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Abstract

The InsP3 receptor is a ligand-gated calcium channel that is modulated both by InsP3 and
Ca2+. Recent experiments have shown that the mean open time of the channel is not a monotonic
function of [Ca+2]. In this work, we propose a solution for this type of behavior in a general
framework.
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1. Introduction

Ion channels are proteins that can change conformation depending on various factors.
In their open conformation, they allow the passage of ion currents through an usually
very narrow pore that acts as a selectivity 9lter. Thus, ion channels are highly selective,
letting the passage of very speci9c ions. There is a large body of work on modeling
ion channels, in particular, on modeling the kinetics of openings and closings. Exper-
imentally, the ion current through a single channel can be measured as a function of
time (usually using the “patch-clamp technique”). From a mathematical point of view,
these series can be thought of as sequences of zeros (closed states) and ones (open
states). Di>erent series may correspond to di>erent stimuli that can be obtained by
either changing the voltage across the membrane where the channels are inserted (as
it is usually the case for voltage-gated channels) or changing the concentration of an
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agonist, in the case of ligand-gated channels. Among calcium channels, the best-studied
ligand-gated ones are the inositol Trisphosphate (InsP3) and the Ryanodine receptors.
Most modeling papers on these channels focus on describing their open probability,
Po (i.e., the time the channel is open over the total duration of the experiment), for
di>erent ligand concentrations, without paying too much attention to dwell times be-
tween openings. However, this latter information is very relevant in order to obtain
realistic models of the channels. Mak et al. [1] have studied dwell times in great detail
in the case of the InsP3 receptor. In particular, they show in Ref. [1] that the mean
open time of the channel (¡To¿) is not monotonic with [Ca+2]. On the contrary, it
has a concave shape where the maximum corresponds approximately to the [Ca+2] that
maximizes the open probability, Po. In this work, we show that this type of behavior
cannot be described using the “classical” description of this ligand-gated channel. We
then propose a solution to account for this observation which is based on some features
of the receptor’s structure.

2. Mean open time

Consider the simplest possible discrete Markov process, xn, with state space {1; 0}.
The transition probabilities for jumping from 1 to 0 is p and from 0 to 1 is q. It is
well known that the distribution of 1’s in a sequence follows a geometric distribution
with parameter p. If the state 1 is associated to the channel’s open conformation, then
the expected value of the open time (To) is 1=p, independent of what is the value of q
or what is the value of the stationary open probability (� ≡ Ps(1) = q=(p+ q)). What
happens if we observe that the mean open time increases monotonically with the open
probability? How can we model this? Let us de9ne an independent process, yn with the
same state space and transition probabilities as xn, and a new process zn=max(xn; yn).
The new process, zn, is an aggregated Markov process. The state space is aggregated
into two observation classes {1; 0}, meanwhile the process

→
wn ≡ (xn; yn) is a vectorial

Markov chain with state space {(1; 0); (0; 1); (1; 1); (0; 0)}. The observation for
→
wn(zn)

consists of a series of dwell times, t1; t2; : : : during which
→
wn is in a given class (it is

in class a during a time, t1, in class b during t2, etc.). A fundamental description of
such dwell times is the so-called fa(k), the probability density of a given dwell time k
in class a. Colquhoun [2] has derived fa(k) in the case of two observation classes. For
our example, the probability density of the open time f1(k)(k = 1; 2; : : : ;∞) is given
by

f1(k) = �′1Q
(k−1)
11 Q10 ; (1)

where �′1 is the vector of equilibrium probabilities de9ned by

�′1 =
(
q(1 − q)
2q− q2 ;

q(1 − q)
2q− q2 ;

q2

2q− q2

)
(2)

and Qij is the submatrix of the transition probabilities between the states of class i
and j (Q11 is a 3 × 3 matrix) of the

