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The dissipative dynamics of a vortex line in a superfluid is investigated within
the frame of a non-Markovian quantal Brownian motion model. Our start-
ing point is a recently proposed interaction Hamiltonian between the vortex
and the superfluid quasiparticle excitations, which is generalized to incorpo-
rate the effect of scattering from fermion impurities (3He atoms). Thus, a
non-Markovian equation of motion for the mean value of the vortex position
operator is derived within a weak-coupling approximation. Such an equation
is shown to yield, in the Markovian and elastic scattering limits, a 3He
contribution to the longitudinal friction coefficient equivalent to that arising
from the Rayfield–Reif formula. Simultaneous Markov and elastic scattering
limits are found, however, to be incompatible, since an unexpected breakdown
of the Markovian approximation is detected at low cyclotron frequencies.
Then, a non-Markovian expression for the longitudinal friction coefficient is
derived and computed as a function of temperature and 3He concentration.
Such calculations show that cyclotron frequencies within the range 0.01–0.03
ps −1 yield a very good agreement to the longitudinal friction figures com-
puted from the Iordanskii and Rayfield–Reif formulas for pure 4He, up to
temperatures near 1 K. A similar performance is found for nonvanishing 3He
concentrations, where the comparison is also shown to be very favourable
with respect to the available experimental data. Memory effects are shown
to be weak and increasing with temperature and concentration.

KEY WORDS: Vortex dynamics; mutual friction; 3He–4He mixtures.

1. INTRODUCTION

It is widely accepted that the superfluid vortex dynamics at zero tem-
perature is ruled by the Magnus force:1
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mv v̇ =ρsκ ẑ × (v − vs). (1)

Here we are assuming a straight vortex line parallel to the z axis, mov-
ing with a velocity v. vs denotes a uniform background superfluid veloc-
ity which, in the simplest case, may be assumed to be time-independent
and then dropped from Eq. (1), if v is reinterpreted by Galilean invariance
as a vortex velocity relative to a background superfluid at rest. ρs denotes
the superfluid mass density and κ the quantized circulation of the vortex
velocity field (e.g., κ = h/m4 for one quantum of counterclockwise circu-
lation, being m4 the mass of a 4He atom and h the Planck’s constant).
Then, the right-hand side of Eq. (1) represents the Magnus force per unit
length acting on the vortex and, accordingly, mv on the left-hand side rep-
resents an effective vortex mass per unit length. However, there is no con-
sensus in the literature as regards the value of mv. Most of the treatments
so far, have neglected mv by assuming that it must be equivalent to the
hydrodynamic mass of a core of atomic dimensions.1 Then, from Eq. (1)
we get the well-known law of zero temperature vortex dynamics, which
states that a vortex must move at the velocity which the superfluid pos-
sesses at the location of the vortex itself.2 On the other hand, more recent
theories3–5 claim that the vortex mass should not be ignored, since it is
shown to be logarithmically divergent with the system size, thus exceed-
ing by far the core mass. Such a large mass, however, can be shown to be
consistent with the above law of vortex dynamics, if the dissipative mecha-
nisms acting at zero temperature are taken into account. In fact, one must
consider the effect of the vortex coupling to the superfluid which should
give rise to dissipation in the form of phonon emission, in close analogy
to the photon radiation mechanism stemming from an accelerated charge
in electrodynamics.4,6 Another dissipative mechanism should arise in ordi-
nary helium from the vortex coupling to the Fermi gas of 3He impurities.
Whatever the case, it is remarkable that even for an unbounded system
leading to a divergent vortex mass, such dissipative mechanisms should
make the vortex reach the superfluid velocity, in accordance with the fun-
damental law of zero temperature vortex dynamics (see Section 4.3).

At nonvanishing temperatures, in addition to phonon radiation and
3He scattering, there exists a third dissipative mechanism stemming from
the vortex scattering of superfluid quasiparticle excitations (phonons and/

or rotons).
Now, let us return to Eq. (1) and note that for a background super-

fluid at rest (vs = 0), the vortex dynamics turns out to be identical to the
two-dimensional one of an electron moving in a uniform magnetic field
subjected to the Lorentz force. Then, expressing the two-dimensional vec-
tor v in complex notation as V =vx + ivy , we can rewrite Eq. (1) in a more
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compact form

V̇ = i�V, (2)

which clearly shows that the vortex will move in a circle at the angular
frequency (cyclotron frequency)

�= ρsκ

mv

. (3)

The above mechanisms of dissipation lead to a complex shift of �, accord-
ing to which (2) becomes

V̇ = (i�eff −νd)V, (4)

where �eff denotes the effective angular frequency into which the unper-
turbed cyclotron frequency is shifted, and νd > 0 represents a damping
frequency that sets the time scale at which V tends to zero. The above
equation, however, can be written in a more familiar form if we return to
the vector notation of Eq. (1):

mv v̇ = (ρsκ −D′)ẑ × v −Dv, (5)

where

D′ =ρsκ(1−�eff /�), (6)

D =ρsκνd/�, (7)

respectively denote transverse and longitudinal friction coefficients,1,7 and
we have assumed that the normal fluid remains at rest. Actually, a vortex
in motion may drag the normal fluid in its vicinity, but this effect should
be negligible below 1 K and we shall restrict our study to such a situa-
tion.7

At this point, it is important, to notice that the cyclotron motion rep-
resented by Eq. (2) is also characteristic of the helical waves on vortex
lines and rings, usually known as Kelvin waves.1,8,9 In fact, each vortex
line element in such waves executes motion about the undisturbed line in
a circle of radius d and with a frequency ω, which approximately fulfil

mvω
2d =ρsκvi +ρsκωd, (8)

where the amplitude of the deformation d is assumed to be much less than
the wavelength λ. The above equation corresponds to the centripetal com-
ponent of an expression of the form Eq. (1), where now vs =−vi θ̂ denotes
the local self-induced velocity,10 which points in a direction opposite to
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the one of the superfluid velocity field generated by the undisturbed vortex
line. Therefore, the line velocity in Eq. (1) may be expressed as v = ωdθ̂ ,
where the frequency ω will be nonpositive if v points in the same sense
as the self-induced velocity. In fact, the solution of the quadratic Eq. (8)
yields two frequency branches of opposite sign:

