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Abstract. Nuclei colliding at energies in the MeV’s break into fragments in a
process that resembles a liquid-to-gas phase transition of the excited nuclear
matter. If this is the case, phase changes occurring near the critical point
should yield a “droplet” mass distribution of the form ≈A−τ , with τ (a critical
exponent universal to many processes) within 2 ≤ τ ≤ 3. This critical phe-
nomenon, however, can be obscured by the finiteness in space of the nuclei and
in time of the reaction. With this in mind, this work studies the possibility of
having critical phenomena in small “static” systems (using percolation of cubic
and spherical grids), and on small “dynamic” systems (using molecular dynam-
ics simulations of nuclear collisions in two and three dimensions). This is done
investigating the mass distributions produced by these models and extracting
values of critical exponents. The specific conclusion is that the obtained values
of τ are within the range expected for critical phenomena, i.e. around 2.3, and
the grander conclusion is that phase changes and critical phenomena appear
to be possible in small and fast breaking systems, such as in collisions between
heavy ions.

Keywords: critical phenomena, heavy-ion reactions, percolation, multi-
fragmentation
PACS: 25.70.Pq

1. Introduction

Experimental studies of phase transformations in nuclear matter began in the mid
80’s when it became possible to achieve collisions between heavy nuclei with energies
in the tens of MeV’s per nucleon [1–8]. Now that it is generally accepted that nuclei
can undergo transformations between liquid and gaseous phases, modern research
focuses on the exciting possibility of finding critical phenomena, i.e. changes near
the critical point, in nuclear reactions [9–11].
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Just like gases present no correlations between neighboring particles, and liq-
uids exhibit a strong two-body correlation produced by nearest neighbors, near the
critical point the correlations grow to include all particles in the system. The near-
critical point behavior is characterized by a loss of distance and time scales, which
in turns makes all critical phenomena have similar characteristics, independent of
the specific details of the system. Such a loss of scale results, for instance, in a
characteristic mass distribution of the droplets produced during the phase change.
Fisher’s droplet model predicts a mass yield of the form of a power law Y ∝ A−τ ,
with the exponent τ , one of the universal “critical exponents”, within 2 ≤ τ ≤ 3.

Although recent experimental studies indicate that critical phenomena is feasi-
ble in nuclear systems [12], it has not been definitely proven that finite and transient
systems can support such phenomena. Since in small and rapid processes the largest
scales are set by the size of the system and the duration of the reaction, scaleless
critical phenomena are not guaranteed to exist. Thus the motivation of the present
study: to test the feasibility of such phenomena in fast and small dynamical sys-
tems, such as nuclear reactions.

To determine the existence of nuclear critical phenomena, signatures of critical-
ity are sought in this work with models commonly used to study nuclear reactions.
To study the effect of finite sizes and times, models based on percolation model
and molecular dynamics have been adapted to represent small “static” systems and
small “dynamical” systems. Specifically, the models will be used to produce phase
transition-like data, such as “droplet” mass distributions, which then will be dis-
sected to extract, as best as possible, those data produced near the critical point.
The resulting subsets will then be used to extract critical exponents. A determina-
tion of a power-law looking yield with a τ close to the expected values would be an
indication of the feasibility of criticality in small and transient processes, such as in
heavy-ion reactions.

The manuscript, in Section 2, introduces the basic ingredients of nuclear ther-
modynamics and critical phenomena. Section 3 presents a search of a critical
breakup using the percolation model. This is also investigated with molecular dy-
namics simulations of collisions in Section 4. Finally, conclusions are presented in
Section 5.

2. Nuclear Thermodynamics and the Critical Exponent τ

To justify the expectation of finding critical phenomenon in nuclear reactions, this
section introduces the minimum ingredients needed to obtain a sketch of the nuclear
equation of state (EOS) and its phase diagram.

