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Abstract

Let A be a BCK-algebra and f : Ak → A a function. The main
goal of this paper is to give a necessary and sufficient condition for f
to be compatible with respect to every relative congruence of A. We
extend this result in some related algebras, as for example in pocrims.

1 Introduction and basic results

If A is an algebra we write A in order to refer to the universe of A. Given
a quasivariety K and A ∈ K it is usually convenient to consider not every
congruence of A, but only those whose quotient A/θ satisfies some addi-
tional conditions. For instance, it is natural to study only those congruences
of A whose quotient A/θ belongs to K. If θ is a congruence in A, we say
that θ is a K-congruence (or a congruence relative to K) if A/θ ∈ K. Let
K be a quasivariety and A ∈ K. As usual, Con(A) denotes the partially
ordered set of all congruences on A and ConK(A) denotes the partially or-
dered set of all K-congruences on A. It is well known that ConK(A) is an
algebraic (complete) lattice [20]. For A ∈ K, a ∈ A and θ an equivalence
relation on A, we write a/θ for the equivalence class of a associated to θ.
We also write θ(a, b) for the smallest congruence which contains the pair
(a, b): these congruences are called principal congruences. Analogously, we
write θK(a, b) for the smallest K-congruence which contains the pair (a, b),
and these congruences are called principal K-congruences.

Let K be a variety and A ∈ K. Then Con(A) = ConK(A), so the
definition of K-congruence of A coincides with the definition of congruence
of A and θK(a, b) = θ(a, b) for every a, b ∈ A.

Let A be an algebra and f : An → A a function. We say that f is
compatible with a congruence θ of A if (ai, bi) ∈ θ for i = 1 . . . n implies
(f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ. We say that f is a compatible operation of
A provided it is compatible with all the congruences of A.
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Definition 1.1. [7] Let K be a quasivariety, A ∈ K and f : An → A a map.
We say that f is a K-compatible operation of A provided it is compatible
with all K-congruences of A.

If there is not ambiguity, we write relatively compatible operation instead
of K-compatible operation. Let A be an algebra, f : An → A a function
and a = (a1, . . . , an) ∈ An. For i = 1, . . . , n we define unary functions
fai : A→ A by

fai (b) := f(a1, . . . , ai−1, b, ai+1, . . . , an).

Remark 1.2. Let K be a quasivariety and A ∈ K.

1. Let f : A → A be a function. Then f is K-compatible if and only if
(f(a), f(b)) ∈ θK(a, b) for every a, b ∈ A.

2. Let f : An → A be a function. Then f is K-compatible if and only if
for every a ∈ An and every i = 1, . . . , n the functions fai : A → A are
K-compatible.

3. If K is a variety and f : An → A is a function then f K-compatible if
and only if f is compatible.

In [12] it was introduced the implicit definibility by equations of new
operations in quasivarieties.

Definition 1.3. Let Σ be a basis of a quasivariety K of type τ . If C is a
set of new operations symbols such that τ ∩ C = ∅, and E(C) is a set of
identities in the extended type τ∪C, we denote by K(E(C)) the quasivariety
of algebras of type τ ∪C that satisfy the quasiequations in the set Σ∪E(C).
We say that E(C) implicitly defines C, if in each algebra A ∈ K there is at
most one family {fA : An → A}f∈C such that for every f ∈ C we have that
(A, fA) ∈ K(E(C)) and fA are K-compatible. If E(C) implicitly defines C
then we say that the quasivariety K(E(C)) is a natural expansion of (the
type τ of algebras in) K [12].

In this paper we mainly consider BCK-algebras and related structures,
like pocrims [11]. The variety of BCK meet semilattices and the variety of
BCK join semilattices are natural expansions of the quasivariety of BCK-
algebras, see [12, Subsection 4.2]. The quasivariety of pocrims is also a
natural expansion of the quasivariety of BCK-algebras, which is mentioned
in the last paragraph of [12, Section 1]. For more details about BCK-
algebras see [4, 13, 22, 23, 30].

Remark 1.4. Given a BCK-algebra we have that the meet, the join and
the fusion (product), if they exist, are relatively compatible operations.
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The classes of BCK meet semilattices, pocrim meet semilattices and
pocrim join semilattices are arithmetical varieties, so they are strictly lo-
cally affine complete varieties [28, Section 3.4.3]. References to fundamental
papers on varieties of BCK-algebras and pocrims are [4, 5, 27].

The paper is organized as follows. In Section 2 we bring a description of
the relatively compatible operations in BCK-algebras. Moreover, we intro-
duce an example of a new implicit function. In Section 3 we apply the re-
sults of Section 2 to the classes of pocrims [11], pocrim meet semilattices and
pocrim join semilattices respectively. Finally, in Section 4 we generalize pre-
viously established to certain non-commutative analogues of BCK-algebras
and pocrims, the so called pseudo BCK-algebras of the Rumanian school
[29]. This section is mostly relating to managing the non-commutative as-
pect of the monoidal operation.

2 Relatively compatible functions in BCK-algebras

In this section we characterize the relatively compatible functions in BCK-
algebras. We also introduce and study an example of relatively compatible
function in BCK-algebras which is a generalization of the successor function
studied by Caicedo and Cignoli as an example of an implicit compatible
operation on Heyting algebras [6].

We start with some preliminary definitions and properties involving
BCK-algebras and its logical counterpart. Furthermore, we describe the
original motivation for the study of relatively compatible operations on
BCK-algebras.