→
wn process. The probability of observing the
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Fig. 1. Expected mean open time (E(T1)) of the maximum process, zn de9ned in the text, as a function of
q (transition probability from 0 to 1) for p = 0:9.

channel open during k time-steps is obtained by multiplying the probability of entering
the open state by the probability that it stays open during (k − 1) time-steps by the
probability of closing. Taking into account Eq. (1) we have found an explicit formula
for the expected open time (E(T1)) which is given by

E(T1) =
∞∑
k=1

kf1(k) =
2p+ q
p2(2 − q) : (3)

For the case of having d independent processes similar to xn, we have also found
the value of the expected open time (E(T1)). In this case the strategy is di>erent, as
we are interested only in the expected open time, and not in the probability density
(f1(k)), we mimic the process zn = max(x1n; x

2
n; : : : ; x

d
n) by a new Markov process z̃n

with state space {1; 0}, and transition probabilities from 1 to 0 and viceversa, s and t,
respectively. This new process z̃n has the same expected open time E(T1) as zn, but
di>erent probability density (geometric). The transition probabilities are given by (see
the appendix)

r =

∑k
i=1

(
k
i

)
(p�)i((1 − q)(1 − �))k−i)

∑k
j=1

(
k
i

)
(�i(1 − �)k−i)

; (4)

s= 1 − (1 − q)k : (5)

In Eq. (4), � is the stationary open probability (Ps(open) = Ps(1) = q=(p+ q)) of the
xn process. For z̃n process, the distribution of 1’s is also geometric but with parameter
s. Now, the expected value of the open time for the new process, 1=s, depends on
q since s depends on it. In Fig. 1, we can observe the expected value of the open
time, E(T1), of the maximum process, as a function of q for p = 0:9. The di>erent
curves correspond to having considered di>erent numbers of independent processes in
order to de9ne the maximum process, zn. The E(T1) is an increasing function of q, the
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transition probability of jumping from 0 to 1. We can also observe that, for a given
value of q, the mean open time increases with the number of independent processes.
This is easy to understand: when the open probability is very small there is practically
no “superposition” of the d independent processes, in the sense that it is very rare that
there will be more than one process in the state 1 at any given time. However, when
the open probability is greater, there exists superposition between the signals (see the
de9nition of zn), giving rise to longer runs of 1.

3. InsP3 receptor

In this section, we apply the ideas we have just described to the InsP3 receptor.
It is well known that the InsP3 receptor has at least two agonists, Ca+2 and InsP3.
The 9rst experimental observations in reconstituted lipid bilayers revealed that Ca+2

has a dual role [3]: for small concentrations (∼nM) the channel activates, while for
greater concentrations (∼�M) the channel inactivates. Thus, the open probability has a
bell-shape dependence on the calcium concentration. The best-known theoretical model
to account for this observation is the De Young–Keizer model [4], where the parameters
were determined by 9tting the open probability to the experimental data of Ref. [3].
Thus, the model was not based on 9tting open or closed times. As mentioned in the
Introduction, more recent experiments [1,5,6] have shown that the mean open time has
a local maximum as function of [Ca+2].

The InsP3 receptor has four identical subunits. We show in Fig. 2(a), a schematic
picture of the De Young–Keizer model for each of these subunits. Each subunit can be
in one of eight di>erent states labelled by Sijk , with i, j and k ∈{0; 1}). The 9rst index
indicates whether InsP3 is bound (1) or not (0) to its site, the second one, whether
Ca+2 is bound (1) or not (0) to the activatory site and the last one whether Ca+2

