
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
Nacional, 11de

E-mail addr
Journal of Sound and Vibration 321 (2009) 220–241

www.elsevier.com/locate/jsvi
Dynamic stability of thin-walled composite beams under
periodic transverse excitation

Sebastián P. Machadoa,b,�, Vı́ctor H. Cortı́neza,b
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Abstract

The dynamic stability of thin-walled composite beams subjected to transverse external force has been investigated in

this paper. The analysis is based on a seven-degree-of-freedom shear-deformable beam theory. A geometrically nonlinear

theory is formulated in the context of large displacements and rotations. The regions of instability for simple and

combination resonant frequencies are determined by applying Hsu’s procedure to the Mathieu equation. This

methodology is used for analyzing regions of dynamic instability of simply supported, cantilever and fixed-end beams

considering open and closed cross-sections. The numerical results show the influence of the interaction between the forced

vibration and the parametrically excited vibrations on the unstable regions size. Besides, the effect of geometrically

nonlinear approximations is also analyzed. The analysis is supplemented by investigating the effects of the variation of

load height parameter, beam length and fiber orientation angle.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composites are increasingly being used in the design of load-carrying members for the aerospace
applications due to their outstanding engineering properties, such as high strength/stiffness to weight ratios
and favorable fatigue characteristics. The interesting possibilities provided by fiber-reinforced composite
materials can be used to enhance the response characteristics of such structures that operate in complex
environmental conditions. As a result, a great amount of research has been devoted to study the static and
dynamic responses of composites under different loading conditions.

On the other hand, structural collapse examples, such as the Tacoma Narrows Bridge in 1940 and the loss of
dynamic stability of aircraft wings, showed that the instability issue should be considered in the structural
design. Dynamic instability of elastic structural elements, such as rods, beams and columns, induced by
parametric excitation has been investigated by many researchers. Extensive bibliographies on this subject were
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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given by Evan-Iwanowski [1] and Nayfeh and Mook [2]. Bolotin [3] provided a general introduction to analyze
the dynamic stability problems of various structural elements. The Mathieu–Hill equation is obtained in
Refs. [1,3] while solving the parametric vibration of a beam subjected to a compressive dynamic force. Nayfeh
and Mook [2], used the perturbation method to solve Mathieu–Hill’s equation, in order to analyze the
behavior of an elastic system under parametric excitation. They established a criterion to yield the transition
curves by determining the characteristic exponents in the solution.

In relation to thin-walled beams, Gol’denblat [4] investigated the stability of a compressed thin-walled rod
symmetrical about one axis. The problem was reduced to a system of two differential equations. Tso [5] studied
the longitudinal–torsional stability, while Mettler [6] and Ghobarah and Tso [7] studied the bending–torsional
stability of thin-walled beams. Bolotin [3,8] and Popelar [9,10] discussed the dynamic stability of thin-walled
beams; typical I and H sections were considered. Hasan and Barr [11] evaluated regions of instability of thin-
walled beams of equal angle-section, considering axial and transverse excitation in a cantilever beam. In spite of
the practical interest and future potential of the thin-walled composite beam structures, particularly in the context
of aerospace and mechanical applications, the main body of the available investigations has been devoted to the
dynamic stability analysis of composite beams of solid sections [12,13].

On the other hand, the development of beam theories usually involves some type of reduction of the three-
dimensional (3-D) constitutive relationships. Often this is accomplished by neglecting the stresses and strains
in the transverse directions. For laminated composites, this is not necessarily an appropriate course of action.
Bending–bending coupling caused by the Poisson effect, can be much greater in composite beams. Shear effect
plays an important role in the behavior of linear [14–17] and nonlinear [18] stability of thin-walled composite
beams, owing to the high ratio between the equivalent elasticity modulus and transverse elasticity modulus. To
the best of author’s knowledge, the dynamic stability analysis of a shear-deformable thin-walled composite
beam was only presented by Machado and Cortı́nez [19]. They developed a second-order beam formulation to
study the dynamic stability of beams subjected to axial external force. The Galerkin’s method was used in
order to discretize the governing equation and the Bolotin’s method was applied to determine the regions of
dynamic instability. The authors demonstrated that the size of the unstable regions can show a discrepancy
depending on the influence of the longitudinal inertia.

In the present paper, this last work [19] is extended for the determination of dynamic instability regions of a
thin-walled composite beam subjected to a transverse periodic excitation. It is necessary to extend the model
because it is known that the classical and second-order beam theories underpredict and overpredict,
respectively, the behavior of these structures [20,21]. Therefore, to avoid this difficulty it is necessary to
consider a geometrically higher-order formulation. It should be emphasized here that the necessity of
obtaining an accurate bending–torsional coupling arises from the fact that the stability behavior of this kind of
structures is influenced by the initial displacements (corresponding to the static load) [20] and by the
interaction between the forced vibration and the parametrically excited vibrations [19].

The purpose of the present investigation is the determination of the regions of dynamic instability of thin-
walled composite beam subjected to a transverse periodic excitation, taking into account several non-classical
effects. The analysis is based on a beam model formulated in the context of large displacements and rotations,
through the adoption of a shear-deformable displacement field (accounting for bending and warping shear),
considering a laminate stacking sequence symmetric and balanced. The numerical results are obtained for
open and closed cross-section beam. The fiber orientation, the length beam and the load height parameter are
varied to assess their effects on the dynamic instability behavior. The influence of shear deformation and
inertial effects (corresponding to loading plane) on the unstable regions is analyzed. Ritz variational method is
used to reduce the governing equation; the independent displacements vector is expressed as a linear
combination of given x-function vectors and unknown t-function coefficients. Regions of dynamic instability
of simple and combination resonances are determined by applying Hsu’s [22] procedures to the Mathieu
equation.

2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-section is considered (Fig. 1). The points of
the structural member are referred to a Cartesian coordinate system x; ȳ; z̄ð Þ, where the x-axis is parallel to the
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Fig. 1. Coordinate system of the cross-section and notation for displacement measures.
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longitudinal axis of the beam while ȳ and z̄ are the principal axes of the cross-section. The axes y and z are
parallel to the principal ones but having their origin at the shear center (defined according to Vlasov’s theory
of isotropic beams). The coordinates corresponding to points lying on the middle line are denoted as Y and Z

(or Ȳ and Z̄). In addition, a circumferential coordinate s and a normal coordinate n are introduced on the
middle contour of the cross-section

ȳðs; nÞ ¼ Ȳ ðsÞ � n
dZ

ds
; z̄ðs; nÞ ¼ Z̄ðsÞ þ n

dY

ds
, (1)

yðs; nÞ ¼ Y ðsÞ � n
dZ

ds
; zðs; nÞ ¼ ZðsÞ þ n

dY

ds
. (2)

On the other hand, y0 and z0 are the centroidal coordinates measured with respect to the shear center

ȳðs; nÞ ¼ yðs; nÞ � y0,

z̄ðs; nÞ ¼ zðs; nÞ � z0. (3)

The present structural model is based on the following assumptions:
(1)
 The cross-section contour is rigid in its own plane.

