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S U M M A R Y
In previous works, we presented 2-D and 3-D magnetotelluric modelling methods based on
Rayleigh–Fourier expansions. These methods are an alternative to finite-element and finite-
difference techniques and are especially suitable for modelling multilayered structures, with
smooth irregular boundaries. Here we generalize the 2-D method for the calculation of the
electromagnetic response of 2-D structures to arbitrary, spatially non-uniform 2-D and 3-D
inducing magnetic fields. These fields are characteristic of low- and high-latitude regions. We
calculate the response to different 2-D and 3-D sources, of a 2-D structure representative of the
conductivity distribution which could be found at a coastline, which includes deep conductive
anomalies in the lower crust and upper mantle. Then, we investigate source effects, comparing
these responses to that obtained for a uniform source.

These effects become noticeable for periods greater than approximately 6 h and increase
with the period of the source. They are highly dependent on the morphology of the source and
also on the orientation of the external field relative to the strike direction of the structure. In
various cases, they totally mask the uniform source response.

Key words: daily variations, geo-electromagnetic induction, non-uniform inducing fields,
source effects.

1 I N T RO D U C T I O N

The basic hypothesis of spatially uniform (1-D) inducing magnetic fields, used for magnetotelluric (MT) modelling of the earth resistivity
distribution (Tikhonov 1950; Cagniard 1953), has proved to work well in many cases, and its validity implies that the MT transfer functions
depend only on the electrical structure of the earth, and not on the unknown external field. This assumption is also frequently employed
to interpret data from geomagnetic deep soundings (GDS) (Schultz & Larsen 1987; Bahr & Filloux 1989). Its validity simplifies fieldwork
because it implies that data do not need to be collected simultaneously at the different sounding locations. Dimitriev & Berdichevsky (1979)
demonstrated that the single-site approach is also valid for sources varying linearly over length-scales exceeding the skin depth. Nevertheless,
in certain cases, e.g. for studies performed at low or high latitudes, and especially for hourly or greater periods, these hypotheses usually
fail due to the presence of the equatorial or auroral electrojets. When this happens, the models obtained assuming 1-D sources for the deep
conductivity distribution (particularly for the lower crust and the upper and mid mantle) contain source distortions (Srivrastava 1965; Quon
et al. 1979; Mareschal 1981; Osipova et al. 1989; Pirjola 1992; Vilhanen 1996; Padilha et al. 1997; Vilhanen et al. 1999).

When data are simultaneously acquired at all sounding sites it is not necessary to assume 1-D inducing fields. Some decades ago, various
large 1-D or bi-dimensional (2-D) arrays of magnetometers were deployed around the world to study both the electrical structure of the crust
and upper mantle and the morphology of the external magnetic field. One example is the EMSLAB array (Gough et al. 1989). In recent years
advances in instrumentation made more feasible the simultaneous acquisition of data in 2-D arrays of fully digital MT stations, as has been
done in the BEAR project in Europe (Korja 1998). Then, the development of methods to calculate the earth response to non-spatially uniform
sources becomes necessary, to take full advantage of these facilities. Häkkinen & Pirjola (1986) solved the problem of tri-dimensional (3-D)
inducing fields over 1-D layered earths exactly. Then, Pirjola (1992) and Vilhanen et al. (1993) investigated magnetotelluric source effects
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produced by inductive fields using simplified models of an auroral electrojet over a 1-D layered earth and a 2-D, two-layer (the deeper being a
perfect conductor) model. Later, Boteler & Pirjola (1998) and Pirjola & Vilhanen (1998) calculated the response of 1-D layered earths to 3-D
sources representing auroral electrojets using the complex image method (CIM), previously suggested by Wait & Spies (1969). Then applying
the CIM, which simplifies and accelerates the calculations, Vilhanen et al. (1999) made a more complete study of magnetotelluric source
effects over 1-D earths due to different kinds of sources associated with auroral electrojets. On the other hand, Carrasquilla & Rijo (1998)
studied how source effects produced by 2-D sources representing the equatorial electrojet modify the response of 3-D conductive bodies. To
do so they generalized the 3-D integral equations (IE) magnetotelluric modelling method by Wannamaker et al. (1984).

In a previous work, Osella & Martinelli (1993) presented a bi-dimensional MT modelling method, based on the application of Rayleigh–
Fourier (RF) techniques. This method is an alternative to finite-difference (FD) (Smith & Booker 1991) and finite-element (FE) (Wannamaker
et al. 1987) solutions. It is especially suited to modelling multilayered structures, with smooth irregular contours. Later, Osella et al.
(1993a) generalized this method to include non-uniform, 2-D, transverse electric (TE) sources with the same strike as the 2-D structures.
Using this method, Osella et al. (1993a,b) and Favetto et al. (1997) modelled the daily variations of the geomagnetic fields at Peru and
Argentina, considering the morphology of the sources (in the first case, the equatorial electrojet), obtaining information concerning the
regional conductivity distribution in these zones up to depths of the order of 600–800 km. Martinelli & Osella (1997) also developed a MT,
3-D, RF modelling method.

In the present paper, we extend our previous RF methods to the calculation of the electromagnetic response of this type of 2-D structure
to arbitrary 2-D or 3-D inducing fields. In order to make the method even more general, and applicable to a wider range of periods than those
involved in MT or induction arrays modelling (for example, such as used in controlled source soundings), we do not impose the validity of
the quasi-stationary approximation in the derivations.

Then, applying this development, we perform a theoretical study of the long-period source distortions that could appear at coastlines, as
a function of the morphology of the inducing fields.

2 E L E C T RO M A G N E T I C R E S P O N S E O F 2 - D M U LT I L AY E R E D S T RU C T U R E S
T O 3 - D I N D U C I N G F I E L D S

In the following, we obtain the response of a 2-D, N-layered model, with smooth, irregular boundaries, to 3-D inducing fields. Fig. 1 shows
the proposed earth model. Each medium n, for 1 ≤ n ≤ N , has conductivity σ n , dielectric permittivity εn and magnetic permeability µ0 equal
to that of free space. Boundaries between layers are given by functions z = Sn(x). The external magnetic field, H̄ (ext), has a time dependence
exp(iωt) and is a function of the coordinates x, y and z; its x and y components at the earth surface are known. Then, inside each layer n, the
electric, Ēn and magnetic, H̄ n, fields satisfy (Weaver 1994)

∇̄ × Ēn = −iωµ0 H̄ n (1)

∇̄ × H̄ n = (σn + iωεn)Ēn . (2)

In the air (medium 0), far from the sources:

∇̄ × Ē0 = −iωµ0 H̄ 0 (3)

∇̄ × H̄ 0 = iωε0 Ē0, (4)

where ε0 is the dielectric permittivity of vacuum.
The studied area has lengths Lx and Ly, along the x and y directions, respectively. We choose an extension of the model outside this

area that simplifies the treatment. In this extended model the interfaces Sn are even and periodic functions of x, and the external magnetic