Definition 2.1. An algebra (A,→, 1) of type (2, 0) is a BCK-algebra if it
satisfies the following conditions for every a, b, c ∈ A:

(BCK1) (a→ b)→ ((b→ c)→ (a→ c)) = 1,

(BCK2) a→ ((a→ b)→ b) = 1,

(BCK3) a→ a = 1,

(BCK4) a→ 1 = 1,

(BCK5) if a→ b = b→ a = 1 then a = b.

The above presentation of BCK-algebras is somewhat unusual. The
most of the literature concerning BCK-algebras employs the dual notion,
i.e., a ∗ b and 0 instead b → a and 1 respectively 1. We opt by the second
notation which makes it possible to view the binary operation of BCK-
algebras as a kind of implication and makes it more natural to add lattice

1The definition of BCK-algebra, in the dual presentation of Definition 2.1, was intro-
duced by K. Iséki and Y. Imai in [24].
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operations to BCK-algebras as they correspond to the well known logical
operations of conjunction and disjunction. The equivalence of this two forms
of presentation is folklore, see for example [23]. Some additional standard
references about the subject are [13, 30], among others.

In every BCK-algebra we can define a partial order by

a ≤ b if and only if a→ b = 1.

The class of BCK-algebras is a quasivariety which is not a variety since,
as it was proved in [34], it is not closed under homomorphic images. We
write BCK for the quasivariety of BCK-algebras.

Remark 2.2. Let K be a quasivariety. We write V(K) for the variety
generated by K and H(K) for the class of homomorphic images of members
of K [33]. Then V(K) = H(K). Therefore, V(BCK) = H(BCK).

We summarize some properties of BCK-algebras in the following lemma
[11].

Lemma 2.3. Let A ∈ BCK. Then the following conditions hold:

(1) 1→ a = a,

(2) a ≤ b implies b→ c ≤ a→ c and c→ a ≤ c→ b,

(3) a ≤ b→ a,

(4) a→ (b→ c) = b→ (a→ c),

(5) (a→ b)→ ((c→ a)→ (c→ b)) = 1,

(6) a→ b = (((a→ b)→ b))→ b.

2.1 Logical motivation

The logic counterpart of the quasivariety BCK is the BCK-logic, which is
defined as follows [18]:

• The only connective in the language is →.

• The axioms are three:

(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)),

(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)),

(K) ϕ→ (ψ → ϕ).

• The only inference rule considered is Modus Ponens.

The preceding axioms imply the theorem ϕ→ ϕ.
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Remark 2.4. The BCK-logic is algebraizable with equivalence formulas
{ϕ → ψ,ψ → ϕ} and defining equation ϕ ≈ (ϕ → ϕ). The quasivariety
BCK is the equivalent algebraic semantics for the BCK-logic [2].

Let L be an algebraizable logic [2] with a system of equivalence formulas
p ⇔ q (see [7] for details about notation). We write `L ∇ in order to
indicate that ∇ is deducible in L. We say that an extension L(C) of L by
axioms and rules involving a family of new connective symbols C defines C
implicitly if `L(C)∪L(C′ ) ∇(p1 . . . pn) ⇔ ∇′

(p1 . . . pn) for each ∇ ∈ C, where

C
′

is a family of disjoint copies of the symbols in C, and L(C)∪L(C
′
) is the

structural extension of the logic L(C) by the ∇′
-duplicates of the axioms

and rules of L(C).

Remark 2.5. Let L be the BCK-logic. Then L defines implicitly C if
`L(C)∪L(C′ ) ∇(p1 . . . pn) → ∇′

(p1 . . . pn) and `L(C)∪L(C′) ∇
′
(p1 . . . pn) →

∇(p1 . . . pn) for each ∇ ∈ C.

In algebraic logic, relatively compatible functions are concerned with
implicitly defined connectives [6, 7]. Adding connectives to extend a logic
in a natural way has been broadly studied. For the classical propositional
calculus, if an axiomatic extension defines implicitly a new connective this
must be deductively equivalent to a combination of classical connectives. In
the intuitionistic propositional calculus there are axiomatic extensions that
define implicitly new connective which are not deductively equivalent to a
combination of intuitionistic connectives [6].

An extension of a logic L will be called axiomatic if it may be defined
by adding a set of axiom schemes to L but no new inference rules. We will
establish a link between the implicit connectives of an algebraizable logic
L and the relatively compatible functions of the corresponding quasivariety
KL obtained via the process of algebraization of Blok-Pigozzi [2].

Remark 2.6. Let L be an algebraizable logic and L(C) an axiomatic ex-
tension defining implicitly a family of connectives C. Then

1. L(C) is algebraizable via the same equivalence formulas and defining
equations of L [7, Theorem 1]. Moreover, KL(C) consists of all algebras
(A,∇A)∇∈C , A ∈ KL, satisfying the identities and quasi-identities
corresponding to the axioms and rules of L(C). The algebraic inter-
pretation of the connectives ∇ ∈ C does not necessarily exist in every
algebra A ∈ KL. However, for each A ∈ KL there is at most one family
of functions {∇A : ∇ ∈ C} such that (A,∇A) ∈ KL [7, Corollary 2].

2. The functions ∇A, ∇ ∈ C, are KL-compatible whenever they exist [7,
Theorem 4].
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Remark 2.6 can be applied for L = BCK. The logical motivation for
the study of BCK-compatible operations comes from the notion of implicit
connective in the BCK-logic. However, in this paper we focus our attention
only in an algebraic aspect of the subject. More precisely, we make an
approach about BCK-compatible operations.