(2)
 The torsional warping distribution is assumed to be given by the Saint-Venant function for isotropic

beams.

(3)
 Flexural rotations (about the ȳ and z̄ axes) are assumed to be moderate, while the twist f of the cross-

section can be arbitrarily large.

(4)
 Shell force and moment resultant corresponding to the circumferential stress sss and the force resultant

corresponding to gns are neglected.

(5)
 The curvature at any point of the shell is neglected.

(6)
 Twisting linear curvature of the shell is expressed according to the classical plate theory.

(7)
 The laminate stacking sequence is assumed to be symmetric and balanced, or especially orthotropic [23,24].
According to the hypotheses of the present structural model, the displacement field proposed Eq. (4)
is based on the principle of semi-tangential rotation defined by Argyris [25] to avoid the difficulty due to the
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non-commutative nature of rotations. Besides, the nonlinear order of the terms corresponding to twist
torsional is extended according to Hypothesis 3

ux ¼ uo � ȳðyz cos f� yy sin fÞ � z̄ðyy cos f� yz sin fÞ þ o y� 1
2
ðy0yyz � yyy

0
zÞ

h i
þ ðyzz0 � yyy0Þ sin f,

uy ¼ v� z sin f� yð1� cos fÞ � 1
2
y2z ȳþ yzyyz̄
� �

,

uz ¼ wþ y sin f� zð1� cos fÞ � 1
2
y2yz̄þ yzyyȳ
� �

. (4)

This expression is a generalization of others previously proposed in the literature as explained for Machado
et al. [18]. The shear flexibility can be neglected considering yz ¼ v0, yy ¼ w0 and y ¼ f0, to analyze its influence
on the dynamic stability behavior. Moreover, the displacement field of the classical Vlasov theory is obtained
when nonlinear effects are ignored. In the above expressions f, yy and yz are measures of the rotations about
the shear center axis, ȳ and z̄ axes, respectively. The variable y is a measure of the torsional warping along the
beam and in the present formulation is an independent variable [15]. Furthermore, the superscript ‘prime’
denotes derivation with respect to the variable x.

The warping function o of the thin-walled cross-section may be defined as

oðs; nÞ ¼ opðsÞ þ osðs; nÞ, (5)

where op and os are the contour warping function and the thickness warping function, respectively. They are
defined in the form [15,16,24]

opðsÞ ¼
1

S

Z S

0

Z s

s0

½rðsÞ � cðsÞ�ds
� �

ds

� 	
�

Z s

s0

½rðsÞ � cðsÞ�ds,

osðs; nÞ ¼ �nlðsÞ, (6a,b)

where s is a dummy variable, and

rðsÞ ¼ �ZðsÞ
dY

ds
þ Y ðsÞ

dZ

ds
, (7)

lðsÞ ¼ Y ðsÞ
dY

ds
þ ZðsÞ

dZ

ds
, (8)

r(s) represents the perpendicular distance from the shear center (SC) to the tangent at any point of the mid-
surface contour and l(s) represents the perpendicular distance from the shear center (SC) to the normal at any
point of the mid-surface contour.

In Eq. (6a) C is the shear strain at the middle line, obtained by means of the Saint-Venant theory
of pure torsion for isotropic beams, and normalized with respect to df/dx [26]. For the case of open
sections C ¼ 0.

3. The strain field

The displacements with respect to the curvilinear system (x, s, n) are obtained by means of the following
expressions:

Ū ¼ uxðx; s; nÞ, (9)

V̄ ¼ uyðx; s; nÞ
dY

ds
þ uzðx; s; nÞ

dZ

ds
, (10)

W̄ ¼ �uyðx; s; nÞ
dZ

ds
þ uzðx; s; nÞ

dY

ds
. (11)
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The three non-zero components exx, exs, exn of the Green’s strain tensor are given by

�xx ¼
qU

qx
þ

1

2

qU

qx

� �2

þ
qV

qx

� �2

þ
qW

qx

� �2
" #

, (12)

�xs ¼
1

2

qU

qs
þ

qV

qx
þ

qU

qx

qU

qs
þ

qV

qx

qV

qs
þ

qW

qx

qW

qs

� 	
, (13)

�xn ¼
1

2

qU

qn
þ

qW

qx
þ

qU

qx

qU

qn
þ

qV

qx

qV

qn
þ

qW

qx

qW

qn

� 	
. (14)

Substituting Eq. (4) into Eqs. (9)–(11) and then into Eqs. (12)–(14), employing Eqs. (1)–(3) and Eqs. (5)–(8)
after simplifying some higher-order terms, the components of the strain tensor are expressed in the following
form:

�xx ¼ �
ð0Þ
xx þ nkð1Þxx ; gxs ¼ 2�xs ¼ gð0Þxs þ nkð1Þxs ; gxn ¼ 2�xn ¼ gð0Þxn , (15)

where

�ð0Þxx ¼ u0o þ
1

2
v0
2
þ w0

2
� �

þ op y0 �
1

2
ðyzy

00
y � yyy

00
z Þ

� 	
þ Zð�y0y cos fþ y0z sin fÞ

þ Y ð�y0z cos f� y0y sin fÞ þ
1

2
f02ðY 2 þ Z2Þ þ ðz0y

0
z � y0y

0
yÞ sin fþ f0ðz0yz � y0yyÞ cos f, (16)

kð1Þxx ¼ �
dZ

ds
ð�y0z cos f� y0y sin fÞ þ

dY

ds
ð�y0y cos fþ y0z sin fÞ � l y0 �

1

2
ðyzy

00
y � yyy

00
z Þ

� 	
� rf02, (17)

gð0Þxs ¼
dY

ds
ðv0 � yzÞ cos f� z0

1

2
ðyzy

0
y � yyy

0
zÞ þ ðw

0 � yyÞ sin f
� 	

þ ðr� cÞðf0 � yÞ

þ
dZ

ds
ðw0 � yyÞ cos fþ y0

1

2
ðyzy

0
y � yyy

0
zÞ � ðv

0 � yzÞ sin f
� 	

þ c f0 �
1

2
ðyzy

0
y � yyy

0
zÞ

� 	
, (18)

kð1Þxs ¼ �2 f0 �
1

2
ðyzy

0
y � yyy

0
zÞ

� 	
, (19)

gð0Þxn ¼
dY

ds
ðw0 � yyÞ cos fþ y0

1

2
ðyzy

0
y � yyy

0
zÞ � ðv

0 � yzÞ sin f
� 	

�
dZ

ds
ðv0 � yzÞ cos f� z0

1

2
ðyzy

0
y � yyy

0
zÞ þ ðw

0 � yyÞ sin f
� 	

þ lðf0 � yÞ. (20)

4. Variational formulation

Taking into account the adopted assumptions, the principle of virtual work for a composite shell may be
expressed in the form [15,16,27]ZZ