ω± = ρsκ

2mv


1±

√
1+ 4vimv

ρsκd


 , (9)

whose physical meaning can be easily understood in the limit of long
wavelengths (vimv/(ρsκd)�1, vi ∼κd/λ2). That is, the positive fast branch
ω+ � � corresponds to the cyclotron motion previously described, while
the negative slow branch ω− �−vi/d ∼−κ/λ2 corresponds to the motion
of the vortex element with its local, self-induced velocity. Then we may
see that for a massless vortex line only the slow branch would exist, this
being the common assumption in the literature of helium vortex waves. As
regards experimental studies, only the slow branch has been detected by
means of a resonant coupling to transverse radio-frequency electric fields
acting on vortex lines charged with ions.11 On the other hand, the thermal
excitation of Kelvin waves has been theoretically investigated with rather
surprising results.8 In fact, it was found that the entropy of such waves
increases above temperatures about 1.85 K, so that the free energy of the
vortices is driven negative, with the consequence that superfluidity would
be destroyed. This phenomenon has been called the “free energy catastro-
phe” and the authors suggest that it could arise from their neglect of the
effect of the vortex line on the neighboring phonons and rotons in the
system. Now, given that the major contribution to the free energy comes
from the slow branch, such a “catastrophe” would apparently be shifted
toward temperatures above the lambda transition if only the excitation of
the cyclotron branch were taken into account. Actually, this has implic-
itly been assumed by most of the studies on thermal excitations of vor-
tices through phonon and roton scattering, since the authors have only
considered straight vortex lines. In particular, the phonon scattering exci-
tation of the slow branch was analyzed by Fetter12 and Sonin,13 who con-
cluded that it yields only a small correction to the friction force calculated
for a rectilinear vortex. In fact, the former restriction to considering only
straight vortex lines in calculations of the friction coefficients, arises nat-
urally if we accept the basic premise that it is only the relative motion of
an element of line with respect to the normal fluid that matters in such
type of calculations. That is, any relative motion of a vortex line element
should be subjected to the same kind of friction force per unit length,
i.e., the same value of the friction coefficients D and D′. Following these
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considerations, we have focused our calculations on the simplest situation
of a damped cyclotron motion of a straight vortex line.

There are, to our knowledge, no experimental results on the trans-
verse friction coefficient below 1.3 K. On the other hand, as regards the
longitudinal friction coefficient, we must refer to the pioneering experi-
ments performed by Rayfield and Reif (R–R) in the early sixties.14 In
fact, they studied the temperature dependence of the rate of energy loss
of charge-carrying vortex rings moving through helium II. The radii of
such rings are large(>500 Å) compared to the distance over which a vor-
tex line is expected to interact appreciably with a quasiparticle. Hence the
frictional forces on these vortex rings must be the same as those on vortex
lines bent into circles. So, R–R, were able to measure what they called the
attenuation coefficient α, which turns out to be simply proportional to the
longitudinal friction coefficient (α =κD/2). Here it is important to notice
that the energy losses in the R–R experiment are consistent with a fric-
tion owing to the axial displacement of rings, i.e., the main relative motion
of each line element with respect to the normal fluid will not correspond
to the cyclotron motion. We shall see, however, that in accordance with
the above basic premise, the longitudinal friction coefficient arising from
our theory shows an excellent agreement with the one arising from the
R–R attenuation coefficient α. We notice also that for a cyclotron motion,
the radiation damping should be at least comparable to the scattering one
for temperatures below 1 K (see Section 4.3), even though we shall focus
exclusively on the scattering processes, since phonon emission is supposed
to be negligible for the axial displacements in the R–R experiment.

Using kinetic-theory arguments, R–R showed that α comprises three
terms, one for each class of quasiparticle interacting with the vortex,
namely phonons, rotons and 3He impurities. Each of such contributions
was shown to be proportional to a corresponding averaged cross section
over all momenta, and R–R could determine by fitting to their experi-
mental results, that the roton and 3He cross sections are approximately
temperature-independent, with respective values 9.5 and 18.3 Å. The R–R
experiments were performed in the range of temperatures between 0.28
and 0.7 K, and 3He concentrations between 1.4 × 10−7 (ordinary helium)
and 2.84 × 10−5. Then, at the lowest temperatures and highest 3He con-
centrations, only the 3He contribution to α is appreciable, allowing its
separate study. Analogously, in the opposite limit of high temperatures
and low 3He concentrations, only the roton contribution to α survives.
Unfortunately, only scant information as regards the phonon contribution
to α could be derived from such experiments, since even though phonon
scattering is dominant at the lowest temperatures in pure 4He, the scat-
tering from 3He impurities becomes the most important contribution in
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ordinary helium. R–R employed Pitaevskii’s15 calculation of the phonon-
scattering cross section to evaluate the phonon contribution to α, but soon
after the publication of R–R’s paper, Iordanskii16 reported an improved
theory of the frictional force due to phonons, which seems to be so far
the most reliable one. Both, Iordanskii’s theory and the above kinetic-the-
ory analysis of R–R are based upon an elastic scattering assumption, by
which the energy of any quasiparticle that collides with the vortex is con-
served after the collision. This amounts to ignoring any energy the vor-
tex could exchange in such a process, in particular the cyclotron energy
quantum ��, which then should be negligible with respect to the energy
of any quasiparticle colliding with the vortex. In conclusion, one should
expect a cyclotron frequency of finite value, most likely compatible with
an elastic scattering approximation. Such a hypothesis, has been recently
put forward in Ref. 17 (henceforth to be designated as I), where we have
studied the friction arising from the scattering of superfluid quasiparticle
excitations in the form of a translationally invariant interaction potential.
Then, the first order expansion, in the vortex velocity of such a poten-
tial was shown to yield vortex transitions between nearest Landau lev-
els, mediated by one-quasiparticle transitions. Thus, in the frame of such
a model of quantal Brownian motion for the vortex dynamics, the lon-
gitudinal friction coefficient was computed by making use of weak-cou-
pling and Markov approximations. The result was shown to be equivalent,
in the limit of elastic scattering, to that arising from the Iordanskii for-
mula and, proposing a simple functional form for the scattering amplitude,
with a single adjustable parameter whose value was set to get agreement to
the Iordanskii result for phonons, an excellent agreement with experimen-
tal data was found, up to temperatures about 1.5 K. Finite values of the
cyclotron frequency of order 0.01 ps−1 were also shown to yield practically
the same results.