2.2 BCK-compatible operations

Let A ∈ BCK. Recall that a subset F of A is said to be an implicative filter
(or deductive system) if 1 ∈ F , and b ∈ F whenever a ∈ F and a → b ∈ F
[12]. Implicative filters are also known as a (dual) ideal in the literature on
BCK-algebras. In other words, the definition of implicative filter is another
name for the familiar notion of (dual) ideal [4, 5]. For any implicative filter
F we define the binary relation ΘF by

(a, b) ∈ ΘF if and only if a→ b ∈ F and b→ a ∈ F. (1)

In [4, Proposition 1] the following result is proved.

Lemma 2.7. Let A ∈ BCK. There exists an order isomorphism between
the poset ConBCK(A) and the poset of implicative filters of A, which is es-
tablished via the mappings θ 7→ 1/θ and F 7→ ΘF .

Corollary 2.8. Let A ∈ BCK, a, b ∈ A and θ ∈ ConBCK(A). Then (a, b) ∈ θ
if and only if (a→ b, 1) ∈ θ and (b→ a, 1) ∈ θ.

Proof. It follows from Lemma 2.7.

Let A ∈ BCK and a, b ∈ A. We define a→1 b = a→ b and for k ≥ 1,

a→k+1 b = a→ (a→k b)

Let X ⊆ A. We write 〈X〉 by the filter generated by X. It is known that if
X 6= ∅ then 〈X〉 is described by

〈X〉 = {b ∈ A : a1 → (. . .→ (an → b) . . .) = 1 for some a1, . . . , an ∈ X}.
(2)

The previous description of 〈X〉 is due to Iséki [25, 26]. In particular, if
X = {a1, . . . an} we write 〈a1 . . . an〉 instead of 〈{a1 . . . an}〉. For every
b ∈ A we have that

〈a〉 = {b ∈ A : a→n b = 1 for some n}. (3)

Let A ∈ BCK. The equations a → (b → c) = b → (a → c) and a → 1 = 1
imply that a ∈ 〈b, c〉 if and only if there are n and m natural numbers such
that b →n (c →m a) = 1, which is equivalent to say that there is a natural
number n such that b→n (c→n a) = 1.
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Lemma 2.9. Let A ∈ BCK and a, b ∈ A. Then (c, d) ∈ θBCK(a, b) if and
only if c→ d ∈ 〈a→ b, b→ a〉 and d→ c ∈ 〈a→ b, b→ a〉.

Proof. We write τ for arbitrary BCK-congruences of A. Since θBCK(a, b) =⋂
(a,b)∈τ τ then it follows from Corollary 2.8 that

θBCK(a, b) =
⋂

a→b,b→a∈1/τ

τ.

Then, by Lemma 2.7 we have that 1/θBCK(a, b) = 〈a → b, b → a〉. Thus,
again by Corollary 2.8 we obtain (c, d) ∈ θBCK(a, b) if and only if c →
d ∈ 1/θBCK(a, b) and d → c ∈ 1/θBCK(a, b), which happens if and only if
c→ d ∈ 〈a→ b, b→ a〉 and d→ c ∈ 〈a→ b, b→ a〉.

In what follows we describe the unary BCK-compatible functions:

Proposition 2.10. Let A ∈ BCK and f : A → A. Then f is BCK-
compatible if and only if f(a)→ f(b) ∈ 〈a→ b, b→ a〉 for every a, b ∈ A.

Proof. It follows from Lemma 2.9.

The following corollary will be used in the next subsection.

Corollary 2.11. Let A ∈ BCK and f : A→ A a function.

(1) If a → b ≤ (b → a) → (f(a) → f(b)) for every a, b ∈ A then f is
BCK-compatible.

(2) If a ≤ f(a) and f(a → b) ≤ f(a) → f(b) for every a, b ∈ A then f is
BCK-compatible.

Proof. Suppose that for every a, b ∈ A, a → b ≤ (b → a) → (f(a) → f(b)).
This inequality implies that f(a)→ f(b) ∈ 〈a→ b, b→ a〉. Hence, it follows
from Proposition 2.10 that f is BCK-compatible.

Finally suppose that for every a, b ∈ A, a ≤ f(a) and f(a→ b) ≤ f(a)→
f(b). In particular, a→ b ≤ f(a→ b) ≤ f(a)→ f(b). Since

f(a)→ f(b) ≤ (b→ a)→ (f(a)→ f(b))

then a → b ≤ (b → a) → (f(a) → f(b)). Therefore, f is BCK-compatible.

There are many connections between the existing literature and con-
gruence preservation schemes [17] in the framework of BCK-varieties, i.e.,
varieties contained in the quasivariety BCK. In what follows we will explicit
some of these connections.

We start recalling that a BCK-algebra is said to be (k + 1)-potent if
a →k b = a →k+1 b for every a, b [4, 5]. We write Ek for the class of
(k + 1)-potent BCK-algebras.
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Remark 2.12. The class Ek is a variety. Moreover, if A ∈ BCK and A is
finite then there is k such that A ∈ Ek [5].

A ternary deductive term (briefly, a TD term) for a variety V is a ternary
term ρ in the language of V such that: 1) V satisfies ρ(a, a, c) = c; 2) for all
A ∈ V and a, b, c, d ∈ A, if (c, d) ∈ θ(a, b) then ρA(a, b, c) = ρA(a, b, d).

Remark 2.13. The term ρ(a, b, c) = (a → b) →k ((b → a) →k c) is a TD
term for the variety Ek [5].