Nxxd�ð0Þxx þMxxdkð1Þxx þNxsdgð0Þxs þMxsdkð1Þxs þNxndgð0Þxn

� �
dsdx

�

ZZZ
r €uxdux þ €uyduy þ €uzduz

� �
dsdndx�

ZZ
ðq̄zdūzÞdsdx

�

ZZ
ðp̄xduxÞ




x¼0

dsdn�

ZZ
ðp̄xduxÞ




x¼L

dsdn ¼ 0, (21)
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where Nxx, Nxs, Mxx, Mxs and Nxn are the shell stress resultants defined according to the following expressions:

Nxx ¼

Z e=2

�e=2
sxx dn; Mxx ¼

Z e=2

�e=2
ðsxxnÞdn,

Nxs ¼

Z e=2

�e=2
sxs dn; Mxs ¼

Z e=2

�e=2
ðsxsnÞdn; Nxn ¼

Z e=2

�e=2
sxn dn. (22)

The beam can be subjected to a wall surface traction q̄z (specified per unit area of the undeformed middle
surface and acting along the z-directions [18]) or to end traction p̄x per unit area of the undeformed cross-
section specified at x ¼ 0 and L, where L is the undeformed length of the beam [18]. Finally, ūz represent the
vertical displacement at the middle line.
5. Constitutive equations

The constitutive equations of symmetrically balanced laminates may be expressed in the terms of shell stress
resultants in the following form [23]:

Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

Ā11 0 0 0 0

0 Ā66 0 0 0

0 0 Ā
ðHÞ

55 0 0

0 0 0 D̄11 0

0 0 0 0 D̄66

26666664

37777775
�ð0Þxx

gð0Þxs

gð0Þxn

kð1Þxx

kð1Þxs

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
(23)

with

Ā11 ¼ A11 �
A2

12

A22
; Ā66 ¼ A66 �

A2
26

A22
; Ā

ðHÞ

55 ¼ A
ðHÞ
55 �

A
ðHÞ
45

� �2
A
ðHÞ
44

,

D̄11 ¼ D11 �
D2

12

D22
; D̄66 ¼ D66 �

D2
26

D22
, (24)

where Aij, Dij and A
ðHÞ
ij are plate stiffness coefficients defined according to the lamination theory presented by

Barbero [23]. The coefficient D̄16 has been neglected because of its low value for the considered laminate
stacking sequence [15,16].
6. Principle of virtual work for thin-walled beams

Substituting Eqs. (16)–(20) into Eq. (21) and integrating with respect to s, one obtains the 1-D expression
for the virtual work equation given by

LM þ LK þ LP ¼ 0, (25)

where LM, LK and LP represent the virtual work contributions due to the inertial, internal and external forces,
respectively. Their expressions are given below

LM ¼

Z L

0

r A
q2u0

qt2
du0 þ Iz

q2yz

qt2
dyz þ Iy

q2yy

qt2
dyy þ Cw

q2y
qt2

dyþ A
q2

qt2
ðv� z0fÞdv

"

þA
q2

qt2
ðwþ y0fÞdwþ

q2

qt2
ð�Az0vþ Ay0wþ IsfÞdf

	
dx, (26)

where A is the cross-sectional area, Iz and Iy are the principal moments of inertia of the cross-section, Cw

is the warping constant, Is the polar moment with respect to the shear center and r the mean density
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of the laminate

LK ¼

Z L

0

du00 N þ u00N �Mzðy
0
z cos fþ y0y senfÞ �Myðy

0
y cos fþ y0z senfÞ

��
�Qyðyz cos fþ yy senfÞ

�Qzðyy cos fþ yz senfÞ
	
þ dv0ðQy cos f�Qz senfþ v0NÞ þ dw0ðQz cos fþQy senfþ w0NÞ

þ dyz �Qyð1þ u00Þ cos fþQzð1þ u00Þsenfþ
1
2
ðQzy0 �Qyz0Þy

0
y �

1
2
Tsvy

0
y �

1
2
By00y

h i
þ dy0z �Mzð1þ u00Þ cos fþMyð1þ u00ÞsenfþNz0 senfþ 1

2ðQyz0 �Qzy0Þyy þ
1
2Tsvyy þ y0zPzz þ y0yPyz

h i
þ dyy �Qzð1þ u00Þ cos f�Qyð1þ u00Þsenfþ

1
2
ðQyz0 �Qzy0Þy

0
z þ

1
2
Tsvy

0
z þ

1
2
By00z

h i
þ dy0y �Myð1þ u00Þ cos f�Mzð1þ u00Þsenf�Ny0 senfþ

1
2
ðQzy0 �Qyz0Þyz �

1
2
Tsvyz þ y0zPyz þ y0yPyy

h i
þ df My ðy

0
y þ y0yu00Þsenfþðy

0
z þ y0zu00Þ cos f

� �
þMz ðy

0
z þ y0zu00Þsenf�ðy

0
y þ y0yu00Þ cos f

� �h
þQy ðyy � w0 þ yzu00Þsenf�ðyy � w0 þ yyu00Þ cos f

� �
þNðz0y

0
z � y0y

0
yÞ cos f

þQz ðyy � w0 þ yyu00Þsenfþðyz � v0 þ yzu00Þ cos f
� �i

þ dy00z
1
2
Byy � dy00y

1
2
Byz

þdf0½Tw þ Tsv þ B1f
0
� þ dy0B� dyTw

�
dx. (27)

In the present study, the work done by the transverse periodic loads in the vertical plane is written as

LP ¼

Z L

0

�qzðtÞdwþ dffezqzðtÞ
 �

dxþ dyyM̄yðtÞ


 

x¼L

x¼0
, (28)

where the distributed load qz(t) ¼ qz0+qzt cos$t, $ is the excitation radian frequency, qz0 ¼ aqcr, qzt ¼ bqcr,
a is the static load factor, b is the dynamic load factor, qcr is the buckling load and ez denotes the eccentricity in
z-direction of the applied loads measured from the shear center. In what follows this last one will be called
load height parameter. In the same way, M̄yðtÞ ¼M0 þMt cos $t is the bending moment applied in the beam
ends. However, when a concentrated load P(t) is applied to the beam at the position (x ¼ a), instead of a
distributed load, the load qz(t) in the potential LP Eq. (28) is written as

qzðtÞ ¼ PðtÞDðx� aÞ, (29)

where D is the Dirac function.
6.1. Beam forces

In the above expressions, the following 1-D beam forces, in terms of the shell forces, have been defined