Any model representing a cold (T = 0) nucleus at normal density (n0) should
yield an energy per nucleon of ε = −8 MeV with vanishing pressure (since a nucleus
is stable at this density), and with compressibility on the order 100 MeV < K <
300 MeV, as observed in experiments of nuclear oscillations [13]. One such model
[14, 7] that represents the nucleus as a collection of neutrons and protons in a
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potential well interacting through a phenomenological interaction, yields a phase
diagram like that of Fig. 1.
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Fig. 1. Phase diagram of nuclear matter. For the EOS used, the critical point is
at nc = 0.061 fm−3 and Tc = 14.542 MeV. Nuclear matter goes from a uniform
phase to a mixed phase if it enters the coexistence region.

Inside the spinodal regions, where (∂p/∂n)T < 0, or (∂p/∂n)S < 0, the system
is unstable as it responds to an increase of the density n with a reduction of the
pressure p and a further increase of the density. Another region of interest where,
although ∂p/∂n > 0, no extra energy is needed to remove or bind a nucleon from a
nucleus, is the coexistence region, where uniform nuclear matter breaks into phases
just like a van der Waals type liquid. Liquid-to-gas changes occur whenever the
system attains densities and temperatures inside these regions. If these features of
the phase diagram for infinite system exist for finite systems, it might be feasible
that heavy-ion collisions could drive nuclei into the coexistence region where a
transformation of a liquid system into a liquid–gas mixture could take place through
nucleation.

According to fluctuation theory [15], the probability of having a liquid drop of
radius r and A nucleons in a vapor at temperature T is given by Pr(A) ∝ e−∆G/T ,
with ∆G being the difference in Gibbs free energy between phases. For spherical
drops, using the ∆G given by the bulk, surface and curvature terms, it yields [14]:

Pr(A) = Y0A
−τe−[(µl−µg)A+4πr2

0
σ(T )A2/3]/T ,

with Y0 a normalization constant. This general functional form, which displays a
U-shaped behavior, applies in the supersaturated region. In the coexistence region,
however, (µl − µg) = 0, and Pr(A) = Y0A

−τ exp[−4πr2
0σ(T )A2/3/T ], describing

a power law decay times an exponential fall-off that dominates for large masses.
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Finally, at the critical point (µl − µg) = 0 but since the liquid and vapor are in-
distinguishable at this point, the surface tension vanishes, σ(Tc) = 0, and the yield
distribution is simply

Pr(A) = Y0A
−τ , (1)

which is a pure power law and, as such, free of scales. The exponent τ appearing in
the distribution (1) of the size of the droplets, is known as a critical exponent as it
is a unitless constant with a value common to many diverse systems. For our case
τ can be obtained from a power-law fit to mass distributions, as shown next.

Fisher’s droplet model (FDM) of nucleation [16] refines the probability (1) to
yield a critical average droplet mass distribution normalized to the size of the system
of the form

nA = q0A
−τ (2)

with a proportionality constant q0 that can be obtained from the first moment,
M1 =

∑

A nAA, of the normalized (i.e. M1 = 1) mass distribution. Since at the
critical point q0 = nAAτ , the moment becomes M1 = q0

∑

A A(1−τ) = 1, and q0

can then be obtained via the Riemann-ζ function: q0 = 1/
∑

A A(1−τ). Notice that,
since at the critical point any excess bulk liquid drop must be excluded, the sum
runs only over clusters in the gaseous phase, effectively treating the yield as part of
an infinite system.

In summary, to obtain τ , expression (2) should be used as a single parameter
fit of the cluster mass distribution, normalized to the size of the system, and with
q0 = 1/

∑

A A(1−τ). If τ is to be extracted from contaminated data, i.e. containing
critical and non-critical data, only the part of the mass spectra that best reproduces
a power law should be used [17]. This technique is used next with cluster data
generated by percolation, and in Section 4 with molecular dynamics.

3. The Critical Exponent τ from Percolation

Before obtaining a τ from percolation, the question of whether a τ -producing critical
phenomenon can exist in percolation is first addressed. Arguments are presented
that indicate that such a power-law mass distribution can exist in general lattices.
These arguments, however, only apply to infinite systems, and the question for finite
systems must be answered by direct computations.