It follows from [3, Corollary 2.5] that if V is a variety and A ∈ V then
(c, d) ∈ θ(a, b) if and only if ρ(a, c, d) = ρ(b, c, d). Combining the previous
result with Remark 2.13 we obtain the following properties for A ∈ Ek:

1) (c, d) ∈ θ(a, b) if and only if (a → b) →k ((b → a) →k c) = (a → b) →k

((b→ a)→k d).

2) Let f : A → A be a function. Then f is compatible if and only if
(a→ b)→k ((b→ a)→k f(a)) = (a→ b)→k ((b→ a)→k f(b)).

Hilbert algebras [15], also known as positive implicative BCK-algebras
[14], may be characterized as the 2-potent BCK-algebras [5, pp. 294]. Thus,
if A is a Hilbert algebra and f : A→ A is a function then f is compatible if
and only if (a→ b)→ ((b→ a)→ f(a)) = (a→ b)→ ((b→ a)→ f(b)) for
every a, b ∈ A. Straightforward computations show that the last assertion
is equivalent to the inequality a → b ≤ (b → a) → (f(a) → f(b)) for every
a, b ∈ A. This characterization of unary compatible functions in Hilbert
algebras was also proved in [10].

2.3 An example of BCK-compatible operation: the successor

During the decade of the 70’s the Chisinau group headed by Kuznetsov in-
troduced the notion of ∆-pseudoboolean algebra. These algebras were later
named KM-algebras by Esakia. Historical remarks about these algebras can
be found in [31]. A KM-algebra is a Heyting algebra endowed with a unary
map which satisfies certain identities. This unary map is called successor
by Caicedo and Cignoli in [6]. They considered it as an example of an im-
plicit compatible operation on Heyting algebras. The compatibility of the
successor function was originally proved by Simonova in [33, Proposition 1].

Later, the successor function was generalized for the case of Hilbert
algebras, and it was proved that it is also compatible [10]. Inspired by the
definition given in [10], we will define a unary operation in BCK-algebras.

Definition 2.14. Let A ∈ BCK. A function S : A → A is called the
successor function provided it satisfies the following inequalities:

(S1) a ≤ S(a),
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(S2) S(a) ≤ ((b→ a)→ b)→ b,

(S3) S(a)→ a = a.

Remark 2.15. A function which satisfies these previous conditions is nec-
essarily unique. In order to prove it, let Ŝ be a map that satisfies (S1), (S2)
and (S3). It follows from (S2) that S(a) ≤ ((Ŝ(a) → a) → Ŝ(a)) → Ŝ(a).
By (S3) we have that Ŝ(a)→ a = a, so S(a) ≤ (a→ Ŝ(a))→ Ŝ(a). Taking
into account (S1) we have that a → Ŝ(a) = 1, so S(a) ≤ 1 → Ŝ(a) = Ŝ(a).
Hence, S(a) ≤ Ŝ(a). Replacing S by Ŝ we have the other inequality. There-
fore, S(a) = Ŝ(a). Also note that it follows from (S1) and (S3) that S(x) = x
if and only if x = 1. In particular, S(1) = 1.

We will call to the function S the successor function, or simply the suc-
cessor. In [10], the successor for Hilbert algebras was defined through the
inequalities (S2) and S(a)→ a ≤ S(a). In Hilbert algebras this definition is
equivalent to the Definition 2.14, which follows from [10, Sect. 3, Corollary
4]. This property also holds for BCK-algebras.

Proposition 2.16. Let A ∈ BCK. The successor function is characterized
by (S2) and the inequality S(a)→ a ≤ S(a).

Proof. The same proof of [10, Sect. 3, Lemma 3] can be applied.

Lemma 2.17. Let A ∈ BCK and assume that the successor exists on A.
Then

S(a) = min {b ∈ A : b→ a = a and a ≤ b}

for every a ∈ A.

Proof. For every a ∈ A we define Ea = {b ∈ A : b → a = a and a ≤ b}. By
(S1) and (S3) we have that S(a) ∈ Ea. Let b ∈ Ea. Taking into account
(S2) we have that

S(a) ≤ ((b→ a)→ b)→ b
= (a→ b)→ b
= 1→ b
= b.

Therefore, S(a) ≤ b, as needed.

In the following remark we will prove that it is possible to find a BCK-
algebra with the following property: the function Ŝ given by Ŝ(a) = min Ea
exists but Ŝ is not the successor function.
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Remark 2.18. Consider the well known MV -algebra H3 = {0, a, 1} with
0 < a < 1. The implication is given by

→ 0 a 1

0 1 1 1
a a 1 1
1 0 a 1

Then (H3,→, 1) ∈ BCK. Straightforward calculations prove that Ŝ(b) = 1
for every b ∈ H3. Since ((a → 0) → a) → a = a and Ŝ(0) � a then (S2) is

not satisfied by Ŝ.

Lemma 2.19. Let A ∈ BCK and assume that the successor exists on A.
For every a, b ∈ A the equality (S(b)→ a)→ b = S(b)→ (a→ b) holds.

Proof. First we prove that

a→ b = (S(b)→ a)→ b. (4)

In order to show this equality, let a, b ∈ A. Since a ≤ S(b) → a then
a → b ≥ (S(b) → a) → b. Conversely, a → b ≤ (S(b) → a) → (S(b) → b).
Since S(b) → b = b then a → b ≤ (S(b) → a) → b. Thus we have proved
(4). It follows from (4) that

(S(b)→ a)→ b = a→ b
= a→ (S(b)→ b)
= S(b)→ (a→ b),

which completes the proof.