N ¼

Z
Nxx ds; MY ¼

Z
NxxZ̄ þMxx

dY

ds

� �
ds; MZ ¼

Z
NxxȲ �Mxx

dZ

ds

� �
ds,

QZ ¼

Z
Nxs

dZ

ds
þNxn

dY

ds

� �
ds; QY ¼

Z
Nxs

dY

ds
�Nxn

dZ

ds

� �
ds,

Tw ¼

Z
Nxsðr� cÞ þNxnlð Þds; B ¼

Z
ðNxxop �MxxlÞds,

T sv ¼

Z
ðNxsc� 2MxsÞds, (30)

where the integration is carried out over the entire length of the mid-line contour. N corresponds to the axial
force, Qy and Qz to the shear forces, My and Mz to the bending moments about y and z axes, respectively,
B to the bimoment, Tw to the flexural–torsional moment and Tsv to the Saint-Venant torsional moment.
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In addition, four higher-order stress resultants have been defined as follows:

B1 ¼

Z
½NxxðY

2 þ Z2Þ � 2Mxxr�ds; Pyy ¼

Z
NxxZ̄

2
þ 2MxxZ̄

dY

ds

� 	
ds,

Pzz ¼

Z
NxxȲ

2
� 2MxxȲ

dZ

ds

� 	
ds; Pyz ¼

Z
NxxȲZ̄ þMxx Ȳ

dY

ds
� Z̄

dZ

ds

� �� 	
ds. (31)

The relationships among the generalized beam forces and the generalized strains characterizing the behavior
of the beam are obtained by substituting Eqs. (16)–(20) into Eq. (23), and the results into Eq. (25). This
constitutive law can be expressed in terms of a beam stiffness matrix D as defined in Appendix A.

6.2. Reduced model

The equations of motion of a beam subjected to a transverse excitation are reduced according to the Ritz
method. The first step is to obtain the linearized response in the loading plane: v ¼ {u, v, yz, w, yy, f, y}

T
¼

{0, 0, 0, w, yy, 0, 0}
T. This part consists of a term corresponding to the static loading v0(x) and the other

corresponding to the dynamic loading v1(x)cos ($t):

vðx; tÞ ¼ v0ðxÞ þ v1ðxÞ cosð$tÞ, (32)

where it is assumed that v1(x)5v0(x).
In order to analyze the dynamic stability of this motion, the flexural–torsional displacements u ¼ {0, v, yz, 0,

0, f, y}T are expressed as a linear combination of given x-function vectors fk(x) ¼ {fk1(x), fk2(x), fk3(x)} and
unknown t-function coefficients qk(t):

uðx; tÞ ¼
Xn

k¼1

qkðtÞfkðxÞ. (33)

The functions fk(x) are chosen as eigenfunctions of the linearized equations and boundary conditions. In
this case, the longitudinal displacement is decoupled from the rest and it is not considered. Now, introducing
expressions corresponding to the loading plane equation (32) and flexural–torsional motion Eq. (33) into
Eq. (25), taking variations with respect to the functions qk and scaling the static load and dynamic amplitude
with the critical buckling equivalent M0 ¼ aMcr and Mt ¼ bMcr (see Table 1), one can obtain Eq. (34)

€qk þ O2
kqk þ bMcrZ cosð$tÞ

Xn

n¼1

bknqn ¼ 0 ðk ¼ 1; 2; . . . ; nÞ, (34)

where (Ok)
2 are the system eigenvalues taking into account initial displacements due to the static load, bMcr

represents the excitation amplitude load, bkn are the coefficients depending of the eigenfunctions, Z is the
coefficient that consider the interaction between the forced vibration and the parametrically excited vibrations on
the unstable regions. It is important to remark that in Eq. (34) nonlinear terms associated with v1(x) are neglected.

One should notice that the present formulation considers the inertial effects of the loading plane on the
flexural–torsional vibrations. This influence is generally neglected in most of the dynamic instability studies.
Such an assumption is valid to a certain extent when the exciting frequency is small in comparison with the
frequency op of the load plane free vibrations. This is the case frequently assumed for analyzing the dynamic
stability of bars subjected to axial excitation [3,19,28]. However for transverse excitation, the frequency at
which a parametric resonance occurs can be of the same order as the natural frequency of the loading plane
vibrations. Therefore, in the present paper the contribution of the transverse vibration on the dynamic
behavior is included.

The methodology explained above is illustrated for the case of simply supported beams subjected to uniform
bending M̄yðtÞ ¼M0 þMt cos $t, where $ is the excitation frequency. In this case, the initial displacements
are given by the following expressions:

w ¼
M0

2cEIy

ðLx� x2Þ þ
cGSzLpcGSzp2 � L2rA$2

kyMt cosð$tÞ sinðpx=LÞ, (35)
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Table 1

Parameters in Eqs. (41)–(42)

Simply supported beam C1 C2 b d

(a) End moments 1 0 0.5 0

(b) Uniformly distributed load (Mcr ¼ qzL
2/8) 1.141 0.459 0.033 0.214

(c) Concentrated force (Mcr ¼ PL/4) 1.423 0.554 0.076 0.083
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yy ¼
M0

2cEIy

ðL� 2xÞ þ kyMt cosð$tÞ cosðpx=LÞ, (36)

where

ky ¼
4LcEIyp2 þ L2 cGSz � rIy$2 þ cGS

2

zp2
.

$2L2rA� p2cGSz

� �� � , (37)

cEIy is the flexural stiffness and cGSz is the shear stiffness of a composite beam.
Therefore, the initial displacement expressions (w and yy) are composed of static and dynamic linear

solution. Then, these last Eqs. (35)–(37) along with Eq. (33) are substituted into Eq. (25). So the resultant
expression can be transformed to the following n coupled Mathieu equations Eq. (34). In this example, Z has
the following expression:

Z ¼
cEIyp2cEIyp2 þ L2 cGSz � rIy$2 þ cGS

2

zp2
.

$2L2rA� p2cGSz

� �� � . (38)

When the influence of the interaction between the forced vibration and the parametrically excited vibrations
is disregarded Z ¼ 1, which is obtained setting $ ¼ 0 in Eq. (38).

7. Regions of instability

The different types of unstable boundaries for thin-walled composite beams subjected to transverse periodic
load are studied in this section. The regions of instability for simple and combination resonant frequencies
of sum type are determinate by applying Hsu’s [22] procedures to the Mathieu equation (34). The method
combines the method of variation of parameters and the series expansion of the perturbation method into a
single treatment. The behavior of the non-trivial solutions in both the stable and unstable cases is deduced
with the present analysis. The boundaries of the unstable regions are given as follows:
(a)
 Simple resonance, $ ¼ 2Ok:

2Ok þ
bZbkk

2Ok

4$42Ok �
bZbkk

2Ok

; k ¼ 1; 2; . . . ;N. (39)
(b)
 Combination resonance of sum type, $ ¼ Ok+Oj:

ðOk þ OjÞ �
b
2
Z

bkjbjk

OkOj

� �1=2

o$oðOk þ OjÞ þ
b
2
Z

bkjbjk

OkOj

� �
1=2; kaj; k ¼ j ¼ 1; 2; . . . ;N. (40)
8. Applications and numerical results

The purpose of this section is to apply the present theoretical model in order to study the dynamic stability
of simply supported, cantilever and fixed-end thin-walled composite beams, considering open or closed
bisymmetric cross-sections. The influence of shear deformation and geometrical nonlinear coupling is
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analyzed for both simple and combination resonance. In this case, the transverse motion (w and yy) interacts
with flexural–torsional motions (v, yz, f and y) as was explained in Section 6. In all the results presented
below, the value of the static load parameter is adopted a ¼ 0.5, and the excitation frequency $ is scaled with
the lowest frequency value of parametric resonance (that is the double of the frequency value of the vibration
mode first 2O1).

