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a b s t r a c t

Despite the many coefficients accounting for the resemblance between pairs of objects based on pres-
ence/absence data, no one measure shows optimal characteristics. In this work the Positive Matching
Index (PMI) is proposed as a new measure of similarity between lists of attributes. PMI fulfills the Tulloss’
theoretical prerequisites for similarity coefficients, is easy to calculate and has an intrinsic meaning
expressable into a natural language. PMI is bounded between 0 and 1 and represents the mean proportion
of positive matches relative to the size of attribute lists, ranging this cardinality continuously from the
smaller list to the larger one. PMI behaves correctly where alternative indices either fail, or only approx-
imate to the desirable properties for a similarity index. Empirical examples associated to biomedical
research are provided to show outperformance of PMI in relation to standard indices such as Jaccard
and Dice coefficients.

� 2010 Published by Elsevier B.V.

1. Introduction

A widespread task recognized in natural sciences is to compare
pairs of items according to the lists of their attributes. As an exam-
ple, we could refer to a common topic in the ecological literature,
namely to compare the species composition of two areas. Similar-
ity coefficients based on presence/absence data are frequently used
to address this task. These measures evaluate the extent to which
two items share categorical attributes codable into dummy vari-
ables, and they have been formulated in a number of slightly differ-
ent ways and associated with even more authors: Jaccard,
Czekanowski, Kulczinsky, etc. (Southwood and Henderson, 2000).
There is no clear reason to prefer a given index over the others in
all circumstances, and today the suggestion of Sneath and Sokal
(1973) of subordinating the choice of an index to the research
objectives and data is still appropriate.

On the grounds of theoretical prescriptions, simplicity and easy
interpretation of results, there is no measure with the optimal
characteristics. Tulloss (1997) proposed the Tripartite Similarity
Index (TSI) to overcome drawbacks found on the pre-existing coef-
ficients. For this, Tulloss (1997) used the guidelines of eight theo-
retical requirements highly conditioned by the work of Hayek
(1994) and constructed a complicated formula oriented to fulfill
them. The TSI is based on three cost functions and inherits con-

cepts of manufacturing engineering. However, the TSI lacks a direct
meaning and approaches to the theoretical properties in an
approximate rather than an exact way. Moreover, Deutsch et al.
(2006) found no beneficial performance of this measure in compar-
ison to the simpler Dice coefficient to the extent of justifying its
replacement based on multivariate binary responses in medical re-
search. The aim of this paper is to present a new measure of sim-
ilarity adjusted to all the theoretical requirements pointed out by
Tulloss (1997), which is informative and easy to calculate.

2. The Positive Matching Index

The basic feature to obtain the association between objects
based on presence-absence data is the following 2 � 2 contingency
table:

Item 2

Present Absent

Item 1 Present a b
Absent c d

The parameter a represents the number of common entries be-
tween lists (number of positive matches). Parameters b and c count
the characteristics recorded for one of the two items under compar-
ison. Finally, parameter d represents the number of descriptors that
do not appear in either list. For the particular case of comparing
sites based on species lists, negative matches d could be misleading
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(Legendre and Legendre, 1998), since the absence of species at two
sites may recognize very different underlying circumstances that
preclude us to consider them as similar. The index we propose here
discards the parameter d, and it will be called the Positive Matching
Index (PMI) since its interest relies on the concordance of positive
attributes.

Any assertion of non-zero similarity between objects requires
that the objects do share characteristics. The proportion of com-
mon attributes yields an intuitive idea of similarity bounded on
{0, 1}. Although there may be consensus on the numerator of this
fraction, i.e. the cardinality of the set of common attributes, it is
more difficult to establish its denominator in an uncontroversial
way. Many similarity measures agree on this general remark, but
they differentiate one another in the election of the denominator.
Some measures ignore the asymmetry between sizes of the two in-
put lists, choosing one of them as denominator of the ratio. Thus,
the Simpson coefficient, a/(a + min(b, c)), depends on the size of
the smaller list, whereas the Braun–Blanquet coefficient, a/
(a + max(b, c)) divides common presences over the size of the lar-
ger list. The strategy of considering the smaller and larger lists to-
gether can be found on the Jaccard and Dice coefficients. The first
one, a/(a + b + c), calculates the ratio of common presences versus
the total number of characteristics. The latter, a/
(a + 0.5(b + c)) = 2a/(2a + b + c), yields the proportion of positive
matches for the mean size of the two lists.