Figure 1. Generic 2-D electrical model.
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field, H̄ (ext), is a periodic function of x and y. This external field is the sum of two contributions, H̄ (ext1) and H̄ (ext2), where the x component
of H̄ (ext1), H (ext1)

x , and the y component of H̄ (ext2), H (ext2)
y , are even functions of x and y, and the y component of H̄ (ext1), H (ext1)

y , and the x
component of H̄ (ext2), H (ext2)

x , are odd functions of x and y. The spatial periodicities are named λx and λy . The studied area is centred at
(x , y) = (λx/4, λy/4). Later, we explain in detail how we construct the extended model that satisfies these conditions. At the present, we only
mention that the selected extension implies no loss of generality on the type of interfaces and external fields that can be modelled, and does
not affect the results obtained in the target region, provided that λx and λy are much greater than Lx and Ly, respectively. We assume that
Rayleigh scattering theory is valid on every boundary, so, the general solutions for the magnetic and electric field components, which are also
periodic with x and y, can be written as the following expansions:

H (n)
x (x, y, z, ω) =

∑
l,m∈Z

{
A(n)

lm (ω) exp
[

R(n)
lm (ω)z

]
+ B(n)

lm (ω) exp
[
−R(n)

lm (ω)z
]}

wl (x)vm(y) (5)

H (n)
y (x, y, z, ω) =

∑
l,m∈Z

{
C (n)

lm (ω) exp
[

R(n)
lm (ω)z

]
+ D(n)

lm (ω) exp
[
−R(n)

lm (ω)z
]}

vl (x)wm(y) (6)

H (n)
z (x, y, z, ω) =

∑
l,m∈Z

1

R(n)
lm

{[
kxl A(n)

lm (ω) + kymC (n)
lm (ω)

]
exp

[
R(n)

lm (ω)z
]

−
[
kxl B(n)

lm (ω) + kym D(n)
lm (ω)

]
exp

[
−R(n)

lm (ω)z
]}

vl (x)vm(y)

(7)

E (n)
x (x, y, z, ω) = iωµ0

γ 2
n

∑
l,m∈Z

1

R(n)
lm

{[
kxlkym A(n)

lm (ω) − (k2
xl + γ 2

n )C (n)
lm (ω)

]
exp

[
R(n)

lm (ω)z
]

−
[
kxlkym B(n)

lm (ω) − (
k2

xl + γ 2
n

)
D(n)

lm (ω)
]

exp
[
−R(n)

lm (ω)z
]}

vl (x)wm(y)

(8)

E (n)
y (x, y, z, ω) = iωµ0

γ 2
n

∑
l,m∈Z

1

R(n)
lm

{[(
k2

ym + γ 2
n

)
A(n)

lm (ω) − kxlkymC (n)
lm (ω)

]
exp

[
R(n)

lm (ω)z
]

−
[(

k2
ym + γ 2

n

)
B(n)

lm (ω) − kxlkym D(n)
lm (ω)

]
exp

[
−R(n)

lm (ω)z
]}

wl (x)vm(y)

(9)

E (n)
z (x, y, z, ω) = iωµ0

γ 2
n

∑
l,m∈Z

{[
−kym A(n)

lm (ω) + kxlC
(n)
lm (ω)

]
exp

[
R(n)

lm (ω)z
]

+
[
−kym B(n)

lm (ω) + kxl D(n)
lm (ω)

]
exp

[
−R(n)

lm (ω)z
]}

wl (x)wm(y),

(10)

where γ 2
0 = −(ω/c)2, γ 2

n = iωµ0(σ n + iωεn), for 1 ≤ n ≤ N , kxl = 2|l|π/λx , kym = 2|m|π/λy , [R(n)
lm ]2 = k2

x l + k2
ym + γ 2

n , and

vl (x) =
{

cos(kxl x) if l ≤ 0

sin(kxl x) if 0 < l
(11)

wl (x) =
{

− sin(kxl x) if l < 0

cos(kxl x) if 0 ≤ l
(12)

vm(y) =
{

cos(kym y) if m ≤ 0

sin(kym y) if 0 < m
(13)

wm(y) =
{

− sin(kym y) if m < 0

cos(kym y) if 0 ≤ m.
(14)

A(n)
lm , B(n)

lm , C (n)
lm and D(n)

lm are complex coefficients that depend on frequency ω.B(n)
lm and D(n)

lm define the incident fields and A(n)
lm and C (n)

lm the
reflected ones. B(0)

lm and D(0)
lm correspond to H̄ (ext).B(0)

lm with l ≥ 0 and m ≤ 0, and D(0)
lm with l > 0 and m < 0, generate H̄ (ext1).B(0)

lm with
l < 0 and m > 0, and D(0)

lm with l ≤ 0 and m ≥ 0, generate H̄ (ext2). These fields are of the form:

H (ext1)
x (x, y, z, ω) =

∑
l≥0,m≤0

B(0)
lm (ω) exp

[
−R(0)

lm (ω)z
]

cos(kl x) cos(km y) (15)

H (ext1)
y (x, y, z, ω) = −

∑
l>0,m<0

D(0)
lm (ω) exp

[
−R(0)

lm (ω)z
]

sin(kl x) sin(km y) (16)

H (ext1)
z (x, y, z, ω) = −

∑
l>0,m≤0

1

R(0)
lm

[
kxl B(0)

lm (ω) + kym D(0)
lm (ω)

]
exp

[
−R(0)

lm (ω)z
]

sin(kl x) cos(km y) (17)
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H (ext2)
x (x, y, z, ω) = −

∑
l<0,m>0

B(0)
lm (ω) exp

[
−R(0)

lm (ω)z
]

sin(kl x) sin(km y) (18)

H (ext2)
y (x, y, z, ω) =

∑
l≤0,m≥0

D(0)
lm (ω) exp

[
−R(0)

lm (ω)z
]

cos(kl x) cos(km y) (19)

H (ext2)
z (x, y, z, ω) = −

∑
l≤0,m>0

1

R(0)
lm

[
kxl B(0)

lm (ω) + kym D(0)
lm (ω)

]
exp

[
−R(0)

lm (ω)z
]

cos(kl x) sin(km y). (20)

The remaining B(0)
lm and D(0)

lm are null.
It must be taken into account that Rayleigh scattering theory is an approximation valid when boundary slopes are not too large, because

multiple reflections are not contemplated. In these cases, the series converge and then the coefficients corresponding to |l| or |m| greater than
a finite value L can be neglected.