Finally we will show that the relatively compatibility of the successor.

Proposition 2.20. Let A ∈ BCK and assume that the successor exists.
Then, for every a, b ∈ A, S(a → b) ≤ S(a) → S(b). Moreover, S is BCK-
compatible.

Proof. Let a, b ∈ A. By (S2) and Lemma 2.19 we have that

S(a→ b) ≤ ((S(b)→ (a→ b))→ S(b))→ S(b)
= ((S(b)→ a)→ b)→ S(b))→ S(b).

Then,
S(a→ b) ≤ ((S(b)→ a)→ b)→ S(b))→ S(b). (5)

As b ≤ S(b) we have that (S(b)→ a)→ b ≤ (S(b)→ a)→ S(b). Thus,

((S(b)→ a)→ S(b))→ S(b) ≤ ((S(b)→ a)→ b)→ S(b). (6)
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Using (S2) and the inequality (6) we obtain that

S(a) ≤ ((S(b)→ a)→ S(b))→ S(b)
≤ ((S(b)→ a)→ b)→ S(b),

so we deduce the inequality

((S(b)→ a)→ b)→ S(b))→ S(b) ≤ S(a)→ S(b). (7)

It follows from (5) and (7) that

S(a→ b) ≤ S(a)→ S(b). (8)

Therefore, it follows from the inequality (8) and Corollary 2.11 that S is
BCK-compatible.

Remark 2.21. By Remark 2.15 and Proposition 2.20 we obtain that the
quasivariety BCK(E({S})) is a natural expansion of BCK.

There are linearly-ordered Heyting algebras, i.e. Heyting algebras whose
associated order is total, where it is not possible to define the successor
function. For example, it is not possible to define the successor function in
the real interval [0, 1] with the usual structure of Heyting algebra. In finite
Heyting algebras there exists the successor function [16]. In particular, in
finite linearly-ordered Heyting algebras we have that

S(a) =

{
a+, if a 6= 1;

1, if a = 1.

where a+ is the minimum of the set {b : b > a}.
Linearly-ordered BCK-algebras have been studied by Garćıa Olmedo

and Rodŕıguez Salas [19] among others. There are finite linearly-ordered
BCK-algebras where it is not possible to define the successor function, as
it was mentioned in Remark 2.18. In the particular case of finite linearly-
ordered Hilbert-algebras with successor we have that S(a) = a+ for a 6=
1. In order to show it, let a 6= 1. Suppose that a+ ≤ a+ → a. Then
a+ → (a+ → a) = 1. Since a+ → (a+ → a) = (a+ → a+) → (a+ → a),
a+ → a+ = 1 and 1→ a+ = a+ then a+ → a = 1. Thus we obtain a+ ≤ a,
which is a contradiction. Hence, a+ → a ≤ a+. By (S2) we have that
S(a) ≤ ((a+ → a) → a+) → a+, so S(a) ≤ a+. Then it follows from (S1)
that a ≤ S(a) ≤ a+, so S(a) = a or S(a) = a+. Suppose that S(a) = a, so
a = 1, which is a contradiction. Therefore, S(a) = a+.

It would be interesting to have answers to the following general questions:
1) in finite linearly-ordered BCK-algebras where it is possible to define
the successor function, does S take the form S(a) = a+ for a 6= 1? 2) is
BCK(E({S})) a variety?
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3 Relatively compatible operations in pocrims

In this section we lift the results of the previous section to the quasivariety
of pocrims. We start with some basic properties of pocrims which can be
found in [11].

Definition 3.1. A structure (A,≤, ·, 1) is called a partially ordered monoid
if (A,≤) is a poset, (A, ·, 1) is a monoid and for all a, b, c ∈ A, if a ≤ b then
a ·c ≤ b ·c and c ·a ≤ c ·b. Moreover, if 1 is the greatest element of (A,≤) we
say that (A, ·, 1,≤) is integral. A partially ordered commutative monoid is
a partially ordered monoid where · is a commutative operation. A partially
ordered commutative monoid (A,≤, ·, 1) is said to be residuated if for any
a, b ∈ A there is a largest c ∈ A, denoted by a→ b and called the residuum
of a with respect to b, such that a · c ≤ b, i.e., → is an additional binary
operation on A satisfying the adjointness condition: a ≤ b → c if and only
if a · b ≤ c.

The term pocrim is an acronym for partially ordered commutative resid-
uated integral monoid. Since 1 is assumed to be the greatest element, the
adjointness condition a ≤ b holds if and only if a→ b = 1. This fact allows
us to consider pocrims as algebras (A, ·,→, 1) of type (2, 2, 0).

Pocrims constitute a quasivariety which is not a variety, that is, they
are not closed under the formation of homomorphic images. This fact was
proved by Higgs in [21]. In particular, we have that V(POC) = H(POC).

Remark 3.2. An algebra (A, ·,→, 1) is a pocrim if and only if satisfies the
following conditions: 1) (A, ·, 1) is a commutative monoid; 2) (A,→, 1) is a
BCK-algebra, 3) (A, ·,→, 1) satisfies the identity (a · b)→ c = a→ (b→ c).
See for example [11, Theorem 1.7.8].

We write POC for the class of pocrims. Let (A, ·,→, 1) ∈ POC. Then
a · (a→ b) ≤ b and a→ b ≤ (a · c)→ (b · c). Let A ∈ POC and a ∈ A. We
define a1 = a, a2 = a · a and an+1 = an · a.