The PMI also aims to retrieve the relationship between the
parameter a and the sizes of the lists considered. When the two
lists are equally sized, it is proposed that PMI should be supported
by the following equation:

PMIb¼c ¼
a

aþ b
¼ a

aþ c
ð1Þ

However, when the lists are unequally sized (b – c), at least two
possible proportions may be considered. The first one relates a
with the size of the smaller list, whereas the second proportion
is between a and the size of the larger list. It seems then reasonable
to apply any averaging function to the different proportions. The
Kulczinsky coefficient, 0.5(a/(a + b) + a/(a + c)), moves along these
guidelines in averaging both quotients referred above. But Kulczin-
sky coefficient has a problem: if all the entries of the smaller list
appear in the larger, then the minimum value of the index is 0.5
despite the two lists being very disparate in size (Tulloss, 1997).
Here, we propose to compute the average of the proportions of po-
sitive matches versus all the values contained between the cardi-
nalities of the smaller and larger lists. Then, we suggest to gather
the mean value of f(x) = a/x, x being a real number of the closed
interval [a + min(b, c), a + max(b, c)]. Such a function is a rational
one continuous on the specified interval, and the mean value can
be obtained through the next formulae:

PMIb–c ¼
1

ðaþmaxðb; cÞÞ � ðaþminðb; cÞÞ

Z aþmaxðb;cÞ

aþminðb;cÞ

a
x

dx

¼ a
jb� cj ln xjaþmaxðb;cÞ

aþminðb;cÞ ¼
a

jb� cj ln
aþmaxðb; cÞ
aþminðb; cÞ

� �
ð2Þ

3. Adjustment of PMI to theoretical requirements

Tulloss (1997) offers a detailed framework to compare indices
in an objective way. The author enumerates eight requirements
and constructs the formula of the TSI in a way that strong devia-
tions of those prescriptions are avoided. Furthermore, he explains
how pre-existing measures do not meet some requirements. In this
section, we will circumscribe to the behavior of the PMI and we re-
serve for the next section a synthetic and comparative overview of
PMI in relation to some standard indices.

3.1. Requirement 1

A similarity index shall be sensitive to the relative size of the
two lists to be compared; and great difference in size shall be inter-
preted to reduce the value of the similarity index (Tulloss, 1997). In
other words, the coefficient should decrease as the difference
|b � c| becomes greater. The converse statement should not be
predicated from this requirement as corollary, otherwise mislead-
ing measurements of similarity could be addressed. Thus, if two
lists are balanced in size it does not follow that similarity should
increase, because two lists may be completely disjoint despite
being equally sized. Suppose we have two scenarios drawn from
the triplet (a > 0, b P 0, c > b), where the difference between them
relies on the value allocated for c, say c1 << c2. PMI goes down here
because after taking derivatives, the decrease induced by c2 at the
left-hand factor of Eq. (2) proceeds at a higher rate than the respec-
tive rising promoted by the right-hand factor. In the limit, when
c2 ?1, the expression for PMI takes the indeterminate form of
1
1. In applying L’Hôpital’s Rule, PMI achieves its lower bound of
zero.