To obtain the electromagnetic response at the earth surface we apply the appropriate boundary conditions. These are the continuity of
the tangential components of Ē and H̄ on every interface. At z = 0, H x, H y, Ex and Ey are continuous; at z = Sn(x), for 1 ≤ n ≤ N − 1:

H (n)
x (x, y, Sn(x), ω) + d Sn

dx
(x)H (n)

z (x, y, Sn(x), ω)

= H (n+1)
x (x, y, Sn(x), ω) + d Sn

dx
(x)H (n+1)

z (x, y, Sn(x), ω) (21)

H (n)
y (x, y, Sn(x), ω) = H (n+1)

y (x, y, Sn(x), ω) (22)

E (n)
x (x, y, Sn(x), ω) + d Sn

dx
(x)E (n)

z (x, y, Sn(x), ω)

= E (n+1)
x (x, y, Sn(x), ω) + d Sn

dx
(x)E (n+1)

z (x, y, Sn(x), ω)

(23)

E (n)
y (x, y, Sn(x), ω) = E (n+1)

y (x, y, Sn(x), ω). (24)

In the deepest medium, N , A(N )
lm and C (N )

lm are null for every l and m because the fields must not diverge as z increases.
When these conditions are applied, we find that the responses to H̄ (ext1) and H̄ (ext2) are uncoupled. This is a direct consequence of the

imposed parity of the functions Sn(x). For the first external field, only the coefficients A(n)
lm and B(n)

lm corresponding to l ≥ 0 and m ≤ 0, and
the coefficients C (n)

lm and D(n)
lm corresponding to l > 0 and m < 0, differ from 0. For the second one, the non-zero coefficients are A(n)

lm and B(n)
lm

corresponding to l < 0 and m > 0 and C (n)
lm and D(n)

lm corresponding to l ≤ 0 and m ≥ 0.
Next, we calculate the response to H̄ (ext1).

2.1 Response to H̄(ext1)

H̄ (ext1) is defined by eqs (15)–(17). The continuity of H x, H y, Ex and Ey at z = 0 implies that, for every l ≥ 0 and m ≤ 0:

A(0)
lm + B(0)

lm (ω) = A(1)
lm + B(1)

lm (ω) (25)

for every l > 0 and m < 0,

C (0)
lm + D(0)

lm (ω) = C (1)
lm + D(1)

lm (ω)

1

γ 2
0 R(0)

lm

{
kxlkym

[
A(0)

lm (ω) − B(0)
lm (ω)

]
− (

k2
xl + γ 2

0

) [
C (0)

lm (ω) − D(0)
lm (ω)

]}

= 1

γ 2
1 R(1)

lm

{
kxlkym

[
A(1)

lm (ω) − B(1)
lm (ω)

]
− (

k2
xl + γ 2

1

) [
C (1)

lm (ω) − D(1)
lm (ω)

]}
(26)

and, for every l ≥ 0 and m ≤ 0,

1

γ 2
0 R(0)

lm

{(
k2

ym + γ 2
0

) [
A(0)

lm (ω) − B(0)
lm (ω)

]
− kxlkym

[
C (0)

lm (ω) − D(0)
lm (ω)

]}

= 1

γ 2
1 R(1)

lm

{(
k2

ym + γ 2
1

) [
A(1)

lm (ω) − B(1)
lm (ω)

]
− kxlkym

[
C (1)

lm (ω) − D(1)
lm (ω)

]}
. (27)
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At z = Sn(x), for 1 ≤ n ≤ N − 1, from eq. (21), for every m ≤ 0:∑
l≥0

{
A(n)

lm (ω) exp
[

R(n)
lm Sn(x)

]
+ B(n)

lm (ω) exp
[
−R(n)

lm Sn(x)
]}

cos(kxl x)

+d Sn

dx
(x)

∑
l>0

1

R(n)
lm

{[
kxl A(n)

lm (ω) + kymC (n)
lm (ω)

]
exp

[
R(n)

lm Sn(x)
]

−
[
kxl B(n)

lm (ω) + kym D(n)
lm (ω)

]
exp

[
−R(n)

lm Sn(x)
]}

sin(kxl x)

=
∑
l≥0

{
A(n+1)

lm (ω) exp
[

R(n+1)
lm Sn(x)

]
+ B(n+1)

lm (ω) exp
[
−R(n+1)

lm Sn(x)
]}

cos(kxl x)

+d Sn

dx
(x)

∑
l>0

1

R(n+1)
lm

{[
kxl A(n+1)

lm (ω) + kymC (n+1)
lm (ω)

]
exp

[
R(n+1)

lm Sn(x)
]

−
[
kxl B(n+1)

lm (ω) + kym D(n+1)
lm (ω)

]
exp

[
−R(n+1)

lm Sn(x)
]}

sin(kxl x). (28)

From eqs (22) and (23), for every m < 0:∑
l>0

{
C (n)

lm (ω) exp
[

R(n)
lm Sn(x)

]
+ D(n)

lm (ω) exp
[
−R(n)

lm Sn(x)n
]}

sin(kxl x)

=
∑
l>0

{
C (n+1)

lm (ω) exp
[

R(n+1)
lm Sn(x)

]
+ D(n+1)

lm (ω) exp
[
−R(n+1)

lm Sn(x)
]}

sin(kxl x)
(29)

× 1

γ 2
n

∑
l>0

1

R(n)
lm

{[
kxlkym A(n)

lm (ω) − (k2
xl + γ 2

n )C (n)
lm (ω)

]
exp[R(n)

lm Sn(x)]

−
[
kxlkym B(n)

lm (ω) − (k2
xl + γ 2

n )D(n)
lm (ω)

]
exp

[
−R(n)

lm Sn(x)
]}

sin(kxl x)

− 1

γ 2
n

d Sn

dx
(x)

∑
l≥0

{[
kym A(n)

lm (ω) − kxlC
(n)
lm (ω)

]
exp

[
R(n)

lm Sn(x)
]

+
[
kym B(n)

lm (ω) − kxl D(n)
lm (ω)

]
exp

[
−R(n)

lm Sn(x)
]}

cos(kxl x)

= 1

γ 2
n+1

∑
l>0

1

R(n+1)
lm

{[
kxlkym A(n+1)

lm (ω) − (k2
xl + γ 2

n+1)C (n+1)
lm (ω)

]
exp

[
R(n+1)

lm Sn(x)
]

×
[
kxlkym B(n+1)

lm (ω) − (k2
xl + γ 2

n+1)D(n+1)
lm (ω)

]
exp

[
−R(n+1)

lm Sn(x)
]}

sin(kxl x)

− 1

γ 2
n+1

d Sn

dx
(x)

∑
l≥0

{[
kym A(n+1)

lm (ω) − kxlC
(n+1)
lm (ω)

]
exp

[
R(n+1)

lm Sn(x)
]

+
[
kym B(n+1)

lm (ω) − kxl D(n+1)
lm (ω)

]
exp

[
−R(n+1)

lm Sn(x)
]

n
}

cos(kxl x), (30)

respectively. By the last, from eq. (24), for every m ≤ 0:

1

γ 2
n

∑
l≥0

1

R(n)
lm

{[(
k2

ym + γ 2
n

)
A(n)

lm (ω) − kxlkymC (n)
lm (ω)

]
exp

[
R(n)

lm Sn(x)
]

−
[(

k2
ym + γ 2

n

)
B(n)

lm (ω) − kxlkym D(n)
lm (ω)

]
exp

[
−R(n)

lm Sn(x)
]}

cos(kxl x)

= 1

γ 2
n+1

∑
l≥0

1

R(n+1)
lm

{[(
k2

ym + γ 2
n+1

)
A(n+1)

lm (ω) − kxlkymC (n+1)
lm (ω)

]
exp

[
R(n+1)

lm Sn(x)
]

−
[(

k2
ym + γ 2

n+1

)
B(n+1)

lm (ω) − kxlkym D(n+1)
lm (ω)

]
exp

[
−R(n+1)

lm Sn(x)
]}

cos(kxl x). (31)

Multiplying eqs (29) and (32) by cos (kxix) for every integer number i between 0 and L, eqs (30) and (31) by sin(kxix) for every i
between 1 and L, and then integrating x between −λx/2 and λx/2, we obtain systems of linear equations independent of x that can be solved
independently for every m. We calculate the coefficients A(1)

lm , B(1)
lm , C (1)

lm and D(1)
lm that define the electromagnetic response at the Earth’s surface

using a procedure similar to that described in previous works (Osella & Martinelli 1993; Martinelli & Osella 1997). The RF methods proposed
in these papers were extensively tested by comparison to FD, FE or IE solutions. There, a self-consistency criterion for the determination of
the validity of Rayleigh’s approximation in each particular case was established, which is also valid for the method presented here. When the
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approximation is valid, the series expansion of field components converge, and the root mean squared values of the residual discontinuities of
the tangential components at layer boundaries can be reduced to a level below a few per cent by increasing the number of scattering orders, L.
In contrast, when the approximation is no longer valid, the residual discontinuities remain large, and the series directly exhibit an oscillatory
behaviour, or they converge for small values of L and then become divergent as L increases. The maximum boundary slopes that can be
correctly modelled using RF techniques lie typically in the range 50◦–60◦, but can exceed these values in very resistive cases.

2.2 Response to H̄(ext2)

In this case, the external field is defined by eqs (18)–(20). The continuity of the tangential components of H̄ and Ē , at z = 0, implies that
eqs (25) and (28) are valid, for every l < 0 and m > 0, and eqs (26) and (27), for every l ≤ 0 and m ≥ 0. At z = Sn(x), with 1 ≤ n ≤ N − 1,
eqs (29) and (32) are satisfied for every m > 0, and eqs (30) and (31), for every m ≥ 0, though here, the sums in eqs (29) and (32) extend over
the indices l < 0, and the sums in eqs (30) and (31) over the indices l ≤ 0. Now, we multiply eqs (29) and (32) by sin(kxix) for every i between
−L and −1 and eqs (30) and (31) by cos (kxix) for every i between −L and 0, and then we integrate x between −λx/2 and λx/2. Once again,
we obtain systems of linear equations that can be solved independently for every m.

2.3 Model extension

The studied area is located between xmin and xmax such that xmax − xmin = Lx, and ymin and ymax such that ymax − ymin = Ly. Since, in general,
Sn(xmin) is different from Sn(xmax), it is not possible to obtain a periodic function of x simply by extending Sn to the left and to the right as the
constant values Sn(xmin) and Sn(xmax), respectively. Because of this, we instead centre the model at x = λx/4, and assume that

Sn(x) =

⎧⎪⎪⎨
⎪⎪⎩

Sn(xmin) if 0 ≤ x ≤ xmin

Sn(xmax) if xmax ≤ x ≤ λx/2

Sn(−x) if − λx/2 ≤ x ≤ 0

(32)

with xmin = λx/4 − Lx/2 and xmax = λx/4 + Lx/2. It is important to note that this extension of the interfaces does not impose any restriction
on the type of functions Sn(x) that can be considered inside the studied area. Furthermore, assuming that Sn is an even function of x greatly
simplifies the treatment for reasons that are explained later in this section.

To calculate the coefficients B0
lm and D0

lm, we must select convenient extensions of H (ext)
x and H (ext)

y at z = 0. This is a more complex
problem than the extension of the boundaries Sn(x). First, we show how we extend these components, for periods such that the quasi-stationary
approximation is valid in the air. In this approximation,

∇̄ × H̄ 0 = ∇̄ × H̄ (ext) = ∇̄ × H̄ (ind) = 0, (33)

where H̄ (ind) is the induced magnetic field. Then,

∂x H (ext)
y − ∂y H (ext)

x = 0. (34)

We are modelling the response to an external field that in a certain region is 3-D; there ∂ x H (ext)
y and ∂ y H (ext)

x are not null. We select the
area to be studied such that it completely contains this region and assume that outside there ∂ x H (ext)

y and ∂ y H (ext)
x are null (this means that

H (ext)
x does not depend on y and H (ext)

y does not depend on x). Then, at the surface of the earth, H (ext)
y must be constant at the borders of the

studied area that correspond to y = ymin or y = ymax, while H (ext)
x must be constant at the borders x = xmin and x = xmax. In general, H (ext)

x ,
which is a function of x, and H (ext)

y , which is a constant, are different at the borders y = ymin and y = ymax. Analogously, H (ext)
x , which in this

case is a constant, and H (ext)
y , a function of y, are also different at the borders x = xmin and x = xmax. Considering this, we centre the model at

(x , y) = (λx/2, λy/2), and extend these components to the area 0 ≤ x ≤ λx/2, 0 ≤ y ≤ λy/2, as follows:

H (ext)
x (x, y, 0, ω)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H (ext)
x (x, ymin, 0, ω) if xmin ≤ x ≤ xmax, 0 ≤ y ≤ ymin

H (ext)
x (x, ymax, 0, ω) if xmin ≤ x ≤ xmax, ymax ≤ y ≤ λy/2

H (ext)
x (xmin, ymin, 0, ω) = H (ext)

x (xmin, ymax, 0, ω) if 0 ≤ x ≤ xmin, 0 ≤ y ≤ λy/2

H (ext)
x (xmax, ymin, 0, ω) = H (ext)

x (xmax, ymax, 0, ω) if xmax ≤ x ≤ λx/2, 0 ≤ y ≤ λy/2

(35)

H (ext)
y (x, y, 0, ω)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H (ext)
y (xmin, y, 0, ω) if 0 ≤ x ≤ xmin, ymin ≤ y ≤ ymax

H (ext)
y (xmax, y, 0, ω) if xmax ≤ x ≤ λx/2, ymin ≤ y ≤ ymax

H (ext)
y (xmin, ymin, 0, ω) = H (ext)

x (xmax, ymin, 0, ω) if 0 ≤ x ≤ λx/2, 0 ≤ y ≤ ymin

H (ext)
y (xmin, ymax, 0, ω) = H (ext)

x (xmax, ymax, 0, ω) if 0 ≤ x ≤ λx/2

ymax ≤ y ≤ λy/2.