In the present article, we pursue such an investigation in order
to analyze the incidence of vortex-3He scattering, which, as mentioned
for ordinary helium, turns out to be the most important contribution
to the friction at low temperatures. But more importantly, we report
an unexpected breakdown of the Markov approximation at low cyclo-
tron frequencies, unnoticed in previous treatments within the elastic scat-
tering limit. Actually, the interaction of the vortex with the remaining
degrees of freedom of helium, leads to integrodifferential equations of
motion for the vortex observables, according to which the present vor-
tex motion turns out to be influenced by its whole previous history. In
the Markov approximation, such a memory is assumed to be negligible
and the vortex equations of motion are approximated by differential equa-
tions like (4).18 We shall show that for low enough cyclotron frequencies,
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the Markov approximation fails and non-Markovian or memory effects
must be taken into account. Such effects can be of importance in diverse
quantum Brownian motion problems19–22 and, particularly, in physical
situations which involve Brownian models of the dynamics of charged par-
ticles. For example, a fully non-Markovian reformulation of the Abraham-
Lorentz theory of radiation reaction in electrodynamics, has been shown
to lead to the elimination of “runaway solutions” and causality violations
occurring in the original theory.23 In transport theory, the phenomenolog-
ical Drude–Lorentz result for the ac conductivity has been shown to be
affected by important memory effects, especially away from resonance24

and, in the context of two-dimensional magnetotransport, the classical
magnetoresistance appears as a consequence of memory effects which are
beyond the Boltzmann–Drude approach.25,26 It may be useful to expand
on the last problem, since it corresponds just to a classical two-dimen-
sional Brownian motion of an electron, subjected to a uniform magnetic
field perpendicular to the plane. In fact, the electron is supposed to move
through a random array of stationary scatterers (background impurities)
with short range forces, and there are memory effects of two types: (i)
the electron may recollide with the same impurity, or (ii) its trajectory
may repeatedly pass through a space region which is free of impurities.
It has recently been shown that backscattering processes of the type (ii)
are responsible, at low cyclotron frequencies, of additional memory effects
leading to unexpected features of the magnetoresistance.26 Even though
there are obviously important differences with the vortex problem, it is
instructive to compare with this simpler problem, where the source of
memory effects at low cyclotron frequencies has been fully recognized.

Microscopic approaches to quantal Brownian motion also show that
memory effects are often important when the weak-coupling approxima-
tion becomes poorer.19 This point will be analyzed for our model in Sec-
tion 4.2.

This paper is organized as follows, in the next section, starting from
a straightforward generalization to include 3He of the Hamiltonian uti-
lized in I, a non-Markovian equation of motion for the vortex dynam-
ics is derived within a weak-coupling approximation. Next, we analyze the
Markov approximation and the limit of elastic scattering, showing that
under such approximations, the longitudinal friction coefficient stemming
from 3He scattering, can be shown to be equivalent to that arising from,
the corresponding R–R formula. In Section 3 we analyze the breakdown
of the Markov approximation at low cyclotron frequencies and develop
a non-Markovian treatment, from which expressions for the longitudinal
and transverse friction coefficients are derived. In Section 4 we focus on
the simpler case of a pure 4He system. We compare in Section 4.1 our
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results for the longitudinal friction with the Iordanskii (phonon) plus the
R–R (roton) results, finding a very good agreement within the cyclotron
frequency range 0.01–0.03 ps−1, up to temperatures near 1 K. In Section
4.2 we study the frequency ratio �eff /�, which provides a measure of the
memory introduced into the vortex dynamics. We explain also the difficul-
ties involved in the calculation of the transverse friction coefficient, due to
which only its order of magnitude could be estimated. In Section 4.3 fol-
lowing the theory developed by Arovas and Freire,4 we discuss the mem-
ory effects related to phonon radiation at zero temperature. Finally, Sec.
5 deals with dilute solutions of 3He in 4He, where we compare our results
to the available experimental data, and extend our study of the memory
parameter �eff /� in the presence of 3He.

2. VORTEX EQUATION OF MOTION, MARKOV
APPROXIMATION AND THE LIMIT OF ELASTIC SCATTERING

Our starting point is the following Hamiltonian, which arises as a
straightforward generalization of the Hamiltonian proposed in I , in order
to take into account the presence of 3He impurities:

H =H0 +Hint , (10)

where

H0 =��

(
a†a + 1

2

)
+

∑
k

�ωkb
†
kbk +

∑
q,σ

εqc
†
q,σ cq,σ , (11)

and

Hint = 2i

�

∑
k,q,σ

δkzqz [�(k, q)b
†
kbq +
(k, q)c

†
k,σ cq,σ ](k −q)× ẑ · v. (12)

H 0 gives the noninteracting part of the Hamiltonian and it comprises
three terms, the first of which corresponds to the cyclotron motion of
the vortex line, the second one to helium II excitations, and the last
one to 3He quasiparticles, i.e., a†, b

†
k and c

†
q,σ respectively denote, a cre-

ation operator of right circular quanta, a creation operator of helium II
quasiparticle excitations of momentum �k and frequency ωk and a crea-
tion operator of 3He quasiparticles of momentum �q, energy εq and spin
1/2 projection σ . The interaction Hamiltonian Hint arises as a straightfor-
ward generalization of the form given in I , to include the effect of vor-
tex-3He scattering processes. In fact, if we replace in Eq. (12) the vortex
velocity operator v as a linear combination of creation and annihilation
operators of right circular quanta,17 it becomes clear that the interaction
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consists of vortex-quasiparticle scattering events that make the vortex to
raise or lower one Landau level. Then, in addition to the scattering ampli-
tude �(k, q) related to the vortex interactions with phonons and rotons
discussed in I, now we are including a scattering amplitude 
(k, q), which
takes into account vortex-3He interactions.

In previous works27–29 we derived, by means of a standard
reduction-projection procedure and a weak-coupling Markov approxima-
tion, a generalized master equation for the density operator of the vortex.
Our aim was to obtain an equation of motion for the mean value of the
complex vortex position operator R =x + iy. Now we are interested in re-
deriving such an equation of motion from the more general Hamiltonian
Eqs (10–12). This time we have employed a simpler and more direct pro-
cedure (see the Appendix), which leads to the following integrodifferential
equation of motion for v(t)≡ e−i�t 〈Ṙ(t)〉:

v̇(t)+
∫ t

0
dτD(τ )v(t − τ)=0, (13)

where

D(τ ) = 1

�
2π�ρsL/m4

∑
k,q

δkzqz (k −q)2
[
|�(k, q)|2(ωk −ωq)(nq −nk)

×ei(ωk−ωq−�)τ + 2
�
|
(k, q)|2(εk − εq)(fq −fk) ei(εk/�−εq/�−�)τ

]
,

(14)

being nk = [exp(�ωk/kBT ) − 1]−1 and fk = {exp[(εk − µ)/kBT ] + 1}−1 the
thermal equilibrium Bose and Fermi occupation numbers for the corre-
sponding quasiparticle excitations, respectively.

