 a similar plot as before, but on the bCa

� G plane, and as a result of varying three parameters, bCa,

G, and a in such a way that a ¼ 500/G. As in Dawson et al.

(1999), G is the ratio of the ‘‘release concentration’’, s/d3, to

the difference between the threshold and the basal concen-

trations, [Ca21]th � [Ca21]b. Therefore, it provides a measure

of how hard it is to ‘‘ignite’’ one site with another site. The

fact that [Ca21]th enters into the equations only through the

dimensionless parameter G means that the threshold

concentration affects the accuracy of the RBA depending

on how it compares with the release concentration, in

particular, with s. Then, increasing [Ca21]th while leaving

the other parameters fixed is the same as decreasing G. We

conclude from Fig. 5 that increasing [Ca21]th reduces the

error. Analyzing the problem in terms of dimensionless

parameters allows us to relate this behavior with the im-

provement of the RBA as s is decreased. Now, s enters into

the equations not only through G, but also through a, the ratio

of total buffer to release concentrations. So, if a is either very

FIGURE 4 (A) Percentage relative error on a bCa � bB plane. The other

dimensionless parameters are G ¼ 2000, k ¼ 200, k9 ¼ 0.86, a ¼ 0.25, and

f¼ 2000. Three curves are included in the figure: bCa ¼ 1, bB ¼ 1, and bCa

¼ bB, dividing the plane in the regions defined in Eq. 16. (B) Relative error

as a function of bB when both bCa and bB are varied along a straight line, bCa

¼ mbB, in A. Curves are labeled by the value of the slope, m.

Saltatory and Continuous Calcium Waves 3583

Biophysical Journal 85(6) 3575–3586



large or very small, and the error is more or less insen-

sitive to changes in its value, then the way the errors behave

with G together with the definition of G imply that increas-

ing [Ca21]th will have a similar effect to decreasing s.

Decreasing s results in smaller [Ca21] gradients and, thus, in

smaller errors. Therefore, the improvement as [Ca21]th is

increased is due to the occurrence of smaller [Ca21]

gradients.

DISCUSSION AND SUMMARY

Intracellular Ca21 waves propagate regeneratively via the

release of Ca21 ions through the very narrow pores of Ca21

channels. Although propagation is affected by the presence

of buffers, usually buffer dynamics is not of interest. A

description of Ca21 waves in terms of [Ca21] only is

provided by the rapid buffering approximation, which holds

when the reactions with the buffers occur much faster than

all other processes (Wagner and Keizer, 1994). However,

the localized nature of Ca21 release is likely to break the

underlying assumptions of the approximation. In this article

we have analyzed the validity of the rapid buffering

approximation using an extension of the fire-diffuse-fire

model (Dawson et al., 1999) in which the dynamics of one

buffer is included explicitly. We have observed that the

length scale of the region with Ca21 release plays a key role,

with the approximation becoming more accurate as this

length scale increases. This length scale is determined by the

number of sites that are simultaneously releasing Ca21.

Thus, the approximation improves when the propagation

changes from saltatory to continuous. Increasing the Ca21

diffusion coefficient, DCa, is not enough to produce this

transition. Moreover, the rapid buffering approximation gets

worse as DCa is increased since this makes diffusion be

a faster process. Increasing the buffer diffusion coefficient,

while keeping DB\DCa, favors the transition to continuous

propagation and improves the approximation.

Understanding the behavior of the approximation with

[B]T, DB, and the Ca21 current is a little subtle. At [B]T ¼ 0,

the error is zero because the FDF and the RBA descriptions

are identical. Thus, the error increases with [B]T for [B]T

sufficiently small. This agrees with the observation of Smith

et al. (1996), where the validity of the rapid buffering ap-

proximation near a single point source is studied numeri-

cally. Now, the pace at which the buffering reactions occur

increases with [B]T and this should result in a smaller error.

In fact, we have shown in this article that the error depends

nonmonotonically on [B]T. The nonmonotonicity is more

noticeable when t, a parameter that determines both the Ca21

current and the time during which the channel is open, is

small (i.e., with brief but high Ca21 currents). In Smith et al.

(1996), the effect of different Ca21 currents on the ap-

proximation is also studied. In particular, it is shown that

the error is greatest at intermediate currents. We do not find

this type of behavior. However, the authors of Smith et al.

(1996) compute the error mainly in a region around the point

source. Buffers may get saturated in that region and this can

be the reason behind the nonmonotone behavior of their error

with the Ca21 current. Namely, for small currents the error is

small because [Ca21] gradients are small. When the Ca21

current is too large, the buffer gets saturated near the source

and most Ca21 is free. In that limit both the rapid buffering

approximation and the full model reduce to the ‘‘plain’’

diffusion equation and the error goes again to zero. Although

the approximation may get better near the source as the

current increases, it may get worse farther away, where the

buffer is unsaturated. This is the behavior that we capture

with our analysis in the case of saltatory propagation, in

which the wave speed is inaccurately predicted by the rapid

buffering approximation if the current is too large. The fact

that buffer saturation plays a role on the performance of the

approximation near a point source is also reflected in the

error in that region being larger for mobile than for immobile

buffers (Smith et al., 1996). Mobile buffers replenish locally

depleted regions, making saturation less favorable. The

results of Smith et al. (1996) also show that, on the other

hand, the errors are larger away from the source for immobile

than for mobile buffers. This agrees with our observation that

the error decreases when the buffer diffusivity increases. The

different behavior of the approximation close to or far away

from the source is also the reason behind the way the errors

behave as a function of buffer concentration and diffusion

coefficient for parameter values for which propagation is less

saltatory. For continuous propagation, the performance is

fully dominated by the concentration gradient over the

region with simultaneously firing sites. Therefore, increasing

the buffer concentration or its diffusion coefficient improves

the approximation since it helps smooth out the concentra-

tion gradients over that region. In the region with few simul-

taneous firing sites, the approximation is most sensitive to

the values of these parameters exactly for this reason.