(36)
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The simplest form to extend these components to the whole area −λx/2 ≤ x ≤ λx/2, − λy/2 ≤ y ≤ λy/2, considering that they usually
are not null at the coordinate axes, would be to assume that the extended H̄ (ext) is such that H (ext)

x and H (ext)
y are even functions of x and y.

As this is not compatible with eq. (35), we instead suppose that each one is the sum of both an even and an odd function of x and y. This
corresponds to assuming that

H̄ (ext) = H̄ (ext1) + H̄ (ext2), (37)

where H̄ (ext1) and H̄ (ext2) are the fields defined by eqs (15)–(17) and (18)–(20), respectively. We show next that this assumption unequivocally
defines the extensions of H (ext)

x and H (ext)
y to the area −λx/2 ≤ x ≤ λx/2, − λy/2 ≤ y ≤ λy/2. The selected extension is advantageous because,

as we have formerly pointed out, H̄ (ext1) and H̄ (ext2) give uncoupled responses when the boundaries Sn are even functions of x, and does not
restrict the fields H̄ (ext) that can be considered in the studied area.

For the extended fields in the air, given by eqs (5)–(10) with n = 0, the quasi-stationary approximation corresponds to taking the limits
γ 0 ≈ 0 and R0

00z 	 1. Then,

A0
00 = B0

00 (38)

C0
00 = D0

00 (39)

A0
0m = B0

0m = 0 if m 
= 0 (40)

C0
l0 = D0

l0 = 0 if l 
= 0 (41)

kym A0
lm = kxlC

0
lm if l 
= 0 and m 
= 0 (42)

kym B0
lm = kxl D0

lm if l 
= 0 and m 
= 0 (43)

because, the electric field must not diverge. This hypothesis is stronger than eq. (34) and ensures its validity. Using eq. (34) alone, relations
(41)–(44) could also be obtained but A0

00 and C0
00 could not be determined. Replacing relations (41)–(44) into eqs (15)–(20), we obtain that

H (ext1)
x (x, y, z, ω) = B(0)

00 (ω) +
∑

l>0,m≤0

B(0)
lm (ω) exp[−krlm Sn(x)] cos(kl x) cos(km y) (44)

H (ext1)
y (x, y, z, ω) = −

∑
l>0,m<0

kym

kxl
B(0)

lm (ω) exp[−krlm Sn(x)] sin(kl x) sin(km y) (45)

H (ext1)
z (x, y, z, ω) = −

∑
l>0,m≤0

krlm

kxl
B(0)

lm (ω) exp[−krlm Sn(x)] sin(kl x) cos(km y) (46)

H (ext2)
x (x, y, z, ω) = −

∑
l<0,m>0

kxl

kym
D(0)

lm (ω) exp[−krlm Sn(x)] sin(kl x) sin(km y) (47)

H (ext2)
y (x, y, z, ω) = D(0)

00 (ω) +
∑

l≤0,m>0

D(0)
lm (ω) exp[−krlm Sn(x)] cos(kl x) cos(km y) (48)

H (ext2)
z (x, y, z, ω) = −

∑
l≤0,m>0

krlm

kym
D(0)

lm (ω) exp[−krlm Sn(x)] cos(kl x) sin(km y), (49)

where krlm =
√

k2
xl + k2

ym . So, in this approximation, H̄ (ext1) is determined only by the coefficients B0
00 and B0

lm with l > 0 and m ≤ 0 or
by the function H (ext1)

x (x , y, 0, ω), and H̄ (ext2) only by D0
00 and D0

lm with l ≤ 0 and m > 0 or by H (ext2)
y (x , y, 0, ω). Then, considering eq. (38),

H̄ (ext) at z = 0, is given by

H (ext)
x (x, y, 0, ω) = B(0)

00 (ω) +
∑

l>0,m≤0

B(0)
lm (ω) cos(kl x) cos(km y)

−
∑

l<0,m>0

kxl

kym
D(0)

lm (ω) sin(kl x) sin(km y) (50)

H (ext)
y (x, y, 0, ω) = −

∑
l>0,m<0

kym

kxl
B(0)

lm (ω) sin(kl x) sin(km y) + D(0)
00 (ω)

+
∑

l≤0,m>0

D(0)
lm (ω) cos(kl x) cos(km y) (51)

H (ext)
z (x, y, 0, ω) = −

∑
l>0,m≤0

krlm

kxl
B(0)

lm (ω) sin(kl x) cos(km y)

−
∑

l≤0,m>0

krlm

kym
D(0)

lm (ω) cos(kl x) sin(km y). (52)
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Multiplying H (ext)
x (x , y, 0, ω) by cos (kxix) cos (kyjy), for (i , j) = (0, 0) and for every (i, j) with 0 < i ≤ L and −L ≤ j ≤ 0, and H (ext)

y (x ,
y, 0, ω) by cos (kxix) cos (kyjy), for (i , j) = (0, 0) and for every (i, j) with −L ≤ i ≤ 0 and 0 < j ≤ L , and then integrating x and y over the
area 0 ≤ x ≤ λx/2, 0 ≤ y ≤ λy/2, we obtain a system of 2[L(L + 1) + 1] linear equations that allows us to calculate the coefficients.

For periods such that the problem is not quasi-stationary, the restrictions imposed by eqs (35) and (41)–(44) are not present. Then, we
simply extend H (ext)

x and H (ext)
y to the area 0 ≤ x ≤ λx/2, 0 ≤ y ≤ λy/2, as follows:

H (ext)
τ (x, y, 0, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H (ext)
τ (x, ymin, 0, ω) if xmin ≤ x ≤ xmax, 0 ≤ y ≤ ymin