The dynamics behind Eq. (13) can be understood by noting that the
present vortex motion is actually influenced by its whole previous his-
tory, each time being weighted by a memory kernel D(τ ) such that τ = 0
weights the present time, while τ = t weights the initial condition. Then,
if D(τ ) possesses a microscopic lifetime τm compared to the characteristic
times that rule the motion of v(t), only the present time t will have a non-
negligible influence upon the vortex motion, provided t � τm .This con-
stitutes the so-called Markov or long time, limit approximation,18–22 under
which Eq. (13) becomes a differential equation:

v̇(t)+νv(t)=0, (15)

where

ν =
∫ ∞

0
dτD(τ ). (16)
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Recalling that 〈Ṙ(t)〉= ei�tv(t), we may realize that the imaginary part of
ν yields the shift of the cyclotron frequency previously mentioned in Eq.
(4), i.e., �eff = � − Imν, while the real part, which must be nonnegative,
corresponds to the damping frequency νd defined in the same equation.
Then, the transverse and longitudinal friction coefficients arise from Eqs.
(6) and (7) as

D′
M = (ρsκ/�) Im ν, (17)

DM = (ρsκ/�)Reν, (18)

where the subscript M indicates Markov approximation. The real and
imaginary parts of the frequency ν, when considered as functions of �,
obey Kramers-Krönig relations30 which lead to the following expression
for the transverse friction coefficient:

D′
M(�)= 1

π�
P

∫ ∞

−∞
dω

ωDM(ω)

ω−�
, (19)

where P denotes the Cauchy principal part and,

DM(ω)= 2π

L�ω

∑
k,q

δkzqz (k −q)2
[
|�(k, q)|2(nq −nk)δ(ωk −ωq −ω)

+2|
(k, q)|2(fq −fk)δ(εk/�− εq/�−ω)
]
. (20)

The above even function of ω when evaluated at ω=� gives the longitudi-
nal friction coefficient, and it is easy to verify that DM(�)>0, since ωk >

ωq ⇒ nq > nk, and the same for the terms containing the fermion occu-
pation numbers. Note that only the scattering events that conserve energy
will contribute to the longitudinal friction coefficient (see the arguments of
the Dirac deltas in Eq. (20) for ω =�). This consequence of the Markov
approximation can be physically understood in terms of the time-energy
uncertainty principle. In fact, in the long time limit only the microscopic
states with the longest lifetimes are expected to remain with a nonnegligi-
ble probability of undergoing a scattering transition, and according to the
time-energy uncertainty principle, energy should be practically conserved
at the end of such transitions.18

We have studied in I the phonon-roton contribution to the longitudi-
nal friction coefficient which arises from the first term inside the square
brackets in Eq. (20). We showed that the limit of elastic scattering �→0
yields an excellent agreement with the values derived from experimental
data for the roton temperature range, provided the scattering amplitude �

is set to get agreement with the Iordanskii results for the low-temperature
phonon dominated regime. Let us now examine the 3He contribution to
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the longitudinal friction in Eq. (20) in the limit �→ 0. Denoting such, a
term by D3(�), we have

D3(0) = lim
�→0

D3(�)=−4π�

L

∑
k,q

δkzqz (k −q)2|
(k, q)|2 ∂fk

∂εk

δ(εk − εq)

= − 2A2
�

(2π)4

∫
d3k

∫
d3q

∂fk

∂εk

δ(εk − εq)(k −q)2δ(kz −qz)|
(q, k)|2,
(21)

where the continuum limit was explicitly considered in the last expression,
A being the area of the system in the x – y plane. Here most of the inte-
gration can be analytically performed in spherical coordinates, leading to
the following one-dimensional integral:

D3(0)=−4A2m∗

3π2�

∫ ∞

0
dk k4|
(k, k)|2 ∂fk

∂εk

, (22)

where a Landau–Pomeranchuk dispersion relation εk =�
2k2/2m∗ was uti-

lized. The above expression can be shown to be equivalent to the R–R for-
mula,14 provided the scattering amplitude fulfills

|
(k, k)|2 = 9π�
3

128m∗A2
u(k)σ (k), (23)

where u(k)=�k/m∗ denotes the group velocity of 3He quasiparticles and
σ(k) corresponds to a total momentum-transfer cross section for vor-
tex-3He scattering, which, in a low 3He concentration regime,14 can be
approximated by the constant value σ0 = (18.3±0.7) Å.

3. BREAKDOWN OF THE MARKOV APPROXIMATION
NON-MARKOVIAN TREATMENT

We have shown in I, that the finite values of the cyclotron frequency
extracted from recent theories, yield values of the longitudinal friction
coefficient of the order of that obtained in the elastic limit �→0. We shall
henceforth work under such an assumption, i.e., DM(�)∼DM(0). Thus it
can be shown that Eq. (19) can be approximated as follows:

D′
M(�)� 2

π�

∫ ∞

0
dωDM(ω), (24)

where we have also assumed D′
M(�) � DM(�). The quasiparticle fre-

quency cutoff in Eq. (20) (roughly two times the roton frequency) yields
the same cutoff to the frequency ω in Eq. (24). This shows that the inte-
gral in Eq. (24) possesses a finite value and thus D′

M(�) would diverge
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as �−1 in the limit � → 0. Later we shall see that this unphysical result
arises from a breakdown of the Markov approximation. In fact, one could
expect the effective frequency �eff to be lower than the cyclotron fre-
quency by the effect of friction, but the existence of a critical cyclotron
frequency below which the effective frequency becomes negative, seems
to be quite unphysical, i.e., one would expect effective frequency values
bounded as 0<�eff =�−�D′

M(�)/ρsκ <�. We shall see in the following
that a non-Markovian treatment yields in fact such bounds. To see this,
let us return to the integrodifferential equation (13) and take its Laplace
transform according to the definition ṽ(z)= ∫ ∞

0 exp(izt)v(t)dt (Imz>0) :

D̃(z)ṽ(z)= izṽ(z)+v(0), (25)

where the Laplace transform of the memory kernel in Eq. (14) reads as,

D̃(z)= i(�− z)

ρsκ�π

∫ ∞

−∞
dω

ωDM(ω)

ω+�− z
. (26)

Then from Eq. (25) we have,

ṽ(z)= v(0)

−iz+ D̃(z)
(27)

and v(t) arises from the singularities of ṽ(z) in the lower half-plane, Imz<

0. For instance, if the expression (27) has a unique simple pole located at
z0 =−iD̃(z0), we get

v(t)=v(0)e−iz0t , (28)

and the Markov approximation would be valid provided D̃(z0)� D̃(0) (cf.
Eq. 16). That is, taking the limit z → i0+ in the Cauchy integral of Eq.
(26) we get,31

D̃(0)= i

ρsκπ
P

∫ ∞

−∞
dω

ωDM(ω)

ω+�
+ �DM(�)

ρsκ
=ν. (29)

Therefore, from Eq. (26) we may realize that for such an approximation to
be valid, it necessarily should be |z0|=|ν|��, i.e., �DM(�)/ρsκ �� and
�D′