is bound (1) or not (0) to the inhibitory site. In Ref. [4], the channel is considered
to be open if three subunits are in the S110 state. It is important to remark that most
models of the InsP3 receptor [4,7–9] have the same basic structure regarding the way
the channel switches from the open to the closed state (see enlargement in Fig. 2(a)).
The channel can close if Ca+2 binds to the inhibitory site, or spontaneously, by either
losing a Ca+2 ion that was bound to an activatory site or by losing InsP3. According
to this picture, the mean open time can only be a decreasing function of [Ca+2].
However, this contradicts the recent experiments of Refs. [1,5,6]. As we have already
mentioned, it is known that, from a structural point of view, the InsP3 receptor is a
tetramer [10,11,14] with four identical subunits. Thus, we propose a model in which
the four subunits work independently (this is not a necessary condition, in principle,
our argument still works even if they are not independent), and assume that the channel
opens if at least one subunit is in what we call an open conformation (S110). There is
some evidence in favor of the existence of multiple open states. Both in Ref. [12] and
in Refs. [6,13] various subconductance levels are shown, which is an indication that the
channel can be open in more than one conformation. As we show now, by assuming
that the channel may have more than one open conformation we can easily explain the
non-monotone dependence of the mean open time with the calcium concentration. In
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Fig. 2. (a) De Young–Keizer model for each subunit of the InsP3 receptor. (b) Open probability as a function
of [Ca+2] for two values of [InsP3]=10 �M, and 33 nM. (c) Mean open time (ms) of the channel assuming
that the subunits work independently.

order to show that our approach can be the solution to help explain the observations
of Refs. [1,5,6] we have used the De Young–Keizer model for each of the receptor’s
subunits. To this end, we simulate the process wn = max(x1n; x

2
n; x

3
n; x

4
n), where xin are

independent Markov chains with state space aggregated into two classes {0; 1}. Each
chain is generated using the De Young–Keizer model (see Fig. 2(a)) and associating
the state 1 (open) each time the subunit is in the S110 state and 0 (closed) otherwise.
We show in Fig. 2(b), the open probability we obtain from these simulations for two
values of [InsP3], and in Fig. 2(c) the mean open time as a function of [Ca+2]. The
open probability is similar to the experimentally observed one depicted in Ref. [1]:
the shape and range of values are very similar. We can observe in Fig. 2(c) that the
mean open time is also very similar to the experimental one of Ref. [1], and that it
has a local maximum as a function of [Ca+2] that occurs at the calcium concentration
that maximizes the open probability. For [InsP3] = 10 �M we can observe that, for
small [Ca+2], the mean open time has a constant value of ∼4 ms. This is the value
of the mean open time of a single subunit (x1n). As the [Ca+2] is increased, the mean
open time also increases, because of the superposition of the signals. However, it then
decreases because the open probability of each subunit decreases, going to zero because
of the inhibitory e>ect of large [Ca+2]. On the other hand, for [InsP3] = 33 nM the
e>ects [Ca+2] on the mean open time, 〈To〉, are small because the open probability is
small.
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4. Conclusions

We have addressed the issue of how the mean open time of an ion channel can
depend non-monotonically on the concentration of one of its ligands. In particular, we
have analyzed the case of the InsP3 receptor, which is a ligand-gated calcium channel
that is involved in several physiological processes. Recent experiments have shown
that the mean open time of this channel has a local maximum as a function of [Ca+2].
This behavior cannot be accounted for by the usual models of the receptor that have
been published in the literature. We have shown that we can explain this behavior if
we consider the tetrameric structure of the channel and assume that it can have more
than one open conformation (when any of the subunits is in an open state). We have
addressed the problem within a general mathematical framework in terms of Markov
chains and we have also presented numerical simulations for the case of the InsP3

receptor.
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Appendix

For d independent processes we have that the transition probability from 1 to 0,
r = P(zn+1 = 0=zn = 1) = P(zn+1 = 0 ∩ zn = 1)=P(zn = 1). Now if zn = 1, then there is
at least one chain that is in the 1 state. So we can split this up into disjoint events
A1; A2; A3; : : : ; Ad where the event Ai is de9ned as the event in which there are only
i chains in state 1. Now using that the chains are independent and the fact that the
process xn has a unique stationary solution we obtain Eq. (4).
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