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Abstract
In this paper we show that the claims in Ibáñez et al (2002 Class. Quantum
Grav. 19 3067) related to our analysis in Chimento et al (2000 Phys. Rev. D
62 063508) are wrong.

PACS number: 98.80.Jk

As is well known, current observational evidence strongly favours an accelerating and spatially
flat Friedmann–Robertson–Walker universe [3, 4]. Since normal matter obeys the strong
energy condition and cannot drive accelerated expansion, recourse is often made either
to a small cosmological constant or to an almost evenly distributed source of energy—
termed ‘quintessence’—in the form of a self-interacting scalar field with equation of state
pφ = (γφ − 1)ρφ (where 0 � γφ < 1) such that it provides a negative pressure high enough
to render the deceleration parameter negative (i.e., q ≡ −ä/(aH 2) < 0); see, e.g., [5]. As
usual, a denotes the scale factor of the FRW metric and H ≡ ȧ/a the Hubble factor. Owing
to the fact that, in general, the scalar field and matter energy are expected to scale differently
with expansion, the following question arises: ‘why should the ratio between matter and
quintessence energies be of precisely the same order today?’ Put another way: ‘where does
the relationship (�m/�φ)0 � O(1) come from?’ This is the so-called coincidence problem
[6]. Here the zero subindex means present time and the dimensionless density parameters of
matter and quintessence are defined by

�m ≡ ρm

3H 2
, �φ ≡ ρφ

3H 2
(c = 8πG = 1),

respectively. Note that the cosmological constant case is recovered by setting γφ = 0.
Obviously, solving the coincidence problem in an accelerating universe amounts to

showing that the ratio �m/�φ tends to a constant for large times with q < 0. Then, one
may choose the free parameters of the model to fix the constant ratio to order unity. In a recent
paper we demonstrated that the coincidence problem and an accelerated expansion phase of
FRW cosmologies cannot be simultaneously addressed simply by the combined effect of a
perfect matter fluid and a quintessence scalar field. Nonetheless, if the matter fluid is not
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perfect but dissipative, both problems can find a simultaneous solution for FRW spatially flat
and open FRW universes [2].

A key point in our derivation was the stationary condition

γm +
π

ρm

= γφ = − 2Ḣ

3H 2
, (1)

as well as the violation of the strong energy condition

π <
(

2
3 − γm

)
ρm (2)

(cf [2]), where, as usual, γm denotes the baryotropic index of matter, i.e., pm = (γm − 1)ρm

thereby 1 � γm � 2. Likewise π stands for the dissipative stress which is negative for
expanding universes. It may be associated with particle production [7], understood as frictional
effects arising in mixtures [8] or even model other kinds of sources (e.g., a string-dominated
universe as described by Turok [9], or a scalar field).

Equation (1) expresses the condition for �m and �φ to be constants. It can be
straightforwardly derived by combining the conservation equations for the matter fluid and
quintessence field

ρ̇m + 3

(
γm +

π

ρm

)
ρmH = 0 and ρ̇φ + 3γφρφH = 0, (3)

with the definitions of the density parameters �m and �φ , respectively. Thus, the condition
�̇m = �̇φ = 0 translates into (1). Equation (2) expresses the asymptotic stability of the
solution � = �m + �φ = 1. By slightly perturbing the solutions �i = constant (i = m,φ)

one finds they are stable for spatially flat and open accelerating universes—see equations (18)
and (22) of [2]. At this stage we would like to emphasize two points. (i) Our derivation shows
that a dissipative stress negative enough to satisfy equations (1) and (2) is required to provide a
coincidence-solving attractor solution. This derivation does not hinge on the specific choice of
the potential of quintessence field. (ii) Our proof is meant just for universes under accelerated
expansion, i.e., for q = 3

2γφ − 1 < 0. Clearly, the conditions expressed by equations (1)
and (2) define the set of transport equations for π or, equivalently, the set of expressions of
the bulk viscosity coefficient, leading to accelerated stable solutions (see section IV of [2] for
some examples).

However, Ibáñez et al recently studied the autonomous system of equations of a FRW
universe filled with a dissipative matter fluid and a self-interacting scalar field V (φ) ∝ exp(kφ)

and found stable and unstable equilibrium points with �i = constant [1]. The stability of these
points seems to depend on the specific equation of state of π as well as on the values assumed
by different parameters of their model. Since this outcome looks at variance with point (i)
of the preceeding paragraph, Ibáñez et al erroneously claimed to have found examples that
contradict our findings. The fact is, however, that they overlooked point (ii): all the unstable
solutions in [1] correspond to non-accelerating universes. To be specific, the equilibrium point
of equations (29) has q > 0 (cf equation (32)). The set of equilibrium points associated with
a massless scalar field (� = 0) has also q > 0. Likewise, the equilibrium point of equations
(40)–(42) is either stable and accelerating or unstable and decelerating (see equation (48)
and figure 4). Again, the equilibrium point of equations (49)–(52) is non-accelerating (see
equation (53)). Finally, the equilibrium point (54)–(56) has q > 0.