M(�)/ρsκ ��. Now, according to the low-cyclotron frequency approx-
imation Eq. (24), the last condition will not be fulfilled for low enough
frequencies, that is, the real part of z0 will remain finite for � → 0. This
suggests the following approximation to find the poles of Eq. (27):

iz0 = D̃(z0)� D̃(Rez0) = i(�−Rez0)

ρsκπ�
P

∫ ∞

−∞
ωDM(ω)dω

ω+�−Rez0

+ (�−Rez0)
2

ρsκ�
DM(�−Rez0), (30)
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or, equivalently,

Imz0 = − (�−Rez0)
2

ρsκ�
DM(�−Rez0) (31)

Rez0 = (�−Rez0)

ρsκπ�
P

∫ ∞

−∞
ωDM(ω)dω

ω+�−Rez0

� 2(�−Rez0)

ρsκπ�

∫ ∞

0
DM(ω)dω, (32)

where the last equality arises from the approximation Eq. (24), i.e., assum-
ing DM(0)∼DM(�eff )� ∫ ∞

0 dωDM(ω)/�eff , (�eff =�−Rez0). Then from
Eq. (32) we get the solution

�eff =�−Rez0 =�/{1+ [2/(ρsκπ�)]
∫ ∞

0
DM(ω)dω}, (33)

where, in fact, the effective frequency turns out to be bounded accord-
ing to our previous discussion, 0 < �eff < �. Note also that �eff → 0
corresponds to the limit of a vanishing cyclotron frequency, as expected.
Finally, the friction coefficients D =−(ρsκ/�)Imz0 and D′ = (ρsκ/�)Rez0
reads as,

D = (�eff /�)2DM(�eff ), (34)

D′ =ρsκ(1−�eff /�), (35)

which generalize the previous Markovian expressions Eq. (20) and Eq.
(24). Here it is expedient to recall that Eqs. (34) and (35) were extracted
under the approximations of Eqs. (24) and (30), both being equivalent to
D � D′. If, in addition, we have D′ � ρsκ, then �eff � � and Eqs. (34)
and (35) tend to the Markovian expressions. In other words, the frequency
ratio �eff /� can be thought of as a measure of the proximity to the
Markovian limit. Note that the limit of a vanishing cyclotron frequency
is a strongly non-Markovian one, with D ∼ O(�2) and ρsκ − D′ ∼ O(�).
Such a behavior of the transverse coefficient corresponds to the lower limit
of �eff ∼ O(�)2 as given by Eq. (33). As regards the longitudinal coeffi-
cient, since the effective frequency was absent from our previous analysis
in I, the limiting values for elastic scattering (� → 0) there reported are
now drastically changed to vanishing values. However, we shall next see
that there is a range of cyclotron frequency values that keep the previous
agreement with the experimental values up to temperatures near 1 K.
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4. ANALYSIS OF RESULTS FOR A PURE 4He SYSTEM

4.1. Longitudinal Friction Coefficient and the Cyclotron Frequency Range

In Table I we may compare values of the longitudinal friction coeffi-
cient computed from Eq. (34) for � = 0.01 − 0.03 ps−1, with the corre-
sponding values arising from the Iordanskii formula16 (phonon range),
plus the R–R formula14,32 (roton range). Such calculations were per-
formed taking into account only the phonon-roton contribution in Eq.
(20), i.e., for a pure 4He system. In the phonon dominated regime(T <

0.4 K), the lack of experimental data leads us to compare with the results
stemming from the Iordanskii formula, i.e., those arising from the limit
� → 0 of Eq. (20).17 Actually, it will be enough to have ��/kBT < 1
in order to keep DM(�) � DM(0) (cf. the figures for T = 0.1 K in Table
I), but too small values of � would affect the Markovian approxima-
tion �eff � �, leading to appreciable discrepancies between the Iordan-
skii result, DM(0), and our expression (34). The phonon influence becomes
negligible for T � 0.65 K, allowing the comparison of our results with
those arising from the R–R formula,14 which constitutes a good fit to
experimentally derived values up to temperatures about 1.3 K.32 Taking
into account an estimated uncertainty of order 10%, we may see from
Table I that our results lie within such error bounds for temperatures up
to 0.8 K (0.9 K) for � = 0.01 ps−1(0.03 ps−1). Note that for T = 1 K, our
result for � = 0.01 ps−1(0.03 ps−1) falls 30%(4%) below the lower error

TABLE I

Longitudinal friction coefficient [10−6g cm−1s−1] versus temperature for a pure 4He system.
The values in the third and fifth columns were calculated from Eq. (34) and have to be com-
pared with the corresponding values in the second column, which arise from Refs. 14, 16, 32.
The values in the third and fourth columns were calculated for �=0.01ps−1, while the values
in the fifth and sixth ones correspond to �=0.03ps−1. Powers of 10 are enclosed in brackets

T [K] DRefs D0.01 �eff /� D0.03 �eff /�

0.1 2.61[−8] 2.63[−8] 1.000 2.97[−8] 1.000
0.2 8.34[−7] 8.15[−7] 0.999 8.45[−7] 1.000
0.3 6.33[−6] 5.98[−6] 0.996 6.11[−6] 0.999
0.4 2.84[−5] 2.59[−5] 0.989 2.63[−5] 0.996
0.5 2.06[−4] 2.07[−4] 0.979 1.95[−4] 0.993
0.6 2.43[−3] 2.53[−3] 0.962 2.39[−3] 0.987
0.7 1.79[−2] 1.80[−2] 0.938 1.77[−2] 0.979
0.8 8.27[−2] 7.67[−2] 0.900 8.07[−2] 0.964
0.9 0.274 0.221 0.840 0.256 0.940
1.0 0.714 0.460 0.749 0.618 0.900
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boundary. To summarize, we have identified a narrow range of cyclo-
tron frequency values (0.01 ps−1 � � � 0.03 ps−1) yielding longitudinal
friction figures which are in agreement with the Iordanskii formula and
experimental data. However, it is important to note that according to
recent theories,3−5 which show that the cyclotron frequency scales down
logarithmically with the vortex size, such a range of � would be consistent
with a relatively wide range of macroscopic sizes of the system.