8.1. Bisymmetric open section subjected to uniform moments

The first example considered is a simply supported I-beam subjected to uniform bending moment M̄yðtÞ ¼

M0 þMt cos $t applied about its major axis. The geometrical properties are h ¼ 0.6m, b ¼ 0.3m,
e ¼ 0.03m, L ¼ 6m and the analyzed material is graphite-epoxy (AS4/3501) whose properties are
E1 ¼ 144GPa, E2 ¼ 9.65GPa, G12 ¼ 4.14GPa, G13 ¼ 4.14GPa, G23 ¼ 3.45GPa, n12 ¼ 0.3, n13 ¼ 0.3,
n23 ¼ 0.5, r ¼ 1389 kg/m3. The influence of the interaction between the forced vibration and the
parametrically excited vibrations is analyzed on the dynamic instability regions at twice frequencies 2O1,
2O2 and the combination frequency O1+O2. Fig. 2 shows the dynamic stability behavior where the fiber
orientation is varied to assess their effects on the instability regions.

The critical buckling load used to scale the static and dynamic load, M0 ¼ aMcr and Mt ¼ bMcr,
corresponding to the flexural–torsional mode, can be easily obtained by means of Eq. (41) (as explained by the
authors in Ref. [20])

Mcr ¼ C1acEIz

p2

L2
�C2ezaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficGSw
cGJ þdECw

cGSw þ cGJ
� �

ðp2
�

L2ÞcEIzðp2
�

L2Þ cGSw þdECwðp2
�

L2Þ

� � þ ðC2ezaÞ
2

vuuut
264

375, (41)

a ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
bEIzbEIy

� �
1� b bGJbEIy

� b
cECw

bGSwp2bEIy
bGSwL2þcECwp2

� �0@ 1A� d bEIzbGSy

p2
L2 1�

bGSybGSz

0:71�
bGSybGSz

0:29

� �� 	vuuut
(42)

where C1, C2, b and d are the approximate constants presented in Table 1. The critical values obtained
by means of this formula take into account the effect of prebuckling deflections. On the other hand, natural
frequencies values Ok (for b ¼ 0) are obtained as explained in [21], taking into account the influence of the
initial displacements.

The size of the principal unstable region (first mode) remains practically constant for the different sequences
of lamination analyzed. While the second parametric (21 mode) and the combination resonance regions are
influenced by the fibers orientation and by the effect of the in-plane loading inertia. The second parametric
resonant region is higher for the lamination sequences {0/0/0/0} and {0/90/90/0} in comparison with the
lamination {45/�45/�45/45}. This effect is partly due to the influence of the free vertical frequency op, which
is the same order as the parametric frequency $ ¼ 2O2, for the two first laminations. While in the lamination
{45/�45/�45/45} the second parametric mode is more distant from the main unstable region. Therefore, the
frequency op is about the same order that the combination resonant frequency. The natural frequencies in Hz
are shown in Table 2, for different sequences of lamination.

The influence of the interaction between the forced vibration and the parametrically excited vibrations on
the unstable regions is analyzed in the figures. The unstable boundaries obtained by disregarding this
interaction are drawn in dashed lines. The influence of this interaction enlarges the unstable region, which
certainly is composed by two regions. Therefore, its discard results, inadvertently, in a less critical behavior
than in the case of its incorporation.

On the other hand, to investigate the transverse shear effects, the results from the present theory are
compared in terms of parametric resonance frequency with those obtained neglecting shear flexibility, for a
lamination sequence {0/0/0/0}. The unstable regions of the first and second parametric resonance are shown
in Figs. 3 and 4, where both models are compared. The width of the principal instability region is hardly the
same for both models (O1 ¼ 21.23Hz, without shear flexibility). However, neglecting shear flexibility, the free
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Fig. 2. Regions of dynamic instability, (——) present theory, (- - - - -) neglecting the influence of the transverse mode (loading plane), (a–c)

correspond to a lamination sequence {0/0/0/0}, (d–f) to a lamination sequence {0/90/90/0} and (g–i) to a lamination sequence {45/�45/

�45/45}.

Table 2

Natural frequencies in Hz of a simply supported beam, b ¼ 0

Lamination O1 O2 op

{0/0/0/0} 20.72 36.17 74.19

{0/90/90/0} 15.50 27.70 62.39

{45/�45/�45/45} 7.58 25.53 34.54
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vertical frequency value is higher op ¼ 107.91Hz. Therefore, the effect of the interaction between both
vibrations is worthless in the second parametric region (see Fig. 4) (O2 ¼ 37.72Hz, without shear flexibility).

8.2. Bisymmetric closed section subjected to a concentrated forced

In this example a simply supported box-beam loaded by a periodic force at the middle of the span
is considered for two load positions. The load can be applied to the top (case a) or to the bottom beam face
(case b). The geometrical properties are h ¼ 0.6m, b ¼ 0.3m, e ¼ 0.03m. The analyzed material is the same as
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Fig. 3. Shear deformation influence on principal region of dynamic instability, considering interaction with op, ( ) present theory,

( ) without shear deformation, for a lamination sequence {0/0/0/0}.

Fig. 4. Shear deformation influence on second parametric region of dynamic instability, considering interaction with op, ( ) present

theory, ( ) without shear deformation, for a lamination sequence {0/0/0/0}.
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the previous examples graphite-epoxy, considering a lamination sequence {0/0/0/0}. In this section, the effect
of the interaction between the forced vibration and the parametrically excited vibrations, the beam length,
shear flexibility and height load parameter on the dynamic instability behavior of the composite beams is
analyzed.

Figs. 5–8 show the unstable regions obtained by three different models: present formulation, neglecting
shear flexibility and disregarding the interaction between the forced vibration and the parametrically excited
vibrations, for two load positions and beam lengths, L ¼ 12 and 6m, respectively. The second parametric
resonant frequency ($ ¼ 2O2) is very large in comparison with the first parametric frequency when the length
beam is L ¼ 12m. Therefore, the unstable region size is hardly insignificant and they are omitted in Figs. 5
and 7. Shear deformation effect has no influence in the size of the unstable regions. However, when this effect
is neglected the regions of instability moves toward the right, originated by an increase in the parametric
frequency values. In Table 3, buckling loads and natural frequencies values obtained with the present
formulation and those obtained neglecting shear deformation are compared. The shear influence is more
evident when the beam length decreases and this discrepancy can reach a percentage of about 30% for the
natural frequency corresponding to the vertical plane op. However, this effect remains constant when the load
height is varied. On the other hand, the influence of interaction between forced vibration and the
parametrically excited vibrations is more evident when the load is applied on top face. The principal instability
regions without interaction are smaller than those obtained with the present theory, predicting a stable region



ARTICLE IN PRESS

Fig. 5. Regions of dynamic instability, ( ) present theory, ( ) without shear deformation, (- - - - -) neglecting interaction

with op, ez ¼ h/2, L ¼ 12m.