3.2. Requirement 2

A similarity index shall be sensitive to the size of the sublist
shared by a pair of lists; and an increase in difference in size be-
tween the smaller of the two lists and the sublist of common en-
tries shall be interpreted to reduce the value of the similarity
index (Tulloss, 1997). In order to assess if PMI is consistent with
this requirement, we need to demonstrate that PMI decreases after
adding any positive magnitude to the parameter of unique attri-
butes of the smaller list. For example, suppose a is fixed and
b < c, and that this relationship still holds after adding any positive
quantity q to the parameter b (i.e. 0 < q < c � b). Since PMI score
corresponds here to the average value of a strictly decreasing func-
tion, namely the average fraction of shared attributes over the con-
tinuous interval bounded by the smallest and largest size of lists
under comparison, any increasing in the cardinality of the smallest
list induced by q implies that the values to be averaged are in the
tail of the former curve, so PMI based on b + q necessarily decreases
and Requirement 2 is satisfied. Fig. 1 helps to demonstrate the

Fig. 1. Geometrical argument in favor of the adjustment of PMI to Tulloss’
Requirement 2. PMI of the first triple data (a > 0, b P 0, c > b) is higher than the
second triple data where q is added to b and q < c � b. Since PMI corresponds to the
average value of f(x) = a/x, the gray areas above and below the PMI level are in
balance. In adding q to the smaller list, PMI level necessarily should decrease in
order to guarantee equivalence between areas.
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inequality a
c�ðbþqÞ ln aþc

aþbþq <
a

c�b ln aþc
aþb, on the grounds of a geometri-

cal reasoning. For the case of PMI based on b, its score is the height
of the rectangle on the interval a + b 6 x 6 a + c whose area equals
the area under the curve f(x) = a/x. In other words, the area above
PMI level inside the curve equals the area below PMI level outside
the curve. In moving the left-hand extreme of the interval to a
higher value b + q, both areas are in balance solely if PMI level
decreases.

3.3. Requirement 3

A similarity index shall be sensitive to the percentage of entries
in the larger list that are in common between the lists and to the
percentage of entries in the smaller list that are in common be-
tween the two lists and shall increase as these two percentages in-
crease (Tulloss, 1997). Here, we need to show that PMI varies
positively in relation to greater proportions of positive matches
in either list. That is, PMI increases whenever a/(a + b) or a/(a + c)
increases. If b = c, this is true by definition. For b < c and b, c fixed,
when a/(a + b) or a/(a + c) increases, so does a. The derivative of the
left-hand factor is positive, reflecting increasing values as a in-
creases. A negative derivative of the right-hand factor reflects
decreasing values. According to L’Hôpital’s Rule, the limit of PMI
as a ?1 is 1, hence the left-hand factor of PMI increases faster
than the right-hand factor decreases, which returns a larger value
of PMI as was to be proved since increasing a also results in an in-
crease in a/(a + b) and a/(a + c). Similar results occur for b > c. Thus,
as this index was developed in terms of the mean of these ratios
along the continuous interval ranging from the smaller list to the
larger one, any change applied to the proportions of common en-
tries move in the expected direction.

3.4. Requirement 4

A similarity index shall yield values having fixed upper and low-
er bounds (Tulloss, 1997). It is easy to see that when lists are
equally sized, 0 6 PMI 6 1 since a, b, and c are non-negative and
the numerator is less than or equal to the denominator in all cases.
In the situation of perfect matching (a > 0, b = 0, c = 0) or complete
disassociation (a = 0, b > 0, c > 0), the upper and lower bounds are
achieved, respectively. But lists can also be asymmetrical with
the cardinalities of the smaller and larger lists divergent between
them so that |b � c| is non-zero and can tend to infinity. This can
happen in each of the following cases: (1) (a > 0, b > 0, c = 0), (2)
(a > 0, b = 0, c > 0), and (3) (a = 0, b > 0, c > 0). In cases (1) and (2),
after applying L’Hôpital’s Rule, as a ?1 and/or either b ?1 or
c ?1, respectively, the limit of PMI approaches asymptotically
to zero. In the third case, PMI equates to zero directly.