4.2. Effective Frequency, Memory Effects and Transverse Friction
Coefficient

Another feature of Table I shows that the frequency ratio �eff /�

decreases with increasing temperature, which reflects a corresponding
increase of D′ (Eq. 35). Particularly, at the lowest temperatures, the Mar-
kov approximation �eff /�� 1 shows to be excellent, becoming gradually
less adequate as the temperature increases. The highest temperature range
(0.9–1.0 K) displays the largest differences with the Markov approxima-
tion, as well as the highest discrepancy with the experimental results. In
other words, the longitudinal friction phenomenon appears to be consis-
tent with weakly, at most, non-Markovian processes (�eff /�>0.9). There
is, however, another possible interpretation of such a discrepancy with the
experimental results for �eff /�<0.9, which is related to an eventual fail-
ure of the weak-coupling approximation. In fact, according to Eqs. (33)
and (20), we may see that for fixed �, the parameter �eff /� will behave
as a decreasing function of the coupling strengths � and 
, such that
�eff /�→ 1 for a vanishing coupling (DM(ω)→ 0), while �eff /�→ 0 for
an infinite coupling (DM(ω) → ∞). Then, only a higher portion of the
interval 0 <�eff /�< 1 should be expected to be consistent with a weak-
coupling approximation. In conclusion, the above discrepancy with the
experimental results for �eff /� < 0.9 may also be regarded as an indica-
tion of a possible failure of the weak-coupling approximation.

The transverse friction coefficient, in contrast to the longitudinal one,
possesses a strong dependence on �. In fact, Eq. (24) shows that in
the Markovian limit, the bounds 0.01 ps−1 < � < 0.03 ps−1 lead to a fac-
tor 3 of spreading [D′

M(0.01 ps−1)= 3D′
M(0.03 ps−1)], while the non-Mar-

kovian figures of Table I can reduce such a factor somewhat (> 2.5).

Another important difference between both friction coefficients stems from
the degree of dependence on the quasiparticle dispersion relation cutoff
features.33,34 On the one hand, the longitudinal coefficient, which depends
mainly on DM(�eff ), turns out to be almost independent of such a cut-
off, since �eff and � are two orders of magnitude lower than the ro-
ton frequency. The transverse coefficient, on the other hand, being mainly
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dependent on the integral
∫ ∞

0 DM(ω)dω, has therefore an important depen-
dence on the quasiparticle cutoff through the corresponding dependence
of the scattering amplitudes � and 
, which is mostly uncertain. In sum-
mary, due to the above uncertainties in the calculation of the transverse
coefficient, only its order of magnitude should be reliable which, never-
theless, turns out to be quite useful to ensure that the condition D �D′
is fulfilled. Recall that such a condition was assumed in the derivation
of Eqs. (34) and (35), and in fact, taking into account that, ρsκ � 145 ×
10−6 g cm−1 s−1, all the values of Table I can be shown to be consis-
tent with D �D′. It is worthwhile recalling also the lack of experimental
results on D′ for temperatures below 1.3 K. Taking into account only the
vortex drag due to the scattering of rotons, the transverse coefficient can
be written in terms of a transverse scattering length σ⊥, viz. D′ =ρnvGσ⊥,

where ρn denotes the normal fluid density and vG the average group veloc-
ity of thermal rotons1,7. However, only speculative assumptions about the
form of σ⊥ for temperatures below 1.3 K were reported.7 In addition, it
has been argued that the so called Iordanskii force16 gives rise to an addi-
tional transverse coefficient to be substracted from D′, yielding a total
transverse coefficient1,7 given by Dt =D′ −ρnκ. However, the sign, ampli-
tude, and existence of this Iordanskii force are still subject to debate.35−38

Recently, Fortin37 has applied the formalism of Thouless, Ao, and Niu39

to compute the transverse and longitudinal coefficients due to the scatter-
ing of noninteracting phonons in two dimensions. He finds a transverse
coefficient which turns out to be of opposite sign to ours and to that of
Refs. 7, 1, which is interpreted in terms of a negative vortex mass due to
phonons. Such a discrepancy in the sign stems from the fact that, accord-
ing to his equations, the transverse and longitudinal coefficients would be
related, as functions of the cyclotron frequency, by Kramers–Krönig rela-
tions, while in our case such relations are connecting instead the real and
imaginary parts of the Markovian frequency ν (cf. Eq. 19).

4.3. Phonon Emission and Memory Effects at Zero Temperature

At this point, as a useful complement to our study, it will be instruc-
tive to discuss in some detail the memory effects related to phonon
emission at zero temperature. We will base our analysis on the theory
developed by Arovas and Freire4 for vortex dynamics in superfluid films.
In fact, suppose that the vortex is set in motion at positive times by
the action of a homogeneous time-dependent superfluid flow, i.e., it is
assumed that both, the superfluid velocity vs and the vortex velocity v, are
zero for negative times. Then, the vortex equation of motion can be written4
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∫ t

0
M(τ)V̇ (t − τ)dτ = iρsκ[V (t)−Vs(t)]. (36)

The right-hand side of this equation corresponds to the usual Magnus
force ρsκ ẑ × (v − vs) (cf. Eq. 1) expressed in complex notation (V = vx +
ivy), while the left-hand side will differ from the familiar Newtonian prod-
uct of mass times acceleration, unless the memory or causal4 kernel M(τ)

has a negligible lifetime. The memory, which actually plays an important
role in this case, stems from the vortex coupling to the low lying excita-
tions of the superfluid (phonons), in close analogy to the retardation and
radiation effects stemming from electron-photon coupling in electrodynam-
ics4. Now, we focus upon the long time limit of Eq. (36). That is, for
t � lifetime of M(τ), the left-hand side could be approximated as M̃V̇ (t),

where the effective vortex mass M̃ is given by the Fourier (Laplace) trans-
form of the memory kernel M(τ) at zero frequency, M̃ = ∫ ∞

0 dτM(τ) =
M ′ + iM ′′ , the imaginary part M ′′ being related to the dissipation of vor-
tex energy in the form of phonon emission. Then the solution of Eq. (36)
in the long time limit could be easily obtained for constant Vs :

V (t)=Vs{1− exp [i(�+ iνr )t ]}, (37)

where the cyclotron � and radiation damping νr frequencies respectively
read as,

�= ρsκM ′

M ′2 +M ′′2 (38)

νr = −ρsκM ′′

M ′2 +M ′′2 . (39)

M ′, however, is shown to diverge for an unbounded two-dimensional sys-
tem4 (M ′(ω → 0) ∼ −lnω), while for a finite macroscopic system one
should expect a corresponding finite value of M ′(�|M ′′|), leading to the
familiar expression Eq. (3) for the cyclotron frequency in Eq. (38), with
M ′ =mv the vortex mass per unit length. As regards the radiation damping
frequency, from Eq. (14) of Ref. 4 we have |M ′′(ω→0)|=κ2ρs/(8c2

s ), (cs =
sound velocity) and then, νr =κ(�/cs)