FIGURE 5 Similar to Fig. 4 but on a bCa � G plane. The other

dimensionless parameters are: a ¼ 500/G, bB ¼ 0.24, k ¼ 200, k9 ¼ 0.86,

and f ¼ 2000. The arrows correspond to some of the results in Fig. 3.

Moving along the solid arrow is equivalent to moving from one curve to

another for fixed t, in Fig. 3 A. Moving along the dashed arrow is equivalent

to moving from one curve to another for fixed t, in Fig. 3 B.
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Combining the results of Smith et al. (1996) and ours, we

may conclude that, near a point source, the rapid-buffering-

approximation improves as a ‘‘free-diffusion’’ situation is

achieved (i.e., as the Ca21 current increases and the buffer

concentration decreases, the last feature being favored if the

buffer is immobile). Farther away from the point source, the

approximation improves as the concentration gradients get

smaller, something that is achieved for smaller Ca21 currents

and larger concentrations of more mobile buffers. In the case

of saltatory waves, it is the way the errors behave away from

the source that matters the most to determine the accuracy

of the approximation in predicting the wave speed. The

approximation improves as the gradients smooth out and the

waves become more continuous.

The results presented in this article show that the

classification of buffers in slow or fast is somewhat delicate

in the case of Ca21 waves, since the relevant diffusion

timescales against which the reaction timescale has to be

compared can be arbitrarily small. We have observed that in

the case of saltatory propagation, errors in the wave velocity

can remain above experimental resolution even when the

reaction timescales are much smaller than the intersite

diffusion times. Conversely, we have observed that the

approximation works pretty well even for slow buffers if the

region with active Ca21 release decays over a sufficiently

large length scale. Concentration gradients play a key role in

determining the accuracy of the approximation. However,

large gradients are induced by the concentration-dependent

diffusion coefficient that the rapid buffering approximation

gives. In a sense, the approximation has in itself the seed for

its own breakup. Therefore it is important to assess a priori

the possible sources of error of using the approximation. In

the present article we have introduced the relevant distance

and timescales that to need be compared for this assessment.

APPENDIX: ANALYTICAL APPROXIMATION TO t*

The number of sites that are simultaneously firing at the front plays a major

role on the accuracy of the RBA. In the original fire-diffuse-fire model, the

transition from one to several simultaneously firing sites is ruled by only one

ratio of timescales, t/tD, with D an ‘‘effective’’ diffusion coefficient for

Ca21. In the present case, there are two intersite diffusion timescales and

thus two ratios that rule this transition, making it more difficult to estimate

the value of t at which it occurs (t*). So far, we have calculated t*

numerically but we would like to have an a priori estimate of its value. We

present in this Appendix a simple analytic approximation to t*. To this end

we consider Eq. 6 with no pumps or buffers, with an effective diffusion

coefficient, D, and with only one site that is turned on at time t ¼ 0 and

remains on for the time being:

@½Ca21 �
@t

¼ s

d
2
t
dðxÞQðtÞ1D=

2½Ca21 �; (17)

with [Ca21](x,t ¼ 0) ¼ 0, [Ca21] ! 0 as jxj ! ‘. A good approximation to

a solution of Eq. 17 is:
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½Ca21 � ¼ 0; otherwise:

(18)

This approximation has the same spatial dependence as the stationary

solution of Eq. 17 and a time dependence that gives the correct number

of injected ions (it satisfies
R t

0
dt9

R ‘

�‘
dx9 [Ca21](x9,t9) ¼ st/(d2t)).

Furthermore, it satisfies [Ca21] $ 0 for all times and space points. With

this approximation for [Ca21](x,t) we can find the time t* at which

[Ca21](d,t*) ¼ [Ca21]th. If we think of the source as coming from one of

the sites of the fire-diffuse-fire model, and assume that there is another

such site at x ¼ d, then t* is the instant at which a second source starts to

release Ca21. Thus, by setting the duration during which the first source is

on, t, equal to t*, we obtain the value of t, t*, at which the transition from

having a single firing site at the front to having two occurs. Proceeding in

this way we obtain:

t
� ¼

d

ffiffiffiffi
2

D

r

11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4½Ca21 �

T

s=d
3

s
0
BBBB@

1
CCCCA

2

: (19)

This expression depends on the effective diffusion coefficient, D. To include

some information on the reaction with the buffer, we compute D as

D ¼

ð ½Ca21 �left

½Ca21 �b
DeffðcÞdc

½Ca21 �left � ½Ca21 �b
; (20)

where ½Ca21�left ¼ limx!�‘½Ca21� and Deff(c) is given by Eq. 13. We show

in Table 3 the values of t* estimated using Eq. 19 (t�pred) and those obtained

from the numerical simulations (t�num). The agreement is very good.

Therefore, the estimate of t* can be used to determine a priori whether the

RBA may provide a good description of the dynamics or not.
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