3.5. Requirement 5

A similarity index shall have the property that when two lists
are identical, the similarity index for the two lists shall be equal
to the upper bound of the index (Tulloss, 1997). As we already
noted above, under this picture of complete matching (a > 0,
b = 0, c = 0) PMI yields 1 since Eq. (1) becomes a/(a + 0).

3.6. Requirement 6

A similarity index shall have the property that when two lists
have no entries in common, the similarity index for the lists shall
be equal to the lower bound (Tulloss, 1997). Input data triples of
the form (a = 0, b > 0, c > 0) are associated with this situation. Inde-
pendently of being b = c or b – c, PMI always yields the zero score,
that is the lower bound.

3.7. Requirement 7

Distribution of values of a similarity index between zero and
one shall be such that (a) if the size of two input lists is fixed, then
the output shall vary roughly directly as the number of entries
shared between the lists; and (b) if the smaller list is a subset of
the larger list, then the value of the similarity index shall vary
roughly inversely as the size of the larger list (Tulloss, 1997). The
first part translates in that both the right-hand factor of Eq. (2)
and the denominator of its left-hand factor remain constant, and
say k is the product of these. So, PMI = ak and the direct relation-
ship stated by item (a) is holding in an exact way. With regard to
the item (b), suppose we face triples given as (a > 0, b = 0, c > 0),
where a stays constant whereas c diverges from a. Here, we note
that PMI reduces to the expression PMI ¼ a

c ln 1þ c
a

� �
¼ ln 1þ c

a

� �a
c .

If we replace the quotient a/c by u, the last expression becomes
PMI ¼ ln 1þ 1

u

� �u, that is the natural logarithm of the already
known function giving rise to the Euler’s number e as u ?1
(c ? 0, PMI = 1), and to the unity as u ? 0 (c ?1, PMI = 0) by
using L’Hôpital’s Rule. We are specially interested on the behavior
of this function alongside the domain of c. PMI is here a strictly
increasing function of u since the derivative of the previous func-
tion is strictly positive on the interval of interest (0,1) (Strichartz,
2000). This implies that PMI assumes lower values as c gets larger
ones, being supported thus the inverse relationship claimed for
these magnitudes.

3.8. Requirement 8

A similarity index program shall check its input data to verify
that the following relationships hold: a + b > 0 and a + c > 0 (Tul-
loss, 1997). This situation has been implicitly considered for the
validity of Eqs. (1) and (2), otherwise the divide-by-zero problem
would be present. According to Tulloss (1997) it makes no sense
to perform a comparison between lists where one or both of them
have no members. However, Deutsch et al. (2006) consider valu-
able that an index is able to deal with the trivial case where
a + b = 0 and/or a + c = 0, at least in the medical setting. In order
to circumvent the implementation caveat associated to Eqs. (1)
and (2), the trivial case is directly treated as zero because PMI is
concerned with the positive matches between lists. In the Appen-
dix A we provide an R source code for calculating PMI with this last
consideration in mind.

Tulloss (1997) provides some numerical examples given as tri-
ples (a, b, c), to show for TSI its (1) near invariance, (2) near linear-
ity with regard to the variation in size of the set of shared entries,
and (3) its inverse variation with regard to changes in size of the
two lists. We adopt the several triples of Tulloss (1997) as a bench-
mark. Fig. 2 shows the responses of PMI exactly adjusted to the
theoretical expectations in contrast to those of TSI.

4. Comparative performance of PMI and applications

4.1. A critical case

The TSI is an expression of three cost functions to mathemati-
cally address conflicting requirements of similarity (Deutsch
et al., 2006). Penalties (reduction of the similarity metric) are ap-
plied when (1) there is more difference in the number of presences
mutually exclusive and (2) there is an increase in the number of
unique attributes of the smaller list. These two penalty cost func-
tions are notated as U and S, respectively. On the contrary, a reward
is obtained (similarity score rises up) when, for either item, there is
an increasing proportion of positive matches relative to the pooled
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total of positive records. The reward function is named R. Finally,
TSI is the square root of the product U � S � R.