2/8. This result derives as well from
the expression for the mean power radiated by unit length of a vortex per-
forming cyclotron motion (see Eq. 2.11 of Ref. 6). Therefore, the radiation
damping should be weak νr ∼10−3� for our range of cyclotron frequency
values (� ∼ 0.01 ps−1), whereas it would be relatively strong, νr ∼ �, for
cyclotron frequencies arising from a hydrodynamical model for the vortex
mass,1 �≈ 3ps−1. It is interesting to notice that a vanishing damping fre-
quency for an infinite system in Eq. (39) does not preclude the approach
of the vortex velocity to the superfluid velocity at long times. Actually, it
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simply means that such an approach will be slower than the exponential
one of Eq. (37). To see this, let us integrate by parts the left-hand side
of Eq. (36) getting M(0)V (t)+∫ t

0 Ṁ(τ )V (t −τ)dτ. Then, approximating in
the long time limit the last integral as

∫ t

0 Ṁ(τ )V (t)dτ, the left-hand side
of Eq. (36) turns out to be simply M(t)V (t), from which we get

V (t)=Vs

[
1− iM(t)/ρsκ

1+ (M(t)/ρsκ)2

]
, (40)

where4 M(t)/ρsκ �ξ/(2cst), ξ =κ/(2πcs) being the coherence length. Thus,
the above expression shows that in the case of an infinite system, the
approach of the vortex velocity to the superfluid velocity turns out to be,
in contrast to Eq. (37), a slow nonexponential one.

5. ANALYSIS OF RESULTS FOR DILUTE SOLUTIONS
OF 3He IN 4He

In case of a 3He–4He mixture we have to take into account both
terms in the expression (20) for DM(ω). The calculation of the fermion
term D3(ω) (cf. Eq. 21) turns out to be similar to that leading to D3(0)

in Eq. (22), namely

D3(ω)= m∗A2

π2�
2ω

∫ ∞

0
dk|
(k, q)|2(fk −fq)k2(q2 +k2/3), (41)

where the value of the momentum q arises from the argument of the
second Dirac delta in Eq. (20), i.e., q2 = k2 + 2m∗ω/�. Thus, the cutoff
of the Landau–Pomeranchuk dispersion relation imposes the same cutoff
(�1 ps−1, see Ref. 33) to the frequency ω in Eq. (41). Recall that the cut-
off uncertainties will be reflected in the evaluation of the transverse fric-
tion coefficient, as was already mentioned in Section 4.2. To compute Eq.
(41) we utilized the following simple generalization of the expression Eq.
(23) for k �=q :

|
(k, q)|2 = 9π

128
�

4

(m∗A)2
σ0

√
kq. (42)

In Table II we may compare some experimental results for the longi-
tudinal friction coefficient (third column), with the corresponding results
arising from our approach, along with the values computed from the
Iordanskii16 and R–R14 formulas. Given the low 3He concentrations of
Table II, the Fermi temperatures turn out to be at most two orders of
magnitude below the experimental ones, and so the Fermi occupation
numbers in Eqs. (22) and (41) can be very well approximated by the
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Maxwell–Boltzmann statistics. At T = 0.28 K the phonon contribution to
the friction, stemming from the Iordanskii formula, turns out to be negli-
gible in comparison to the 3He term given by Eqs. (22) and (23) (cf. the
values of DRefs in Tables I and II). Then, the experimental value Dexp for
T = 0.28 K and C = 2.84 × 10−5 in Table II (being C = n3/(n3 + n4), ni =
number density of iHe atoms), which was measured within an error less
than 1%, was utilized by R–R to calculate the effective cross section σ0 =
18.3 Å in Eq. (23), assuming for the effective mass the value m∗ = 2.5m3
(m3= actual mass of a 3He atom). A similar procedure was followed in
our case, since the value of σ0 in Eq. (42) was set to get agreement with
the experimental value Dexp =4.69×10−3 for �=0.02 ps−1, i.e., the center
of the cyclotron frequency range discussed in Section 4.1. Then, equating
(34) to 4.69×10−3, we extracted the value σ0 =18.54 Å, which turns out to
be slightly greater than the R–R result. Although the phonon contribution
to DM in Eq. (34) is in fact negligible for T =0.28 K and C =2.84×10−5,
this is not the case for �eff /� (Eq. 33), since the phonon contribution to
the integral

∫ ∞
0 DM(ω)dω turns out to be greater than the 3He one. Nev-

ertheless, as seen from Table II, the factor (�eff /�)2 in Eq. (34) remains
close to unity and then, in practice, almost all the longitudinal friction
should be ascribed to 3He scattering.

In a second experiment, to prove the proportionality of the friction
coefficient to the 3He number density in the dilute limit, R–R performed a
measure for the same temperature T =0.28 K and a smaller concentration
of C = 7.55 × 10−6. They obtained the value Dexp = (1.35 ± 0.06) × 10−3,
which turns out to be in agreement with their theoretical calculation aris-
ing from Eq. (22), within the limits of estimated error. As regards our cal-

TABLE II

Longitudinal friction coefficient [10−6 g cm−1 s−1] vs. temperature and 3He concentration for
mixtures. The third column corresponds to experimental results, while the fourth one corre-
sponds to values arising from Iordanskii formula16 (phonon contribution) plus R–R formu-
las14 (roton+3He contribution). The remaining notation is the same as in Table I.

T [K] C Dexp DRefs D0.01 �eff /� D0.02 �eff /� D0.03 �eff /�

0.28 2.84[-5] 4.69[-3] 4.69[-3] 4.69[-3] 0.995 4.69[-3] 0.997 4.64[-3] 0.998
0.28 7.55[-6] 1.35[-3] 1.25[-3] 1.25[-3] 0.996 1.25[-3] 0.998 1.24[-3] 0.999
0.61 7.55[-6] 4.56[-3] 5.01[-3] 4.87[-3] 0.960 4.90[-3] 0.980 4.80[-3] 0.986
0.615 1.4[-7] 3.34[-3] 3.43[-3] 3.56[-3] 0.959 3.52[-3] 0.979 3.39[-3] 0.986
0.643 1.4[-7] 6.04[-3] 6.17[-3] 6.36[-3] 0.953 6.32[-3] 0.976 6-11[-3] 0.984
0.67 1.4[-7] 1.01[-2] 1.04[-2] 1.07[-2] 0.947 1.07[-2] 0.973 1.04[-2] 0.982
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culation from Eq. (34), it yields practically the same figures as the R–R
formula (Table II).