Remark 3.3. Let A ∈ POC.

(1) If F ⊆ A and 1 ∈ F , we say that F is a filter if a · b ∈ F whenever
a, b ∈ F , and if a ≤ b and a ∈ F then b ∈ F . In particular, F is a filter
if and only if F is an implicative filter [11].

(2) If F is a filter, then a, b ∈ F if and only if a · b ∈ F .

(3) If X = {a1, . . . , an} then 〈X〉 = 〈a1 · . . . · an〉. Moreover, 〈a〉 = {b ∈ A :
an ≤ b for some natural number n}.

Let A ∈ POC and a, b ∈ A. We define the binary term ↔ by a ↔ b =
(a → b) · (b → a). Straightforward calculations based in Corollary 2.8 and
Remark 3.3 show the following lemma.
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Lemma 3.4. Let A ∈ POC, θ ∈ ConPOC(A) and a, b ∈ A. Then (a, b) ∈ θ
if and only a↔ b ∈ 1/θ.

Lemma 3.5. Let A ∈ POC and a, b ∈ A. Then (c, d) ∈ θPOC(a, b) if and
only if (a↔ b)n ≤ c↔ d for some natural number n.

Proof. It follows from Lemma 2.9 and Remark 3.3.

The following lemma follows from Lemma 3.5.

Lemma 3.6. Let A ∈ POC and f : A → A a function. Then f is POC-
compatible if and only if for every a, b ∈ A there exists a natural number n
such that (a↔ b)n ≤ f(a)↔ f(b).

In the following proposition we generalize Lemma 3.6.

Proposition 3.7. Let A ∈ POC and f : Ak → A a function.
The following conditions are equivalent:

(1) f is POC-compatible.

(2) For every a1, . . . , ak, b1, . . . , bk ∈ A there exists a natural number n such
that (a1 ↔ b1)

n · . . . · (ak ↔ bk)
n ≤ f(a1, . . . ak)↔ f(b1, . . . , bk).

Proof. In this proof we will use that for a, b, c ∈ A we have that

(a↔ b) · (b↔ c) ≤ a↔ c. (9)

Suppose that f is POC-compatible and let a1, . . . ak, b1, . . . , bk ∈ A. By
Remark 1.2 and Lemma 3.6 there are natural numbers n1, . . . , nk such that

(a1 ↔ b1)
n1 ≤ f(a1, a2, . . . , ak)↔ f(b1, a2, . . . , ak),

(a2 ↔ b2)
n2 ≤ f(b1, a2, a3, . . . , ak)↔ f(b1, b2, a3, . . . , ak),

...
(ak ↔ bk)

nk ≤ f(b1, . . . , bk−1, ak)↔ f(b1, b2, . . . , bk).

Let n be the maximum of the set {n1, . . . , nk}. Then, for every i = 1, . . . , k
we obtain that (ai ↔ bi)

n ≤ (ai ↔ bi)
ni . Thus,

(a1 ↔ b1)
n ≤ f(a1, a2, . . . , ak)↔ f(b1, a2, . . . , ak),

(a2 ↔ b2)
n ≤ f(b1, a2, a3, . . . , ak)↔ f(b1, b2, a3, . . . , ak),

...
(ak ↔ bk)

n ≤ f(b1, . . . , bk−1, ak)↔ f(b1, b2, . . . , bk).

Hence, straightforward computations based in (9) shows that

(a1 ↔ b1)
n · . . . · (ak ↔ bk)

n ≤ f(a1, . . . ak)↔ f(b1, . . . , bk).
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Conversely, assume the condition (2). Let θ ∈ ConPOC(A) and (ai, bi) ∈
θ for i = 1 . . . , k. We will prove that (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ θ. In
order to show it, first note that condition (2) says that there is a natural
number n such that

(a1 ↔ b1)
n · . . . · (ak ↔ bk)

n ≤ f(a1, . . . ak)↔ f(b1, . . . , bk). (10)

Since (ai, bi) ∈ θ then it follows from Lemma 3.4 that (ai ↔ bi, 1) ∈ θ, so
((ai ↔ bi)

n, 1) ∈ θ. Since (ai ↔ bi)
n ∈ 1/θ then

(a1 ↔ b1)
n · . . . · (ak ↔ bk)

n ∈ 1/θ.

Since 1/θ is a filter then, by (10), f(a1, . . . , ak)↔ f(b1, . . . , bk) ∈ 1/θ. Thus,
again by Lemma 3.4 we obtain (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ θ. Therefore,
f is POC-compatible.

Let f : Ak → A be a POC-compatible function, a = (a1, . . . , ak) and b =
(b1, . . . , bk) elements of Ak. Consider n(a, b) as a natural number associated
to (a, b) in the Proposition 3.7. If B is a finite subset of Ak and a ∈ B is
fixed, we have a finite family of natural numbers, namely, {n(a, b) : b ∈ B}.
Let na be the maximum of this family. For every b ∈ B we define

Tb = {(a1 ↔ b1)
na · (a2 ↔ b2)

na · . . . · (ak ↔ bk)
na · f(a) : a ∈ B}.

The following theorem shows that every POC-compatible function on
finite subsets can be written as a join of certain elements. Its proof is a
simple adaptation of the one given in [8, Theorem 12].

Theorem 3.8. Let f : Ak → A be a POC-compatible function, B a finite
subset of Ak and b ∈ B. Then there exists the supremum of Tb and f(b) =∨
Tb.