Fig. 6. Regions of dynamic instability, ( ) present theory, ( ) without shear deformation, (- - - - -) neglecting interaction

with op, ez ¼ h/2, L ¼ 6m.

Fig. 7. Regions of dynamic instability, ( ) present theory, ( ) without shear deformation, (- - - - -) neglecting interaction

with op, ez ¼ �h/2, L ¼ 12m.
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where in fact it is unstable. However, the second and third unstable regions, corresponding to combination
and parametric resonant frequencies, are larger when the interaction is neglected, overpredicting the unstable
behavior.
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Fig. 8. Regions of dynamic instability, ( ) present theory, ( ) without shear deformation, (- - - - -) neglecting interaction

with op, ez ¼ �h/2, L ¼ 6m.

Table 3

Shear effect on buckling load and natural frequencies values, for a simply supported box-section beam

Length (m) Load height Shear deformation Pcr (MN) O1 (Hz) O2 (Hz) op (Hz)

12 Top With 4.36 12.86 48.85 22.76

Without 4.41 13.59 49.02 24.83

Bottom With 6.72 12.25 59.30 22.76

Without 6.84 12.91 59.79 24.83

6 Top With 13.95 45.03 93.27 75.68

Without 14.44 54.01 94.95 98.67

Bottom With 31.41 41.57 133.28 75.68

Without 33.89 49.27 139.34 98.67
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8.3. Simply supported beam subjected to distributed load

In this example a simply supported beam under distributed load qz(t) ¼ qz0+qzt cos$t is considered for
three load positions. The load can be applied to the top flange (case a), at the shear center (case b), and to
the bottom flange (case c). The beam considered is a bisymmetric-I section whose geometric properties are
h ¼ 0.6m, b ¼ 0.6m, e ¼ 0.03m, L ¼ 6m. The analyzed material is the same as the previous examples.
The buckling load used to scale the static load qz0 ¼ aqcr, corresponding to the flexural–torsional mode, can
be easily obtained by means of Eq. (41) along with Table 1. On the other hand, as in the previous examples the
natural frequencies values Ok (for b ¼ 0) are obtained as explained by Machado and Cortı́nez in [21], taking
into account initial displacements.

Instability regions are shown in Figs. 9–11, considering different load heights and for a sequence of
lamination {0/0/0/0}. It is observed that the widest unstable region corresponds to the first mode (or to the
first frequency of parametric resonance), while the smallest region correspond to the parametric excited second
mode. The intermediate region is due to combination resonance of the two first modes. Comparative results
between the unstable regions obtained by disregarding and considering the influence of the inertia in the
loading plane are shown in the figures. In this case, the natural frequency corresponding to the loading plane
op is lower than the first parametric resonance frequency 2O1. The influence of the vertical inertia enlarges the
first region, which certainly is composed by two regions. For example, when the load is applied on the top
flange (Fig. 9), one region lies near $ ¼ 2O1 ¼ 81.87Hz and the other lies near $ ¼ op ¼ 67.77Hz, for b ¼ 0.
On the other hand, when the load is applied on the bottom flange (Fig. 11), the first unstable region is largest
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Fig. 9. Regions of dynamic instability for an excitation load applied in the top flange, ( ) present theory, (- - - - -) neglecting

interaction with op, for a lamination sequence {0/0/0/0}.

Fig. 10. Regions of dynamic instability for an excitation load applied in the shear center, ( ) present theory, (- - - - -) neglecting

interaction with op, for a lamination sequence {0/0/0/0}.

Fig. 11. Regions of dynamic instability for an excitation load applied in the bottom flange, ( ) present theory, (- - - - -) neglecting

interaction with op, for a lamination sequence {0/0/0/0}.
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in comparison with the other load condition (Figs. 9 and 10). However, the third region (second simple resonance
mode) is smallest due to the parametric frequency ($ ¼ 2O2) is more distant from the principal region.

A similar behavior is observed for a sequence of lamination {0/90/90/0} in Figs. 12–14, considering the
three load conditions. In this case, the loading plane frequency op is hardly next to the first frequency excited
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Fig. 12. Regions of dynamic instability for an excitation load applied in the top flange, ( ) present theory, (- - - - -) neglecting

interaction with op, for a lamination sequence {0/90/90/0}.

Fig. 13. Regions of dynamic instability for an excitation load applied in the shear center, ( ) present theory, (- - - - -) neglecting

interaction with op, for a lamination sequence {0/90/90/0}.
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parametrically (2O1). As the value of dynamical load parameter b increases, the main unstable region gets
together with the combination resonance region (O1+O2). The size of the third unstable region ($ ¼ 2O2) is
almost insignificant when the load is applied on the bottom flange. The influence of the interaction between the
forced vibration and the parametrically excited vibrations is significant in the three load conditions. When the
interaction is ignored the main unstable regions are smaller and this effect is more notable when the fibers are
oriented in the longitudinal direction. However, the third unstable regions are larger when this effect is
neglected, overpredicting the unstable behavior.

8.4. Cantilever beam subjected to end force

The example considered is a cantilever beam subjected to end force applied in the shear center of its free end.
The cross-section properties of the I-beam and the material properties are the same as the previous example,
considering in this case a beam length of L ¼ 12m. Regions of dynamic instability for the composite beam are
shown in Fig. 15, considering a lamination sequence {0/90/90/0}. The influence of the interaction between
the forced vibration and the parametrically excited vibrations on the unstable regions is analyzed in the figure.
The unstable boundaries obtained by disregarding this interaction are drawn in dashed lines. In this case, the
natural frequency corresponding to the loading plane (op) is hardly higher than the first parametric resonance
frequency (2O1). The influence of the vertical inertia enlarges the instability region to high frequency values,
until it merges with the combination resonance region. Therefore, it derives in a large region which certainly is
composed by three regions, one of them corresponding to the principal unstable region (2O1 ¼ 6.94Hz), the
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Fig. 15. Unstable regions of a cantilever beam, ( ) present theory, (- - - - -) neglecting interaction with op.

Fig. 14. Regions of dynamic instability for an excitation load applied in the bottom flange, ( ) present theory, (- - - - -) neglecting

interaction with op, for a lamination sequence {0/90/90/0}.
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other corresponding to in-plane loading vibration mode (op ¼ 7.16Hz), and the last one corresponding to
the combination resonance region (O1+O2 ¼ 8.45Hz), for b ¼ 0. The unstable regions are smaller when the
interaction of the forced vibration is omitted, predicting a less critical behavior.