H (ext)
τ (x, ymax, 0, ω) if xmin ≤ x ≤ xmax, ymax ≤ y ≤ λy/2

H (ext)
τ (xmin, y, 0, ω) if 0 ≤ x ≤ xmin, ymin ≤ y ≤ ymax

H (ext)
τ (xmax, y, 0, ω) if xmax ≤ x ≤ λx/2, ymin ≤ y ≤ ymax

H (ext)
τ (xmin, ymin, 0, ω) if 0 ≤ x ≤ xmin, 0 ≤ y ≤ ymin

H (ext)
τ (xmin, ymax, 0, ω) if 0 ≤ x ≤ xmin, ymax ≤ y ≤ λy/2

H (ext)
τ (xmax, ymin, 0, ω) if xmax ≤ x ≤ λx/2, 0 ≤ y ≤ ymin

H (ext)
τ (xmax, ymax, 0, ω) if xmax ≤ x ≤ λx/2, ymax ≤ y ≤ λy/2,

(53)

where τ denotes the x or y components of H̄ (ext), and assume, without lose of generality, that both components are even functions of x and y.
This condition is satisfied when H̄ (ext) obeys eq. (38), and the fields H̄ (ext1) and H̄ (ext2) are such that the coefficients D0

lm with >0 and m < 0 in
eqs (15)–(17), and the coefficients B0

lm with l < 0 and >0 in eqs (18)–(20), are null. Once more, the responses to these fields are uncoupled.
In this case, to calculate the no null coefficients, B0

lm with l ≥ 0 and m ≤ 0, and D0
lm with l ≤ 0 and m ≥ 0, we multiply H (ext)

x (x , y, 0, ω) by
cos (kxix) cos (kyjy), for every (i, j) with 0 ≤ i ≤ L and −L ≤ j ≤ 0, and H (ext)

y (x , y, 0, ω) by cos (kxix) cos (kyjy), for every (i, j) with L ≤ i ≤
0 and 0 ≤ j ≤ L , and then we integrate these functions in x and y over the area −λx/2 ≤ x ≤ λx/2, − λy/2 ≤ y ≤ λy/2, obtaining a system
of 2(L + 1)2 linear equations.

3 N O N - U N I F O R M S O U RC E E F F E C T S : C O M PA R I S O N W I T H T H E
M A G N E T O T E L L U R I C C A S E

For the range of periods involved in MT soundings, the quasi-stationary approximation is valid in the air, and also inside the earth, for the
conductivities usually found. In this approximation γ 0 ≈ 0, R0

00z 	 1 and ωεn 	 σ n for 1 ≤ n ≤ N . Furthermore, the external field is assumed
to be horizontal and spatially uniform. This case corresponds to having only the coefficients B(0)

00 in eqs (45)–(47), and D(0)
00 in eqs (48)–(50),

different from zero. Hence, for each frequency, the impedance tensor ¯̄Z and the tipper T̄ , which are, respectively, defined as (see, for example,
Weaver 1994):[

Ex

Ey

]
(x, y, 0, ω)

=
[

Zxx Zxy

Z yx Z yy

]
(x, y, ω)

[
Hx

Hy

]
(x, y, 0, ω)

(54)

Hz(x, y, 0+, ω) =
[
Tx Ty

]
(x, y, ω)

[
Hx

Hy

]
(x, y, 0, ω)

(55)

(where 0+ means just below the air–earth surface), depend on the subsurface structure but not on the external field. As it is well known, for
2-D structures, there exist two uncoupled modes of propagation, the transverse electric, TE, and the transverse magnetic,TM, modes. If the
strike direction is y, H̄ (ext1) and H̄ (ext2) generate, respectively, the TE and TM modes. Zxx, Zyy and T y are null; Zyx = ZTE and T x = T TE are
the TE mode responses, and Zxy = ZTM is the TM response.

For a spatially non-uniform source, there are other coefficients than B(0)
00 in eqs (45)–(47), and D(0)

00 in eqs (48)–(50), different from zero.
Since the responses to these two fields are still uncoupled, and due to the validity of the superposition principle, each field component in
eqs (5)–(10) is given by the sum of two terms, one depending only on the coefficients B0

00 and B0
lm with l > 0 and m ≤ 0 or on the function

H (ext1)
x (x , y, 0, ω), and the other depending only on D0

00 and D0
lm with l ≤ 0 and m > 0 or on H (ext2)

y (x , y, 0, ω). Hence, naming the horizontal

components of H̄ and Ē, H̄ hor and Ēhor, respectively, and defining H̄ (ext)
hor as

H̄ (ext)
hor (x, y, 0, ω) = H ext1

x (x, y, 0, ω)x̂ + H ext2
y (x, y, 0, ω)ŷ (56)

the following relations can be written as

H̄ hor(x, y, 0, ω) = ¯̄η(x, y, ω)H̄ (ext)
hor (x, y, 0, ω) (57)

Hz(x, y, 0, ω) = ϑ̄(x, y, ω)H̄ (ext)
hor (x, y, 0, ω) (58)

Ēhor(x, y, 0, ω) = ¯̄ξ (x, y, ω)H̄ (ext)
hor (x, y, 0, ω), (59)

where ¯̄η and ¯̄ξ are tensors of dimension (2 × 2), and ϑ̄ is a file vector of dimension two. ηxx, ηyx, ϑ x , ξ xx and ξ yx depend on H (ext1)
x (x , y, 0, ω),

and ηxy, ηyy, ϑ y , ξ xy and ξ yy depend on H (ext2)
y (x , y, 0, ω). Then, ¯̄Z and T̄ are given by
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Figure 2. 2-D electrical model proposed to represent the kind of resistivity distribution that could be found at coastlines.

¯̄Z (x, y, ω) = ¯̄ξ (x, y, ω) ¯̄η
−1

(x, y, ω) (60)

T̄ (x, y, ω) = ϑ̄(x, y, ω) ¯̄η
−1

(x, y, ω). (61)

When H̄ (ext1) is non-uniform and H̄ (ext2) is uniform, only Zxx, Zyx and T x contain source effects. These magnitudes constitute generalizations
of the MT TE responses. Conversely, when H̄ (ext1) is uniform and H̄ (ext2) is non-uniform, source effects are present only in Zxy, Zyy and T y,
which in this case are generalizations of the MT TM responses.

As has been stated previously, the uniform source hypothesis used for MT interpretation has proved to work well in a great number
of studies, especially those carried out at mid latitudes, and for periods not exceeding 1000s, approximately. Nevertheless, at low or high
latitudes, and for hourly or greater periods, this hypothesis usually fails, and then the electrical models obtained assuming 1-D external fields
contain source distortions. In the following section we study how source distortions affect the responses at coastlines by comparison with the
results obtained for 1-D sources.

4 A P P L I C AT I O N : S O U RC E E F F E C T S AT C OA S T L I N E S

For this study we select a 2-D electrical model that can be considered representative of this kind of tectonic environment. This model is
shown in Fig. 2. The upper layer corresponds to the ocean, the second one to the continental upper crust, the more conductive third one to
the continental lower crust and to the oceanic crust, the fourth one to the lithospheric mantle and the deeper one to the beginning of the
asthenosphere. We have analysed the responses of this structure to 1-D and different 2-D and 3-D, external fields, for a wide range of periods,
arriving at the conclusion that source effects begin to be noticeable for periods greater than approximately 6 h and become larger as the period
increases. Considering this and in order to not excessively increase the length of this paper, in this section we only present the responses
obtained at a period of 24 h.