Proof. It follows from Proposition 3.7 that f(b) is an upper bound of Tb.
Since f(b) ∈ Tb then

∨
Tb exists and f(b) =

∨
Tb.

Let (A, ·,→, 1) ∈ POC. If (A,≤) is a meet semilattice, then the pocrim is
said to be a pocrim meet semilattice. The notion of pocrim join semilattice is
defined dually. If (A,≤) is a lattice then the pocrim is said to be an integral
commutative residuated lattice. To be more precise, a pocrim meet semilat-
tice is an algebra (A,∧, ·,→, 1) of type (2, 2, 2, 0), a pocrim join semilattice
is an algebra (A,∨, ·,→, 1) of type (2, 2, 2, 0) and an integral commutative
residuated lattice is an algebra (A,∧,∨, ·,→, 1) of type (2, 2, 2, 2, 0). Let us
emphasize that · is a commutative operation and 1 is the greatest element
respect to the order. The class of pocrim join semilattices is a variety [11,
Theorem 7.1.10] and the class of pocrim meet semilattices is also a variety
[11, Remark 7.1.11]. In particular, the class of integral commutative resid-
uated lattices is a variety. We write M for the variety of pocrims meet
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semilattices, J for the variety of pocrim join semilattices and RL for the
variety of integral commutative residuated lattices.

The following proposition is a consequence of the results of this section.

Proposition 3.9. Let A be an algebra of M, J or RL.

(1) Let a, b ∈ A. Then (c, d) ∈ θ(a, b) if and only if (a ↔ b)n ≤ c ↔ d for
some natural number n.

(2) Let f : Ak → A be a map. Then f is compatible if and only if for every
a1, . . . , ak, b1, . . . , bk ∈ A there exists a natural number n such that

(a1 ↔ b1)
n · . . . · (ak ↔ bk)

n ≤ f(a1, . . . , ak)↔ f(b1, . . . , bk).

(3) The varieties J and RL are locally affine complete, which means that
every compatible function is a polynomial map over finite sets [28].

Remark 3.10. For the case of integral commutative residuated lattices the
results of Proposition 3.9 are also particular cases from [8, Lemma 7], [8,
Theorem 8] and [8, Corollary 13], respectively.

Let A ∈ M. We define the term s(a, b) := (a → b) ∧ (b → a). Similar
ideas used in lemmas 3.5 and 3.6 can be adapted in order to show the
following results: 1) (c, d) ∈ θ(a, b) if and only if s(a, b)n ≤ s(c, d) for some
natural number n; 2) if f : A → A is a function, then f is compatible if
and only if for every a, b ∈ A there exists a natural number n such that
s(a, b)n ≤ s(f(a), f(b)). In [1] Agliano covers similar territory about pocrim
meet semilattices in a more general way. More precisely, part of the paper [1]
is concerned with BCI-monoids and its relation with principal congruences.
For example, the items 1) and 2) previosly mentioned appears in a more
general framework in [1, pp. 409-410]. Further connections with [1] may be
similarly established.

4 Appendix

Finally we extend some of the obtained results to the cases of pseudo BCK-
algebras and porims [29]. The techniques employed here are similar to that
used in the previous sections, except by some facts of a combinatorial char-
acter. To understand this situation we suggest to the reader to consult the
difference between the results for compatible operations given in [8] and [9].

Definition 4.1. A pseudoBCK-algebra is a structure (A,≤,→, , 1) where
(A,≤) is a poset with a greatest element 1, and→, are binary operations
on A such that for all a, b, c ∈ A:

(PBCK1) a→ b ≤ (b→ c) (a→ c), a b ≤ (b c)→ (a c),
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(PBCK2) a ≤ (a→ b) b, a ≤ (a b)→ b,

(PBCK3) a ≤ b if and only if a→ b = 1 if and only if a b = 1.

Remark 4.2. The underlying order ≤ can be retrieved via the condition
(PBCK3). In the rest of the paper a pseudo BCK-algebra (A,≤,→, , 1)
is going to be considered as an algebra (A,→, , 1) of type (2, 2, 0). Then
it is immediate that a pseudo BCK-algebra is a BCK-algebra if and only
if → and  coincide.

The class of pseudoBCK-algebras form a quasivariety denoted by PBCK.
Let A ∈ PBCK. Analogously to the case of BCK, we say that F ⊆ A is an
implicative filter if 1 ∈ F , and b ∈ F whenever a ∈ F and a → b ∈ F . If
X ⊆ A we also write 〈X〉 for the implicative filter generated by X. If X 6= ∅
then 〈X〉 is described as in (2) of Section 2. In particular, the implicative
filter generated by the singleton {a} is described as in (3) of Section 2. We
say that F is a compatible implicative filter if it is an implicative filter such
that a→ b ∈ F if and only if a b ∈ F , for every a, b ∈ A. For any implica-
tive filter F of a pseudo BCK-algebra, the binary relation ΘF is defined as
in (1) of Section 2. The following result appears in [29, Proposition 2.2.4].

Lemma 4.3. Let A ∈ PBCK. There exists an order isomorphism between
the poset ConPBCK(A) and the poset of compatible implicative filters of A,
which is established via the mappings θ 7→ 1/θ and F 7→ ΘF .