The diluted sample was also used to verify the additivity of 3He and
roton scattering, by performing an experiment at the relatively high tem-
perature of 0.61 K. The directly measured value Dexp = 4.56 × 10−3 was
then contrasted with that arising from the addition of R–R formulas for
3He and roton scattering contributions, namely 4.79 × 10−3. The pho-
non contribution, on the other hand, was ignored, presumably because
of some discrepancies arising from Pitaevskii’s15 calculation of the pho-
non-scattering cross section. Actually, taking into account such a contri-
bution, the value of the friction coefficient should have been increased to
5.15 × 10−3. Pitaevskii’s result was later modified by Iordanskii16 in that
the coefficient of proportionality to T 5 of the friction coefficient due to
phonons was shown to be smaller by a factor ∼0.62. That is, taking into
account the phonon contribution stemming from the Iordanskii formula,
the corrected value 5.01 × 10−3 (Table II) is in fact closer to the experi-
mental one. Finally, we compare with our results computed from Eq. (34).
From Table II we see that such results are closer to the observed one than
the previous estimation of Iordanskii+R–R, and in this better agreement
it is important to remark on the role played by the memory effect, which
is embodied in the factor (�eff /�)2 <1 in Eq. (34).

Next we analyze a set of measures performed for ordinary helium (C =
1.4 × 10−7) at temperatures of 0.615, 0.643 and 0.67 K. The second measure
(T =0.643 K) was reported in Ref. 40, while the remaining two are included in
Ref. 14. Under such conditions, the incidence of 3He scattering is almost neg-
ligible in both, the Iordanskii+R–R results and our figures computed from
Eq. (34). From Table II we see that, analogous to the above results for T =
0.61 K, theoretical calculations again overestimate the experimental data, and
the best agreement is also obtained for our result at �=0.03 ps−1.

Finally, from Table II we notice that the memory effect remains small
(�eff /��0.95), showing the same increase with temperature as in Table I.
On the other hand, the dependence of �eff /� on concentration is not
clear from Table II except for T = 0.28 K, where we find a slight reduc-
tion for a higher concentration. It is not difficult, however, to generalize
such a result taking into account that in the dilute limit, the Maxwell–
Boltzmann approximation to fk and fq in Eq. (41) yields a D3(ω) pro-
portional to the 3He number density, which in turn implies a growing of∫ ∞

0 DM(ω)dω with concentration and, accordingly, a decreasing behavior
for �eff /� in Eq. (33). In other words, �eff /� is shown to be a decreasing
function of the number of quasiparticles, i.e., phonons, rotons, and 3He
impurities, interacting with the vortex.
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We hope, in concluding this report, that the present theoretical results
will stimulate an experimental investigation of degenerate-3He richer vor-
tex friction regimes.

APPENDIX A: DERIVATION OF THE VORTEX EQUATION
OF MOTION

Our starting point is the Hamilton equation of motion for the crea-
tion operator of right circular quanta, whose time derivative turns out to
be proportional to the vortex velocity:

ȧ† =
√

π ρsL/m4Ṙ, (A.1)

where L denotes the vortex line length. Thus we have,

ȧ† = i

�
[H,a†]= i�a† + Ô, (A.2)

where Ô denotes the quasiparticle operator:

Ô = i

�
√

πρsL/m4

∑
k,q,σ

δkzqz [(ky −qy)+ i(qx −kx)]

[�(k, q)b
†
kbq +
(k, q)c

†
k,σ cq,σ ]. (A.3)

Next we consider the Hamilton equation for ȧ†:

ä† = i

�
[H, ȧ†]= i�ȧ† + i

�
[H, Ô]

= i�ȧ† − 1
�
√

πρsL/m4

∑
k,q,σ

δkzqz [(ky −qy)+ i(qx −kx)]

x[�(k, q)(ωk −ωq)b
†
kbq + 1

�

(k, q)(εk − εq)c

†
k,σ cq,σ ]

− 2i

�
2πρsL/m4

∑
k′,k

∑
q,σ

δkzk′
z
δk′

zqz
[(qx −k′

x)(k
′
y −ky)

+(k′
y −qy)(k

′
x −kx)][�(k, k′)�(k′, q)b

†
kbq +
(k, k′)
(k′, q)c

†
k,σ cq,σ ]a†.

(A.4)

As in I , we shall make use of a weak-coupling approximation, which con-
sists in retaining only second order terms in the scattering amplitudes �

and 
. This approximation is discussed in Section 4.2. Then to approx-
imate the above expression, we note that to the zeroth order in such
parameters we have
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a† = −iȧ†/� (A.5)

b
†
k(t)bq(t) = ei(ωk−ωq)t b

†
k(0)bq(0) (A.6)

c
†
k,σ (t)cq,σ (t) = ei(εk−εq )t/�c

†
k,σ (0)cq,σ (0), (A.7)

while the first order arises from the Hamilton equations for b
†
kbq and

c
†
k,σ cq,σ . We have, for instance,

d

dt
(b

†
kbq) = i

�
[H,b

†
kbq]

= i(ωk −ωq)b
†
kbq + i

�
√

πρsL/m4

{∑
k′

δk′
zkz

�(k′, k)[[(ky −k′
y)

+i(kx −k′
x)]a

† + [(k′
y −ky)+ i(kx −k′

x)]a]b†
k′bq

−
∑

q′
δq ′

zqz
�(q, q ′)[[(q ′

y −qy)+ i(q ′
x −qx)]a†

+[(qy −q ′
y)+ i(q ′

x −qx)]a]b†
kbq′

}
, (A.8)

and we may find a formal solution to this equation in b
†
k(t)bq(t) by noting

that the only dependence on b
†
kbq on the right-hand side comes from the

first term. Thus we have to the first order in �:

b
†
k(t)bq(t) = ei(ωk−ωq)t b

†
k(0)bq(0)+

∫ t

0
dτei(ωk−ωq)τ 1

�
√

πρsL/m4{∑
k′

δk′
zkz

�(k′, k)[[(ky −k′
y)+ i(kx −k′

x)]ȧ
†(t − τ)/�

+[(ky −k′
y)+ i(k′

x −kx)]ȧ(t − τ)/�]ei(ωk′−ωq)(t−τ)b
†
k′(0)bq(0)

−
∑

q′
δq ′

zqz
�(q, q ′)[[(q ′

y −qy)+ i(q ′
x −qx)]ȧ†(t − τ)/�

+[(q ′
y −qy)+ i(qx −q ′

x)]ȧ(t − τ)/�]ei(ωk−ωq′ )(t−τ)
b

†
k(0)bq′(0)

}
,

(A.9)

and analogously we may find a similar expression for c
†
k,σ (t)cq,σ (t).

Finally, replacing Eq. (A.9) (and the corresponding expression for
c

†
k,σ (t)cq,σ (t)) in Eq. (A.4) and, taking mean values according to

〈b†
k(0)bq(0)〉= δkqnk and 〈c†

k,σ (0)cq,σ (0)〉= δkqfk, we obtain, Eq. (13).
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