U ¼ log2 1þ minðb; cÞ þ a
maxðb; cÞ þ a

� �
; 0 < U 6 1

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2ð2þminðb; cÞ=ðaþ 1ÞÞ

p ; 0 < S 6 1

R ¼ log2ð1þ
a

aþ b
Þ � log2 1þ a

aþ c

� �
; 0 < U 6 1

TSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � S � R
p

ð3Þ

Let us suppose we are comparing two assemblages of different
scenarios represented by 501 triples (a, b, c), being a constant and
b 6 c, responding to the following series: (500, 0, 1000), (500, 1,
999), . . . , (500, 500, 500). The first scenario indicates to us that
both assemblages share 500 species and that the smaller one is
completely nested into the larger one, whereas the incidence lists
of the last case reflects the maximal turnover possible given both a
fixed count of shared species (500) and a joint total number of spe-
cies (1500). Fig. 3 displays the values reported by the Jaccard, Dice,
TSI and PMI indices under the different scenarios. The first two
indices, as we have noted above, do not change along the series
of triples since b + c remains constant. In contrast, PMI and TSI
do vary in accordance to changes on parameters b and c, but they

follow opposite trends. The confusing behavior of TSI can be under-
stood in terms of its inherent function U. TSI’s U function correctly
penalizes (reducing similarity scores) scenarios of very unbalanced
sizes of input lists, but becomes a reward function rather than a
neutral one when lists become equally sized. This role reversion
of U function may dominate the similarity scoring and thus be mis-
leading, since it disregards balanced scenarios with some trend to
disassociation from balanced scenarios with high overlap of en-
tries. This feature leads to TSI, for example, to judge the triple (5,
0, 100) less similar than (7, 93, 98) because of the more balanced
condition of the second triple (not necessarily associated to higher
similarity). Thus, TSI is outweighed by the function U.

4.2. Application 1: Neuropsychological example

Rippeth et al. (2004) studied the cognitive effects of concurrent
HIV infection and methamphetamine dependence and found that
both conditions may induce neuropsychological deficits. Rippeth
et al. (2004) carried out a comprehensive, demographically cor-
rected battery of tests to evaluate seven neurobehavioral domains:
attention/working memory, verbal fluency, learning, recall,
abstraction/problem solving, speed of information processing and
motor skills. Study groups were comparable for age, education
and ethnicity. Each test yielded a performance score susceptible

Fig. 2. Exact versus near adjustment to theoretical requirements of PMI and TSI, respectively. The properties considered are: (a) Invariance; (b) linear changes with regards to
variations in the size of shared entries between lists; (c) inverse changes with regards to variation in size of the largest list. Values for input triple data (a, b, c) are in the x axis.
Square (j) and diamond (�) symbols correspond to responses of PMI and TSI, respectively.
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of being converted later into a binary response after applying a gi-
ven cutoff. This last procedure was used by Deutsch et al. (2006) in
order to assess, in the cohort of HIV-negative subjects, if individu-
als classified as methamphetamine dependent (meth+) had similar
neuropsychological performance but dissimilar to the pattern
found outside this group, that is, individuals not dependent on
methamphetamine (meth�). Deutsch et al. (2006) studied the
multivariate binary profile of 68 meth+ and 47 meth� individuals
for the seven neurological skills already mentioned. Dice, Jaccard,
TSI and the simple matching coefficients were applied on data to
obtain pairwise scores of similarity. Then, Deutsch et al. (2006)
tested if the meth+ individuals were significantly more similar to
each other than to individuals outside that group. For this, authors
used the distinctness measure (Sokal and Rohlf, 1995) as the test
statistic and performed a permutation test involving 1000 random
arrangements of meth+ and meth� individuals into groups of 68
and 47 individuals as the original cluster sizes. Finally, they com-
pared the observed distinctness value against the randomized dis-
tribution at a one-sided significance level. Table 1 summarizes the
results of the permutation test, including now the PMI contribution