Therefore, they do not invalidate in any way whatsoever the findings of [2]. We believe
this is more than enough to dismiss the claims of Ibáñez et al. However, we have found
inconsistencies in their analysis. In the rest of this reply we concentrate on bringing them to
the fore.
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The starting equations of Ibáñez et al are

Ḣ = −H 2 − 1

6
(ρm + 3pm + 3π + 2φ̇2 − 2V (φ)) (4)

3H 2 = ρm +
1

2
φ̇2 + V (φ) − 3K

a2
(K = ±1, 0) (5)

ρ̇m = −3H(ρm + pm + π) (6)

φ̈ = −3Hφ̇ − dV (φ)

dφ
. (7)

The dissipative pressure π is assumed to satisfy the truncated Israel–Stewart equation [10]

π + τ π̇ = −3ζH, (8)

where ζ is the coefficient of bulk viscosity and τ is the relaxation time (ζ > 0, τ > 0).
Strictly speaking, equation (8) is valid only when the fluid is close to equilibrium. However,
let us assume it holds even when the fluid is far from equilibrium. (A more rigorous and
comprehensive analysis would make use of the full transport equation of the Israel–Stewart
theory.) Ibáñez et al also assumed the linear baryotropic equation of state pm = (γm − 1)ρm,
but with γm = constant, and two different relations for the coefficient of bulk viscosity and
relaxation times. To translate (3)–(8) into an autonomous system of differential equations
Ibáñez et al introduced the set of variables

�m = ρm

3H 2
, 	 = π

H 2
, 
 = 1√

6

φ̇

H
,

� = 1

3

V (φ)

H 2
, h = H 1−2n, n �= 1

2
,

(9)

as well as a new time parameter τ defined by

dτ = H(t) dt . (10)

The Friedmann equation (4) now reads

1 − �2
m − 
2 − � = − K

H 2a2
, (11)

and the autonomous system takes the form

�′
m = �m(−3γm + 2x) − 	 (12)

	′ = −9�m + 	

[
− 1

α
(3�m)(1−n)h + 2x

]
(13)


 ′ = 
(x − 3) − 3k√
6
� (14)

�′ = �(2x + k
√

6
) (15)

h′ = −(1 − 2n)hx, (16)

where the prime denotes the derivative with respect to τ , and x ≡ 1 + 1
2 (3γm − 2)�m + 1

2	 +
2
2 − �.

Note that equation (13) is the truncated Israel–Stewart transport equation, while
equation (16) is just the derivative of the change of variables introduced in (9). In equation (13),
first case of Ibáñez et al, use has been made of the relationships ζ = αρn

m, τ = αρn−1
m ,
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introduced by Belinskii et al [11]. In their second case, somewhat modified relationships were
used for ζ and τ (introduced by their equations (37)), amounting to replacing (13) by a similar
equation.

The equilibrium points are found by setting �′
m = 	′ = 
 ′ = �′ = h′ = 0. As

a consequence, ρm, π, φ̇, V (φ) and H are constants there (use of the variables introduced
in equations (9) and (10) excludes H = 0). Then, by virtue of equation (7) we have
dV (φ)/dφ = 0 and φ̇ = 0, i.e., V (φ) must have an extremum at the equilibrium points, and
γφ = 0. Potentials having this feature yield de Sitter solutions on the equilibrium points and for
them, as noted above, we could replace the quintessential field with an effective cosmological
constant.

From equation (4), with H,ρ, V (φ) constants and φ̇ = 0, we get K = 0. Moreover,
from (5) it follows that π = −γmρm. This is independent of the specific form of V (φ). Note
that this is a particular case of the result already found in [2], as follows from (1) and the
assumption H = constant.

The setting h′ = 0 by Ibáñez et al (their equation (18)) leads to wrong conclusions. In the
first case (Belinskii et al relationships), they erroneously state that its solution is h = 0 rather
than h = −3α(3�m)n/	 (with x = 0), as follows from their equations (15) and (19); and
h = constant in the second case. Besides, their relationship h′ = 0 neither belongs to the set
of Einstein equations nor describes any property of the sources of the gravitational field.

Altogether, the work of Ibáñez et al misinterprets our results rendering the claims in [1]
void. Further, even if the analysis of Ibáñez et al were correct, it would fail to disqualify our
findings in [2] as all their counterexamples correspond to non-accelerated cosmic expansions.
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