Percolation was introduced to the study of nuclear fragmentation by Bauer [18,
19], for the details of this calculational procedure, see Ref. [20]. A percolating cluster
is one in which activated bonds extend from one side of the lattice to the opposite
one. For infinite systems there is a sharp “critical site occupation probability” pc,
above which the probability of finding a percolation cluster is 1, whereas below pc it
is 0. For finite lattices the transition from one regime to the other is smooth, i.e. the
probability of finding a percolating cluster is different from 0 for any probability.

If the sites in a one-dimensional lattice become occupied or empty according to
a random probability p, some clusters of neighboring occupied sites of different sizes
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will appear. The number of clusters of length s, will be given by ns(p) = ps(1−p)2,
and a percolating cluster will only happen when all the sites of the chain occupied.
Thus the percolation threshold is unity, pc = 1, and there are no percolating clusters
for p below unity. It is possible to extend these results to the case of a general lattice.
Without entering into details [20], it can be shown that in any percolating lattice,
the average number of clusters of size s satisfies ns ∝ ps(1 − p)2+(z−2)s. And if
at p = pc, ns decays exponentially and a power law of the form ns(pc) ∝ s−τ is
plausible for large s.

Since near the critical point the typical cluster size, s becomes very large, Stauf-
fer proposed a generalization of the FDM for p ∼ pc

ns(p) ∼ s−τf(z) , (3)

where the scaling variable is z = (p−pc)s
σ , σ is another critical exponent, and f(z)

is the scaling function with only one maximum located below the critical point,
f(0) = 1.

In conclusion, excepting a small difference in the scaling function f(z), any
general percolation model offers a power-law distribution of clusters of the form
similar to Fisher’s model. Thus one can use the percolation model to explore,
for instance, the effect of the size and geometry of the grid on a possible phase
transition.

3.1. The critical exponent τ from the percolation of a cubic grid

Consider a square cubic lattice with some of the sites connected or not according to
a random probability p or (1−p). Then check to see if a percolating cluster has been
formed with the assigned p. After repeating for different values of p, the smallest
value at which a percolating cluster is formed is taken as the percolation probability
pc. The change from having disconnected clusters to having a percolating cluster
is a phase transition. We take advantage of this and obtain values of the critical
exponent τ from the distribution of cluster sizes produced by this method.

Fig. 2. Graphical representation of the percolation of a cubic lattice
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Bond-building computations were performed in three-dimensional simple cubic
lattices of 6 × 6 × 6 (i.e. 216) sites using a lattice probability pl as the control
parameter. All values of the bond probability, Pbi , were randomly chosen from a
uniform distribution in (0, 1) for the ith bond. If Pbi was less than pl then the ith
bond was activated joining two sites into a cluster. This process was performed for
each bond in the lattice. For low values of pl, few bonds were formed resulting in a
high multiplicity of small clusters; a distribution analogous to the gaseous phase of
a fluid. At high values of pl, many bonds were formed resulting in a multiplicity of
mostly large clusters, analogous to a liquid phase of a fluid.

100 000 lattice realizations were generated using 100 values of pl varying from 0
to 1, and the cluster multiplicity, m, the number clusters of size A per lattice site,
was obtained for each pl. The multiplicity with the best power-law like distribution
was used to determine τ . Following the FDM, the biggest fragment was removed for
the “liquid-branch”, i.e. below the critical multiplicity, mc. Since, in this case, we
do not know mc a priori, all clusters with A ≥ 53 were excluded. Likewise, clusters
of size A = 1 were also excluded. The extracted parameters, τ , q0 and pc do not
depend on the fit range.