4.1 1-D, 2-D and 3-D H̄(ext1)—uniform H̄(ext2)

As we explained in the previous section, if H̄ (ext2) is 1-D, only the xx and yx components of ¯̄Z (and the corresponding apparent resistivities
ρxx and ρyx, and phases φxx and φyx) and T x can contain source effects, which depend on the morphology of H̄ (ext1). In particular, if H̄ (ext1) is
also 1-D, ρxx and φxx are null, and ρyx, φyx and T x are the MT TE mode responses. In this case H̄ (ext1) is polarized in the x direction and has
only one non-null coefficient: B(0)

00 .
The MT TE responses of the model shown in Fig. 2 are displayed in Fig. 3. ρyx and φyx exhibit low variation ranges, between 8 and

15 � m and 38◦ and 54◦, respectively. The maximum magnitude of T x is about 0.18.
Now, we consider two different 2-D external fields H̄ (ext1) with strike direction y, H̄ (ext1) 2D+ (shown in Figs 4a and b) and H̄ (ext1) 2-D−

(shown in Figs 4c and d). The anomalous zones of both fields have characteristic widths similar to that of the equatorial electrojet (1000 km,
approximately), and are centred just over the structure. In fact, H̄ (ext1) 2-D+ is a simplified representation of the field that would produce an
equatorial electrojet oriented in the y direction. H̄ (ext1) 2-D− has a somewhat more complex spatial dependence; in particular, its x component
is null at two values of x. For these fields, the non-null coefficients are only B(0)

l0 for l ≥ 0. From eqs (45)–(47), it is seen that they are necessarily
polarized in the x–z plane. Both x components can be normalized to one outside the anomalous zones without affecting the responses. Fig. 5
shows the response of the proposed model to the field H̄ (ext1) 2-D+. Comparing with Fig. 3, the most remarkable fact is that ρyx is lower than
in the former case, while φyx is greater, below the centre of the anomalous field. In contrast, ρyx is greater and φyx is lower, below both sides.
The maximum value of the tipper is 0.77. Fig. 6 displays the response to the field 2-D−. The variations of ρyx and φyx are much greater than
in the former cases. Note the presence of two narrow high-resistivity and low-phase zones. They are located just over the lines where H (ext1)

x

is equal to zero. Along the left of these zones, tipper values are also much greater than those obtained for a 1-D source, reaching 14.
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Figure 3. Response of the model shown in Fig. 2 to a spatially uniform inducing field polarized in the x direction (MT TE mode response), at a period of 24 h.

The spatial dependence of the external fields can be much more complex, for example, in zones where auroral electrojets are present.
These fields can be 3-D and can have varied morphologies. As a first approximation to this kind of situation, we also selected two 3-D H̄ (ext1)

fields, H̄ (ext1) 3-D+ (shown in Fig. 7) and H̄ (ext1)3-D− (shown in Fig. 8). The anomalies of these fields have an areal extension of 1000 × 1000
km2, and once again its x components are normalized to unity outside the anomalous zones. The response to the field H̄ (ext1) 3-D+, at a period
of 24 h is shown in Fig. 9. In this case a dependence of the response on the y coordinate appears that is purely a 3-D source effect. ρyx and
φyx variation ranges are similar to those obtained for the source H̄ (ext1) 2-D+, although maximum |T x| values are greater. Fig. 10 displays the
response to the field H̄ (ext1) 3-D−. As in the response to the field H̄ (ext1) 2-D−, two zones of very high resistivity and tipper magnitude appear
where the values of H (ext1)

x tend to zero. The difference is that in this case, these zones and those with lower values of φyx are not coincident.
φyx has a wide variation range, almost between 0◦ and 90◦. Comparing Fig. 3 to Figs 9 and 10, it is seen that the MT TE response of the 2-D
structure is almost totally masked by 3-D source effects in the area located below the anomalies of the inducing fields.

4.2 Uniform H̄(ext1)—1-D and 3-D H̄(ext2)

When H̄ (ext1) is 1-D, source effects can only appear in ρxy, ρ yy, φxy, φ yy and T y, and depend on the morphology of H̄ (ext2). If H̄ (ext2) is also
1-D, having only the coefficient D(0)

00 different from 0, ρ yy, φ yy and T y are null, and ρxy and φxy correspond to the MT TM mode response. In
this case H̄ (ext2) is polarized in the y direction.

Fig. 11 shows the MT TM response of the proposed 2-D model. As expected, this response exhibits greater and more localized anomalies
than the MT TE mode response (Fig. 3). A great part of these anomalies correspond to coastal effects.

A 2-D H̄ (ext2) field with strike direction y would correspond to only having D(0)
l0 different from 0 for l ≤ 0. Then, according to eqs (18)–

(20), it might be polarized along the y axis. It is well known that it is not possible to have such a 2-D external field in quasi-stationary cases.
This is corroborated here by eqs (48)–(50). So, in the following we consider directly the case of 3-D H̄ (ext2) fields.

We selected two H̄ (ext2) fields, H̄ (ext2) 3-D+ and H̄ (ext2) 3-D−, which are similar to the fields H̄ (ext1) 3-D+ and H̄ (ext1) 3-D− proposed
previously, but rotated by 90◦ (Figs 12 and 13, respectively). Fig. 14 shows the response to H̄ (ext2) 3-D+. Comparing Fig. 14 with Fig. 11, a
zone with lower resistivity and greater phase than for the uniform source is clearly observed, just below the central anomaly of the 3-D field.
Additionally, values of |T y| different from 0 are found. They can reach up to 7. Fig. 15 plots the response to H̄ (ext2) 3-D−. Once more, two
narrow zones of very high resistivity and tipper values can be identified that in this case, coincide with the zones where H (ext2)

y tends to zero.
For both external fields, H̄ (ext2) 3-D+ and H̄ (ext2) 3-D−, source distortions of φxy are as important as the distortions observed in φyx for the
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Figure 4. Spatial dependence of the 2-D inducing magnetic fields considered, H̄ (ext1) 2-D+ and H̄ (ext1) 2-D−, at the Earth’s surface. These fields have a

harmonic time dependence with a period of 24 h. H (ext1)
x 2-D+ is an even function of x, and H (ext1)

x 2-D− is an odd function plus a constant. The anomalies
have a width of about 1000 km, similar to that of the equatorial electrojet, and the value of the x components outside the anomalous zone has been normalized
to 1.

fields H̄ (ext1) 3-D+ and H̄ (ext1) 3-D−. Source distortions of ρxy are relatively less important, and a great part of the MT TM response can still
be appreciated.

5 C O N C L U S I O N S

In the present work, we present a method for the calculation of the electromagnetic response of 2-D multilayered earth structures having smooth,
irregular boundaries, to arbitrary, non-uniform, 2-D or 3-D external fields. This method is based on the application of a Rayleigh–Fourier
technique and was obtained by extending previous MT 2-D and 3-D Rayleigh–Fourier modelling codes.