8.5. Fixed-end beam subjected to a concentrated force

In this example a fixed-end beam is excited transversely by a force at the middle of the span applied in the
shear center. The length beam and the sequence of lamination are the same as the previous case, but the
analyzed material is glass-epoxy whose properties are E1 ¼ 48.3GPa, E2 ¼ 19.8GPa, G12 ¼ 8.96GPa,
G13 ¼ 8.96GPa, G23 ¼ 6.19GPa, n12 ¼ 0.27, n13 ¼ 0.27, n23 ¼ 0.6, r ¼ 1389 kg/m3.

In Fig. 16, the regions of dynamic instability are shown for two values of the static load parameter, a ¼ 0.1
and 0.5. The vibration frequency values decrease as the static load factor increases. In this example, the
natural frequency corresponding to the loading plane is op ¼ 28.96Hz. For a small static load parameter
(a ¼ 0.1), the influence of the vertical inertia enlarges the unstable region to low-frequency values. It is due to
the main parametric frequency is larger (2O1 ¼ 33.24Hz) than the free vertical frequency op. Besides, it is
observed from Fig. 16a, that the instability region is composed by four regions, one of them corresponding to
loading in-plane vibration mode, two corresponding to the first and second parametric resonance and the last
one corresponding to the combination resonance region. This dynamic behavior is due to the closeness of the
second parametric frequency (2O2 ¼ 37.46Hz) with respect to the first flexural–torsional mode. On the other
hand, when the static load parameter increases (a ¼ 0.5), the relation between the parametrically excited
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Fig. 16. Effect of static load parameter on unstable regions of a fixed-end beam, ( ) present theory, (- - - - -) neglecting interaction

with op, (a) a ¼ 0.5 and (b) a ¼ 0.1.
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frequencies also increases. In this case, the third instability region (2O2 ¼ 42.30Hz) moves away from the main
unstable region (2O1 ¼ 24.26Hz). It is also observed that the influence of the interaction between the forced
vibration and the parametrically excited vibrations enlarges the instability region to high frequency values
(Fig. 16b). The larger unstable region is limited by the frequencies values corresponding to the main
parametric and combination resonance.

The unstable boundaries obtained by disregarding this interaction are drawn in dashed lines and the
difference between both formulations is higher for small static load parameter.
8.6. Effect of approximations on the dynamic stability

The purpose of this example is to show the effect of the degree of nonlinearity adopted in the displacement
field Eq. (4) on the dynamic stability analysis. As it was pointed out in the introduction of this work a
significant amount of research has been conducted in recent years toward the development of nonlinear
theories of 3-D beams. However, many of these theories differ in the order of nonlinearity considered in their
formulation. For example, second-order displacement field has been used in a formulation of finite element models
for 3-D nonlinear analysis of beam structures [29–31]. This approximation presents several advantages because it
simplifies the coupling between the displacement and rotations and so the tangent stiffness matrix (used for the
nonlinear incremental-iterative analysis) can be simplified. Therefore, this tangent matrix can be decomposed into
linear and second-order (nonlinear) stiffness matrices. In spite of these advantages, second-order formulation may
produce the loss of some significant terms in the nonlinear strains and in the tangent stiffness matrix, thus some
inaccurate approximations in the coupling between displacement, rotations and their derivates. The loss of these
terms may lead to ‘self-straining’ caused by superimposed rigid-body motions [32,33].

In particular the second-order model was modeled approximating cosf and sinf by (1�f2/2) and f,
respectively, in Eq. (4) and conserving nonlinear terms up to second order. Therefore the displacement field yields:

ux ¼ uo � yzȳ� yyz̄þ fyzz� fyyyþ o y� 1
2
ðy0yyz � yyy

0
zÞ

h i
,

uy ¼ v� fzþ 1
2
ð�f2y� y2z ȳ� yzyyz̄Þ,

uz ¼ wþ fyþ 1
2
ð�f2z� y2yz̄� yzyyȳÞ. (43)

Then a second-order formulation Eq. (43), produces the loss of the terms underlined in Eq. (27). These terms
correspond to the flexural–torsional coupling in the nonlinear strains. On the other hand, the unstable boundaries
are also compared with the values obtained by means of the classical formulation, where the initial displacement
due to static load and the influence of op are neglected. In the classical model the regions of instability are obtained
considering only initial stresses.
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Fig. 17. Effects of approximations on regions of dynamic instability, ( ) present model with width A, ( ) 21 order

formulation with width B, (- - - - -) classical or first-order approximation with width C, load applied to the top flange.

Fig. 18. Effects of approximations on regions of dynamic instability, ( ) present model with width A, ( ) 21 order

formulation with width B, (- - - - -) classical or first-order approximation with width C, load applied at the shear center.
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In this example a simply supported I-beam subjected to a transverse force P at the middle of the span is
considered, for three load positions. The geometrical properties are L ¼ 6m, h ¼ 0.6m, b ¼ 0.6m, e ¼ 0.03m.
The analyzed material is graphite-epoxy and the sequence lamination considered is {0/0/0/0}. Comparative
results of regions of dynamic instability are shown in Figs. 17–19, for the load applied to the top flange, at the
shear center and to the bottom flange, respectively. It is observed that the parametric frequencies values
obtained with the second-order theory are higher than those obtained with the present formulation, for b ¼ 0,
while the natural frequency corresponding to the loading plane op is the same for both models. Second-order
approximation overestimates the stability behavior of composite beams as was mentioned by the authors in
[20]. This effect is larger when the load is applied on the bottom face. With increasing the dynamic load
parameter the unstable regions predicted by the second-order approximation are wider when the load is on the
top flange and smaller when the load is applied on the bottom flange. Therefore, this approximation results,
inadvertently, in a less critical behavior than in the case of the present model, when the load is applied on the
bottom flange.

Significant differences are observed in the classical or first-order results due to geometrical nonlinear effects.
The parametric frequencies calculated from the classical analysis are smaller compared with those calculated
from the present nonlinear model, as was shown by the authors in [21]. Therefore, the unstable region moves
toward the left originated by a decrease in the parametric frequency values. Besides, the unstable regions size is
completely different to the ones obtained with the present model. This effect is due mainly to the coupling of
the different types of motion, where their interaction is due to nonlinear effects.
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Fig. 19. Effects of approximations on regions of dynamic instability, ( ) present model with width A, ( ) 21 order

formulation with width B, (- - - - -) classical or first-order approximation with width C, load applied on the bottom flange.
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9. Conclusions

In this paper, the influences of shear deformation and geometrically nonlinear coupling on the dynamic
stability of thin-walled laminated composite beam are analyzed. A nonlinear beam theory is formulated in the
context of large displacements and rotations, through the adoption of a shear-deformable displacement field
(accounting for bending and warping shear). Regions of dynamic instability are studied for simply supported,
cantilever and fixed-end composite beams subjected to transverse periodic loads. Unstable regions for simple
and combination resonant frequencies are expressed in non-dimensional terms and determined by applying
Hsu’s procedure to the Mathieu equation. The influence of non-conventional effects is noted in the numerical
results and can be summarized as follows:
1.
 The width of the instability regions increases with an increase in the static and dynamic loads.