and ignoring the simple matching coefficient because this last
measure is also sensitive to the parameter d (co-occurrence of ab-
sences), a feature explicitly disregarded by PMI and related mea-
sures under comparison. Despite minor numerical differences
between our Table 1 and Deutsch et al. (2006, Table 3), attributable
maybe to both random sampling noise and round off errors, they
lead to the same conclusion: in opposition to the TSI, the simpler
Dice and Jaccard coefficients enabled us to accept the hypothesis
of similar pattern of cognitive functioning for the meth+ cluster.
Noticeably, this conclusion still stays when PMI is implemented,

Fig. 3. Indices responses under different similarity scenarios, with fixed both joint total and number of shared entries. Scenarios are given as a series of 501 triples of
parameters (a, b, c), starting with (500, 0, 1000) and ending at (500, 500, 500). Each new triple is obtained adding and subtracting the unity to b and c of the immediate
preceding triple, respectively. In the x axis, n ranges from 1 to 501. Firstly, note the null sensitivity of the commonly used measures Jaccard and Dice. Lastly, note the opposite
behavior of PMI and TSI.

Table 1
Distinctness values for the cluster of subjects positive for the use of
methamphetamine.

INDICES Distinctness score P-value

PMI 0.0818 0.0010
Dice 0.0722 0.0020
Jaccard 0.0531 0.0020
TSI 0.0038 0.4086

1574 D.A. Dos Santos, R. Deutsch / Pattern Recognition Letters 31 (2010) 1570–1576
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giving even more support to the hypothesis of a similar pattern of
cognitive functioning.

4.3. Application 2: Myrmecological example

Longino et al. (2002) surveyed the ant fauna of La Selva Biolog-
ical Station, Heredia Province, Costa Rica, through eight sampling
methods falling into three categories: (1) canopy Fogging and Mal-
aise traps sample the arboreal fauna; (2) Berlese, Winkler, Barger,
and Thompson sample the soil and litter fauna; and (3) Longino
and Other sample a combination of microhabitats. Given a local
fauna like ants of La Selva Biological Station, it seems reasonable
to expect a grouping of samples adjusted to these three categories
delineated out by Longino et al. (2002), if we accept that different
habitats produce a differential assemblage composition. The data
set to be analyzed consists of 455 species � 8 samples incidence
(presence–absence) matrix, and it is publicly available in ESA’s
Electronic Data Archive: Ecological Archives E083-011-A1 (http://
www.esapubs.org/archive/ecol/E083/011/appendix-A.htm). From
this data set, the similarity matrix S = [sij] is calculated, reflecting
each entry sij the strength of association (measured with some sim-
ilarity index) between ant sample methods i and j. As we are deal-
ing with the indices Dice, Jaccard, TSI and PMI, we will obtain four
similarity matrices. The next step was to evaluate, for each similar-
ity matrix, the optimal flat partition of the eight methods into three
blocks and compare these results with the expected partition
{{Fogging, Malaise}, {Berlese, Winkler, Barger, Thompson}, {Longino,
Other}}. The Stirling number of the second kind, i.e. the number
of ways that n elements can be arranged into k non-empty subsets,
for n = 8 sample methods and k = 3 blocks is 966, representing an
accessible quantity to carry out an exhaustive search for the opti-
mal partition. The similarities of each method to the others have
been considered features or dimensions in the Euclidean space.
The objective function to be minimized was the sum of squared
distances of each item to the centroid of its respective membership
block, a criterion compatible with the standard K-means method to
produce flat partitions (e.g. Ball and Hall, 1967; MacQueen, 1967;
Anderberg, 1973; Jain and Dubes, 1988). After enumerating all pos-
sible partitions with the R package partitions (Hankin and West,
2008), solely the matrix S based on PMI returned an optimal parti-
tion fully coincident with expectations (Fig. 4). The remaining sim-
ilarity matrices, based on TSI, Jaccard and Dice coefficients,
promoted the following partition as the optimal one: {{Fogging,
Malaise, Longino, Other}, {Berlese, Winkler}, {Barger, Thompson}}.
The important issue to remark here is the complete agreement
between the expected partition of methods on the grounds of

ecological foundations and that optimal partition induced by the
PMI scores, a result not reached with alternative similarity
measures.