The calculations were performed for 0.02 Atot < Atot = 144 < 0.15 Atot to
avoid finite sizes effects. The goodness of the fits of the power-law were determined
by the χ2 method looking at the minimum square of log(Y (A))− log(q0)+ τ log(A)
for each probability Pl. The cluster distribution that is best described by the power
law should show a minimum in χ2 indicating proximity to the critical point. Away
from the critical point the power law is modified by a scaling function of the form
f(z) = A exp(g), with g constant, and thus, fits to a single parameter power law
should become worse.
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Fig. 3. Goodness of power-law fit, χ2, as a function of Pl
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Figure 3 shows the behavior of the χ2 obtained as a function of the control
parameter Pl. A minimum in χ2 is observed for fits in the mid Pl range indicating
the location of a cluster distribution which is best fitted by a single parameter power
law. The best fit of the mass spectra gives a value of τ = 2.32±0.02 at mc = 22±1
q0 = 0.18 ± 0.01 and a χ2 = 2.70. An uncertainty of one unit of multiplicity is
assigned to mc to take in account the relatively low values of χ2 of the neighboring
fits. The lower χ2 value is due the finer bins over which the cluster distribution
were grouped. Figure 4 shows the best power law for pl = 0.32.
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Fig. 4. Mass distribution obtained from the percolation of a cubic grid that was
best fitted by a power law. The corresponding pl was 0.32.

The observed agreement between the values of the exponents determined by this
procedure and the canonical values in various universality classes, is then significant
because these have been determined solely by the behavior of the cluster distribution
so analyzed.

3.2. The critical exponent τ from the percolation of a spherical grid

To explore the effect of the shape of the grid on the value of τ , a spherical lattice,
as that represented in Fig. 5, was analyzed in the same fashion and with the same
equations for q0 and nA as done for the cubic grid before. Even though the outer
shape of the grid is spherical, internally it has the same cubic structure as before.
The “spherical” lattice was constructed out a simple cubic lattice of 6 × 6 × 6, but
now with the edges cut. This produced an approximately spherical grid of 203 sites.

Again, 100 000 of these grids were percolated with varying lattice probabilities
pl as described before. The resulting cluster size distribution was fitted by a power
law using pl as a control parameter. Figure 6 shows the goodness of power-law fits
obtained, χ2, as a function of Pl. The values obtained for τ the critical exponent
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and pl are τ = 2.32, for pl = 0.32, in total agreement with the results of the cubic
grid. Figure 7 shows the best power law fit obtained for pl = 0.32.

Fig. 5. Graphical representation of the percolation of a spherical lattice
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was best fitted by a power law. The corresponding pl was 0.32.
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4. The Critical Exponent τ from Simulated Collisions

At a difference with percolation where critical phenomena is known to exist, nuclear
fragmentation, being produced by small nuclei in brief reactions, is not guaranteed
to exhibit criticality. Here this question is addressed with molecular dynamics (MD).
After introducing the model and the techniques for detecting fragments, MD will
be used to study the fragmentation produced by collisions Lennard–Jones drops
and of Pandharipande “nuclei”. The resulting clusters will be analyzed to obtain
signatures of critical phenomena, namely values of τ .

4.1. Molecular dynamics

Heavy-ion collisions have been studied with the method of “Molecular Dynamics”,
which, although based on Newtonian mechanics, it is the only one that can describe
changes of phase, hydrodynamic flow, and non-equilibrium dynamics without ad-
justable parameters. The virtues of molecular dynamics for the study of nuclear
collisions have been stated in the current literature [21].

In this chapter, the evolution of the collision of two “nuclei” will be modeled
with MD. The nucleons will be treated as point particles subjected to potential
forces (Lennard–Jones potential in Section 4.3 and Pandharipande potential in 4.4).
The colliding nuclei are constructed as self-bound clusters of particles with some
specific geometry (two-dimensional circles in Section 4.3 and spheres in 4.4). The
collision is simulated by boosting one of these nuclei onto the other one, and integrat-
ing the coupled equations of motion numerically using a velocity-Verlet algorithm.
The accuracy of the integration is assessed by enforcing energy conservation to a
high degree.

Following the dynamics of thousands of these collisions at different energies,
enough information can be gathered to understand the fragmentation of the “nu-
clei”, and, hopefully, to obtain a critical exponent τ from the mass distribution of
the produced fragments. To reach this stage, however, the information provided
by MD, which is given in terms of point particles, should be first transformed into
fragments.