Applying this method, we made a theoretical investigation of the magnitude and characteristics of MT source effects at coastlines. We
selected a 2-D electrical model with strike direction y, which can be considered representative of this kind of tectonic region, and we calculated
the response of this model, ¯̄Z and T̄ , at the Earth’s surface to different spatially non-uniform 2-D and 3-D inducing fields, over a broad range
of periods. We evaluated source effects by comparing these responses with those obtained for 1-D sources. The spatial dependence of the
fields produced, for example, by equatorial and auroral electrojets, as well as the source effects produced by these fields on 2-D structures,
can be highly complex. As a first approximation to this problem, and in order to obtain general conclusions concerning the main and more
basic characteristics of these effects, we selected geometries of the external fields, which are relatively simple, but contain several of the more
important and typical features found in practice. We let the spatial dependence of each selected source be fixed and varied only its period.
Nevertheless, it must be taken into account that the spatial dependence of actual sources depends on the period. In all of the studied cases,
we found that source effects begin to be detectable for periods greater than approximately 6 h, and increase with period. At a period of 24 h,
they are very important, as has been shown in the previous section. For each particular source, the zones in which the different components
of the response are enhanced or decreased, do not change with period.

As is well known, for uniform sources and 2-D structures with strike direction y, Zyx and T x are the MT TE mode responses and Zxy is the
MT TM mode response, while Zxx, Zyy and T y are null. One relevant theoretical result of this work is that the 3-D non-uniform inducing field
could be separated into two contributions, one that produces source effects only in Zxx, Zyx and T x and another that produces source effects
only in Zyy, Zxy and T y. Then, these magnitudes can be thought of as generalized TE and TM responses, respectively, although it is important
to point out that they do not correspond strictly to TE and TM modes of propagation.
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Figure 5. Response to the external field H̄ (ext1) 2-D+.

Figure 6. Response to the external field H̄ (ext1) 2-D−.
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Figure 7. Spatial dependence of the first 3-D H̄ (ext1) inducing field considered, H̄ (ext1) 3-D+, at the Earth’s surface. This field has a harmonic time dependence
with a period of 24 h. The x component is an even function of x and y, and its value outside the anomalous zone has been normalized to 1.

Figure 8. Spatial dependence of the second 3-D H̄ (ext1) inducing magnetic field considered, H̄ (ext1) 3-D−, at the Earth’s surface. The x component is an odd
function of x and y plus a constant, and its value outside the anomalous zone has been normalized to 1.
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Figure 9. Response to the external field H̄ (ext1) 3-D+.

Figure 10. Response to the external field H̄ (ext1) 3-D−.
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Figure 11. Response to a spatially uniform inducing field polarized in the y direction (MT TM mode response), at the period 24 h. T y is null.

Figure 12. Spatial dependence of the first 3-D H̄ (ext2) inducing field considered, H̄ (ext2) 3-D+, at the Earth’s surface. This field has a harmonic time dependence
with period 24 h. The y component is an even function of x and y, and its value outside the anomalous zone has been normalized to 1.

First, we considered external fields H̄ (ext1) that produce source effects on the TE responses. The fields considered are 1-D far from the
structure and near the structure have 2-D or 3-D anomalies. We found that when the anomaly of H (ext1)

x is an even function of x (H̄ (ext1) 2-D+)
or an even function of x and y (H̄ (ext1) 3-D+), which corresponds to an increase of this component over the structure, the values of ρyx are
lower than those obtained for 1-D sources, below the centre of the anomaly, while they are greater towards both sides. φyx follows the inverse
behaviour. Variation ranges of these magnitudes are similar in both cases. On the other hand, if H (ext1)

x is a constant plus an odd function of
x (H̄ (ext1) 2-D−) or an odd function of x and y (H̄ (ext1) 3-D−), narrow zones of high resistivity and |T x| are observed, where H (ext1)

x tends to
zero. There, the variation ranges of ρyx and |T x| are almost an order of magnitude greater than those obtained for a 1-D source. The lower
values of φyx are also reached at these zones in the 2-D− case, but not in the 3-D− case. In both cases, φyx varies almost between 0◦ and 90◦.

Next, we analysed source effects on the TM responses. We considered two fields, H̄ (ext2) 3-D+ and H̄ (ext2) 3-D−, which were obtained
by rotating 90◦ H̄ (ext1) 3-D+ and H̄ (ext1) 3-D−, respectively. Then the anomaly of the y component of H̄ (ext2) 3-D+ is an even function of x
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Figure 13. Spatial dependence of the second 3-D H̄ (ext2) inducing magnetic field considered, H̄ (ext2) 3-D−, at the Earth’s surface. The y component is an odd
function of x and y plus a constant, and its value outside the anomalous zone has been normalized to 1.

Figure 14. Response to the external field H̄ (ext2) 3-D+.
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Figure 15. Response to the external field H̄ (ext2) 3-D−.

and y, while the anomaly of the y component of H̄ (ext2) 3-D− is an odd function of x and y plus a constant. For H̄ (ext2) 3-D+, similarly to
the behaviour observed for H̄ (ext1) 2-D+ and 3-D+, ρxy is depressed and φxy is enhanced below the centre of the anomaly of this field. In
addition, T y is not null. The field H̄ (ext2) 3-D− produces narrow zones of extremely high resistivity and tipper.

We can conclude that at a period of 24 h, below the central part of the anomalies of all the H̄ (ext1) fields considered, the generalized TE
responses are completely dominated by source effects and are very different from the MT TE mode response. Conversely, the source effects
produced by the two fields H̄ (ext2) are more localized and relatively less important, such that a great part of the MT TM mode response can
still be appreciated, even at this large period.

Although these results were obtained for a particular kind of 2-D structure, and for particular types of external fields, they provide some
basic conclusions that could be extended to other analogous situations.
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Vilhanen, A., Pirjola, R. & Häkkinen, L., 1993. An attempt to reduce in-
duction source effects at high latitudes, J. Geomag. Geoelectr., 45, 817–
831.

Vilhanen, A., Pirjola, R. & Amm, O., 1999. Magnetotelluric source effect
due to 3D ionospheric current systems using the complex image method
for 1D conductivity structures, Earth Planets Space, 51, 933–945.

Wait, J.R. & Spies, K.P., 1969. On the representation of the quasi-static
fields of a line current source above the ground, Can. J. Phys., 27, 2731–
2733.

Wannamaker, P.E., Hohmann, G.W. & San Filipo, W.A., 1984. Electromag-
netic modeling of 3D bodies in layered earths using integral equations,
Geophysics, 49, 60–74.

Wannamaker, P., Stodt, J. & Rijo, L., 1987. A stable finite element solution
for two-dimensional magnetotelluric modeling, Geophys. J. R. astr. Soc.,
88, 277–296.

Weaver, J.T., 1994. Mathematical Methods for Geo-electromagnetic Induc-
tion, p. 316, Wiley, Taunton.

C© 2003 RAS, GJI, 155, 623–640