5. Discussion

The Jaccard index of similarity and the closely related Dice in-
dex are the two oldest and most widely used similarity indices
for assessing compositional similarity of assemblages (Chao
et al., 2005; Magurran, 2004). However, the selection of a partic-
ular index should not be based on subjective preferences or on
previous widespread usage (Baselga et al., 2007). These indices
are subject to aliasing, that is, they are prone to provide the
same score under very different input data sets (Tulloss, 1997).
The same index value can be obtained at very different pairs
of parameters (b, c) if b and c yield the same value when
summed, being thus the Requirement 1 not completely satisfied,
because some insensitivity to the difference in size of the input
data is exhibited for these measures.

A more sophisticated measure oriented to overcome shortcom-
ings of alternative measures is the TSI. Although TSI may achieve
numerical proxies to the values expected by the requirements,
there is no rigorous proof of adjustment to all requirements.
The critical case has suggested that TSI may judge as more simi-
lar, rather than less similar, a pair of lists equally sized but with
some trend to disassociation of attributes, because of its associ-
ated U function rising up when lists become balanced in size to
the extent of masking the decreasing trends of accompanying
functions R and S.

PMI fulfills all the theoretical requirements of similarity mea-
sures raised by Tulloss (1997). The empirical examples have
shown an acceptable performance of PMI, enabling to recover
information considered a priori as intuitively reasonable. PMI is
a measure easy to obtain and has an inherent meaning helping
to the interpretation of results. Thus, if we are comparing two
lists very unbalanced in size, say 10 and 100, and we obtain a
PMI of 0.3, that result implies that both lists share the 30% of
attributes on average along the domain of list sizes ranging from
the smallest to the largest one. Future research direction is re-
lated to the extension of this measure to: (1) the analysis of eco-
logical abundance tables, and (2) the search of similarities
among geographical distributions in considering both the lists
of areas where species occur in addition to the pattern of area
occupancy.
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Appendix A

The following R script (R Development Core Team, 2008) calcu-
lates the Positive Matching Index between the lists of features of
two items. Parameters a (shared entries), b (unique positive entries
of list 1) and c (unique positive entries of list 2) correspond to input
variables of identical labels. The argument dropReq8 is used to
enable the comparison (TRUE) or not (FALSE) of lists without posi-
tive entries, that is, lists with all entries coded 0 throughout the set
of attributes.

Fig. 4. Ants sample methods grouped into classes of similarity propinquity. The
objective function for optimal partitions was the same as the K-means algorithm.
Distances were calculated over the profile of cross similarities among methods.
Complete enumeration of partitions of eight items into three blocks was carried out.
Observe the perfect agreement between the partition of sample methods induced
by the PMI similarity matrix and the categorical partition related to the type of
explored habitat.

D.A. Dos Santos, R. Deutsch / Pattern Recognition Letters 31 (2010) 1570–1576 1575



Author's personal copy

PMI <- function(a, b, c, dropReq8 = TRUE) {
stopifnot(all(c(a, b, c) >= 0)) # Negative values are invalid.
if (!dropReq8) stopifnot((a + b > 0) && (a + c > 0)) # Stop if both lists show no

positive entry
if (a == 0) return(0) # No positive match occurs.

# Trivial case can be evaluated
# if Requirement 8 would be dropped out.

if (b == c) return(a/(a + b)) # Equation (1).
return(a/abs(b � c) * log((a + max(b, c))/(a + min(b, c)))) # Equation (2).
}
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