4.2. Fragment recognition

To transform the particle information provided by MD into fragment information,
a fragment-recognition algorithm is needed. The simplest cluster definition is the
“Minimum Spanning Tree” (MST) and it is based on correlations in configuration
space: a particle i belongs to a cluster C if there is another particle j that belongs
to C and |ri − rj| ≤ rcl, where rcl is a parameter called the clusterization radius.
The main drawback of MST is that, since only correlations in r-space are used, it
neglects completely the effect of momentum giving incorrect information for dense
systems.



10 A. Barrañón et al.

A more robust algorithm is based on the “Most Bound Partition” of the sys-
tem [22], i.e. on the set of clusters {Ci} for which the sum of the fragment internal
energies attains its minimum value:

{Ci} = argmin
{Ci}

[

E{Ci} =
∑

i E Ci

int

]

,

E Ci

int =
∑

i

[

∑

j∈Ci

Kcm
j +

∑

j,k∈Ci
j≤k

Vj,k

]

, (4)

where the first sum is over the clusters of the partition, Kcm
j is the kinetic energy

of particle j measured in the center of mass frame of the cluster which contains
particle j, and Vij stands for the inter-particle potential. The algorithm that finds
the most-bound partition is known as the “Early Cluster Recognition Algorithm”
(ECRA), which has been used extensively in many fragmentation studies [21–23]
and has helped to discover that excited drops break very early in the evolution.

4.3. The critical exponent τ from collisions of Lennard–Jones drops

Here we study the behavior of a two-dimensional system composed by classical
particles that interact via a two-body Lennard–Jones potential:

V (r) = 4ε

[

(σ

r

)12

−

(

σ

rcut

)12

−
(σ

r

)6

+

(

σ

rcut

)6
]

, (5)

where rcut is the cut off radius, the potential is taken as zero for r ≥ rcut. We
consider rcut = 3σ. The unit of time and energy are t0 =

√

σ2m/48ε and ε,
respectively. Head-on projectile–target collisions are studied using a target and a
projectile consisting of a randomly-oriented two-dimensional drop of 74-particles
(i.e. Germanium or Arsenic) on its “ground state”, ε0 ∼ −2.8ε. The velocity-Verlet
algorithm is applied with a time step of tint = 0.0025t0 and an energy conservation
better than 0.05%.

The kinetic projectile energies go from Ebeam = 18ε to 2520ε in the center of
mass reference frame with two hundred collisions performed for each energy. In
this energy range several types of dynamical evolutions are found: from projectile
adsorption by the droplet surface, up to events with a mass spectrum with an
exponential decay.

As explained elsewhere [17], in the collision prompt nucleons are knocked out
by collisions between projectile and target nucleons. Initially, an excited compound
nucleus with fewer than 148 nucleons is formed, which may expand and cool down
to the neighborhood of the critical point where clusters might condense from a high
temperature low density vapor of nucleons. The charge and mass of the compound
nucleus, Z0 and A0, were determined for each event by subtracting the prompt par-
ticles from the total nucleus. The resulting cluster distribution was then normalized
to the size of the system, nAf

= NAf
/A0(m) and fitted to power law (2).
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A problem arises in the (?)obtention(?) of τ when data coming from breakups
near the critical point is mixed with that produced at other points in the phase
diagram. The extraction of critical data from this mix is not an easy task but it can
be accomplished with the methodology of [17]. Simply stated, the full set of data is
partitioned in smaller sets corresponding to different values of the multiplicity, and
each set is then fitted to the power law using a single parameter fit. The goodness
of these fits is estimated simply by a χ2, and the τ of the best set is taken as the
critical exponent.
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Fig. 8. Yield produced by MD simulations of 2-D collisions

To avoid finite sizes effects, this fitting procedure was performed in the mass
range between 0.03Atot and 0.15Atot, with Atot = 140. The obtained critical expo-
nent was found to be τ ∼= 2.32±0.02 in perfect agreement to the percolation results.
Figure 8 shows the mass yield with the best power law fit.

4.4. The critical exponent τ from collisions of “realistic” nuclei

A more realistic MD model, nicknamed the “Latino model” [24] to reflect its Latin
American origin, was also used. This three dimensional model uses two-body po-
tentials that reproduce the empirical energy and density of nuclear matter, as well
as realistic effective scattering cross sections.