2.
 The unstable regions sizes are influenced by the transverse shear effect, when this effect is ignored the

boundaries of instability shift to the right. This behavior is originated by an increase in the parametric
resonance frequency values and higher differences are observed when the beam length decreases.
3.
 The interaction between the forced vibration and the parametrically excited vibrations on the regions of
dynamic instability is significant in some cases. This effect depends on the closeness of the frequency values,
i.e. it depends on the stiffnesses ratio between the parametrically excited mode and the vertical mode
corresponding to the loading plane.
4.
 This influence enlarges the unstable region because the unstable regions are composed by two regions, one
of them lies near the parametric excited frequency and the other lies near the natural frequency
corresponding to the loading plane, for small values of the dynamic load parameter.
5.
 In general, the discard of this interaction results, inadvertently, in a less critical behavior for the main
parametric and combination unstable regions than in the case of its incorporation.
6.
 However, the second parametric unstable region is in general larger when the interaction is neglected,
overpredicting the unstable behavior.
7.
 Second-order nonlinear approximation overestimates the stability behavior and the unstable regions size
depends on the load height parameter. On the other hand, the parametrically excited frequencies obtained
by a classical or first-order approximation are smaller in comparison with the ones obtained by the higher
nonlinear present model.
8.
 The size of unstable regions depends on the load height parameter, for example the unstable regions are
wider when the load is applied on the beam bottom flange.
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Appendix A. Constitutive law

The constitutive law for a bisymmetric beam is defined in the following form:

fg ¼ Dv, (A.1)

fg ¼ N My Mz B Qy Qz Tw Tsv B1 Pyy Pzz Pyz

n oT

, (A.2)

v ¼ ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8 ED9 ED10 ED11 ED12

� �T
, (A.3)

where fg is the vector of generalized forces, v the vector of the generalized strains. The elements of the
symmetric matrix D (12� 12) are given by the following contour integrals, being null the matrix elements that
are not indicated below:

K1;1 ¼
R

Ā11 ds; K5;6 ¼
R
ðĀ66 � Ā55ÞZ

0Y 0 ds;

K1;9 ¼
R

Ā11ðY
2 þ Z2Þds; K5;7 ¼

R
Ā66Y 0ðr� cÞ � Ā55Z0l
 �

ds;

K1;10 ¼
R

Ā11Z̄
2
ds; K5;8 ¼

R
Ā66cY 0 ds;

K1;11 ¼
R

Ā11Ȳ
2
ds; K6;6 ¼

R
Ā55Y 0

2
þ Ā66Z0

2
� �

ds;

K1;12 ¼
R

Ā11Ȳ Z̄ ds; K6;7 ¼
R

Ā66Z0ðr� cÞ þ Ā55Y 0l
 �

ds;

K2;2 ¼
R

Ā11Z2 þ D̄11Y 0
2

� �
ds; K6;8 ¼

R
Ā66cZ0 ds;

K2;9 ¼
R

Ā11Z̄ðY 2 þ Z2Þ � 2D̄11rY 0
 �

ds; K7;7 ¼
R

Ā66ðr� cÞ2 þ Ā55l2
 �

ds;

K2;10 ¼
R

Ā11Z̄
3
þ 2D̄11Z̄Y 0

2
� �

ds; K7;8 ¼
R

Ā66cðr� cÞds;

K2;11 ¼
R

Ā11Ȳ
2
Z̄ � 2D̄11ȲY 0Z0

� �
ds; K8;8 ¼

R
ðĀ66c

2
þ 4D̄66Þds;

K2;12 ¼
R

Ā11Ȳ Z̄
2
þ D̄11ðȲY 0 � Z̄Z0ÞY 0

h i
ds; K9;9 ¼

R
Ā11ðY

2 þ Z2Þ
2
þ 4D̄11r2

 �
ds;

K3;3 ¼
R

Ā11Y 2 þ D̄11Z0
2

� �
ds; K9;10 ¼

R
Ā11ðY

2 þ Z2ÞZ̄
2
� 4D̄11Z̄Y 0r

h i
ds;

K3;9 ¼
R

Ā11Ȳ ðY 2 þ Z2Þ þ 2D̄11rZ0
 �

ds; K9;11 ¼
R

Ā11ðY
2 þ Z2ÞȲ

2
þ 4D̄11ȲZ0r

h i
ds;

K3;10 ¼
R

Ā11Ȳ Z̄ � 2D̄11Z̄Y 0Z0
� �

ds; K9;12 ¼
R

Ā11ðY
2 þ Z2ÞȲ Z̄ � 2D̄11ðȲY 0 � Z̄Z0Þr

 �
ds;

K3;11 ¼
R

Ā11Ȳ
3
þ 2D̄11ȲZ0

2
� �

ds; K10;10 ¼
R

Ā11Z̄
4
þ 4D̄11Z̄

2
Y 0

2
� �

ds;

K3;12 ¼
R

Ā11Ȳ
2
Z̄ � D̄11ðȲY 0 � Z̄Z0ÞZ0

h i
ds; K10;11 ¼

R
Ā11Z̄

2
Ȳ

2
� 4D̄11Z̄Y 0ȲZ0

� �
ds;

K4;4 ¼
R

Ā11o2
p þ D̄11l2

� �
ds; K10;12 ¼

R
Ā11Z̄

3
Ȳ þ 2D̄11ðȲY 0 � Z̄Z0ÞZ̄Y 0

h i
ds;

K4;9 ¼
R

Ā11opðY
2 þ Z2Þ þ 2D̄11rl

 �
ds; K11;11 ¼

R
Ā11Ȳ

4
� 4D̄11Ȳ

2
Z0

2
� �

ds;

K4;10 ¼
R

Ā11opZ̄
2
� 2D̄11Z̄Y 0l

� �
ds; K10;12 ¼

R
Ā11Ȳ

3
Z̄ � 2D̄11 ȲY 0 � Z̄Z0

� �
ȲZ0

h i
ds;

K4;11 ¼
R

Ā11opȲ þ 2D̄11ȲZ0l
� �

ds; K12;12 ¼
R

Ā11Z̄
2
Ȳ

2
þ D̄11ðȲY 0 � Z̄Z0Þ2

h i
ds;

K4;12 ¼
R

Ā11ȲopZ̄ � D̄11ðȲY 0 � Z̄Z0Þl
 �

ds;

K5;5 ¼
R

Ā55Z0
2
þ Ā66Y 0

2
� �

ds;

(A.4)
where

Y 0 ¼
dY

ds
; Z0 ¼

dZ

ds
. (A.5)
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