The Pandhariphande potentials differentiate between different types of nucle-
ons: Vnp(r)(neutron–proton) is attractive at large r and repulsive at small r, Vnn(r)
(neutron–neutron) and Vpp(r) (proton–proton) are purely repulsive interactions.
Additionally the Coulomb term is also included. The “nuclear” part of the interac-
tion potential is [25]:

Vnp(r) = Vr [exp(−µrr)/r − exp(−µrrc)/rc]

− Va [exp(−µar)/r − exp(−µara)/ra] ,
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Vnn(r) = Vpp(r) = V0 [exp(−µ0r)/r − exp(−µ0rc)/rc] , (6)

where rc = 5.4 fm is a cutoff radius. For simplicity in numerical calculations,
Vnn(r > rc) = Vnp(r > rc) = 0. In this way, no bound state of identical nucleons
can exist. The ground state of this classical nuclear matter interacting is a simple
cubic solid. The values of the parameters of the Yukawa potentials are given in [25]
and give a corresponding equation of state with a compressibility of about 250 MeV.

The nuclei used here are liquid-like spherical drops with the right number of
protons and neutrons, and placed on the “ground” state using molecular dynamics.
After the spherical system nuclear system is produced at a rather high temperature
confined in a steep spherical potential, it is allowed to cool until it reaches a self-
contained state. At this point the confining potential is removed and the system is
further cooled down until a reasonable binding energy is attained

(    )t1

(    )t2 (    )t3

(    )t4

Fig. 9. Sequence of images of a central collision of Ni+Ni at an energy of
1200 MeV. The times are a 0, 300, 500 and 1200 fm/c.

For the collisions of Ni+Ni, the velocity of the projectile was boosted to the
desired energy, and the projectile and target were rotated with random values of
the Euler angles. Again, the evolution of the system was followed using a velocity-
Verlet algorithm with an energy conservation better than 0.01%. The fragment
mass distribution needed for τ was obtained from the nucleon information provided
by MD using ECRA, as described in Eq. (4).

5. Conclusions

Figure 10 shows the fragment mass spectra obtained from Ni+Ni collisions at several
energies. As can be seen from the shapes of these distributions, not all energies led to
power-law yields, i.e. not all breakups happened at the critical point. To extract the
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best critical exponent, only masses in the range of A = 2 to 20 nucleons were used,
i.e. most of their evaporation products and the target and projectile residues were
eliminated. Out of the remaining data a best fit was obtained for each projectile
energy, with τ values in the range of 2 ∼ 3. The best fit was obtained for a projectile
energy of 1300 MeV with a multiplicity of 28, and with a resulting value of τ = 2.18
with a χ2 = 0.38. Figure 11 shows the remaining data and the power-law fit
obtained for this case. This value of τ agrees with the experimental value reported
by the EOS Collaboration. The observed variation of τ provides enough evidence to
suspect that nucleation was at work and confirms previous studies of Ni+Ni central
collision, where the critical behavior was predicted to be in this projectile energy
range [26].
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Fig. 11. Best fit of Ni+Ni central collisions at energy of 1300 MeV and a multi-
plicity of 28 yielding to a critical exponent of τ = 2.18

Table 1 lists all the values of τ obtained for the four calculations discussed in
this manuscript. The percolation results underline the fact that power law yields
can be obtained from the subdivision of small grids of different geometries. The
MD results show that nucleation appears to take place in the disassembly of small
and transient compound systems. The grand conclusion is that critical phenomena
appears to be possible in nuclear fragmentation.

Table 1. Summary of τ

Fragmentation Model Value of τ

Percolation of Cubic Grid 2.32± 0.02
Percolation of Spherical Grid 2.20± 0.1
MD Simulations of 2-D Collisions 2.32± 0.02
MD Simulations of 3-D Collisions 2.18
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26. A. Barrañón, C.O. Dorso and J.A. López, Rev. Mex. Fis. 47(S2) (2001) 93.