Given A ∈ PBCK and a ∈ A, by defining the polynomial functions ρa
and λa as ρa(b) = (b→ a)→ a and λa(b) = (b a) a, one can consider
for every not empty X ⊆ A, the set

Γ(X) = {(γa1 ◦ · · · ◦ γan)(b) : b ∈ X, ai ∈ A, γai ∈ {λai , ρai}, n ∈ N},

where N is the set of natural numbers. Let a = (a1, . . . , a2n) ∈ A2n and
consider αa = λa1 ◦ ρa2 ◦ λa3 ◦ . . . ◦ ρa2n . Straightforward calculations based
on the fact that ρa(a) = λa(a) = a allows one to show that

Γ(X) = {αa(b) : n ∈ N, a ∈ A2n, b ∈ X}. (11)

If X = {a1, . . . , an}, we write Γ(a1, . . . , an) to denote Γ({a1, . . . , an}).
Observe that a reformulation of [29, Theorem 2.5 (v)] gives as result that

an implicative filter F of A is compatible if and only if it is closed under ρa
and λa (in the sense that ρa(b), λa(b) ∈ F for all b ∈ F and a ∈ A).

Remark 4.4. Let A ∈ PBCK and X ⊆ A with X 6= ∅. If 〈X〉c stands
for the compatible implicative filter generated by X then it follows from [29,
Proposition 2.7] that 〈X〉c = 〈Γ(X)〉.
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Let A ∈ PBCK and X = {a1, . . . , an} ⊆ A. We write 〈a1, . . . , an〉c to
mean 〈{a1, . . . , an}〉c. Let A ∈ BCK and X ⊆ A. Since the compatible
implicative filters of A are exactly the implicative filters of A then 〈X〉 =
〈X〉c = 〈Γ(X)〉.

Lemma 4.5. Let A ∈ PBCK, a, b ∈ A and θ ∈ ConPBCK(A). Then (a, b) ∈
θ if and only if (a→ b, 1) ∈ θ and (b→ a, 1) ∈ θ.

Proof. It is consequence from a direct application of Lemma 4.3.

Lemma 4.6. Let A ∈ PBCK. Then 1/θPBCK(a, b) = 〈Γ(a→ b, b→ a)〉 for
every a, b ∈ A.

Proof. If we write τ for an arbitrary PBCK-congruence in A, it follows from
Lemma 4.5 that

⋂
(a,b)∈τ τ =

⋂
a→b,b→a∈1/τ τ . Thus,

θPBCK(a, b) =
⋂

a→b,b→a∈1/τ

τ.

Hence,

1/θPBCK(a, b) =
⋂

a→b,b→a∈1/τ

1/τ.

It follows from Lemma 4.3 that
⋂
a→b,b→a∈1/τ 1/τ = 〈a→ b, b→ a〉c. Then,

by Remark 4.4 we deduce that 1/θPBCK(a, b) = 〈Γ(a→ b, b→ a)〉.

The following result follows from lemmas 4.5 and 4.6.

Lemma 4.7. Let A ∈ PBCK and a, b ∈ A. Then (c, d) ∈ θBCK(a, b) if and
only if c→ d ∈ 〈Γ(a→ b, b→ a)〉 and d→ c ∈ 〈Γ(a→ b, b→ a)〉.

Lemma 4.7 allows to bring a characterization of the unary PBCK-compatible
functions.

Proposition 4.8. Let A ∈ PBCK and f : A → A a function. Then f is
PBCK-compatible if and only if f(a) → f(b) ∈ 〈Γ(a → b, b → a)〉 for every
a, b ∈ A.

We dedicate the last part of this section to study the relatively com-
patible operations in porims. As usual, we start with some preliminary
definitions and basic results.

Definition 4.9. A porim (partially ordered residuated integral monoid) is
a structure (A,≤, ·,→, , 1) where (A,≤) is a poset, (A, ·, 1) is a monoid
whose identity 1 is the greatest element of (A,≤), and the condition a ·b ≤ c
if and only if a ≤ b → c if and only if b ≤ a  c holds for all a, b, c ∈ A.
Again, → and  coincide if and only if · is commutative (in this case we
have a pocrim). Porims can be described as pseudo BCK-algebras with the
condition (P), i.e., pseudo BCK-algebras expanded by a binary operation ·
which satisfies the equation (a · b)→ c = a→ (b→ c).
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We write PO for the quasivariety of porims.

Remark 4.10. If (A, ·,→, , 1) ∈ PO then the operation · is a compatible
operation of A = (A,→, , 1). In order to show it, let θ be a PBCK-
congruence of A and let (a, b), (c, d) ∈ θ. Then,

a→ (c→ (b · d)) = b→ (d→ (b · d)).

Since (a · c) → (b · d) = a → (c → (b · d)) and b → (d → (b · d)) = 1 then
(a·c)→ (b·d) ∈ 1/θ. Analogously, (b·d)→ (a·c) ∈ 1/θ. Since A/θ ∈ PBCK
then (a · c, b · d) ∈ θ. Therefore, · is a compatible operation of A.

For A ∈ PO and a, b ∈ A we define a ↔ b as in the case of pocrims.
Thus, as a consequence of Lemma 4.5 one can also state that for every
A ∈ PO and a, b ∈ A it is also true that

1/θPO(a, b) = 〈Γ(a↔ b)〉

Let A ∈ PO and y ∈ A. It follows from (11) that

Γ(b) = {αa(b) : n ∈ N, a ∈ A2n}.

Then c ∈ 〈Γ(b)〉 if and only for some m,n natural numbers there exist
ui ∈ A2n (i = 1, · · · ,m) such that

αu1(b)→ (. . . (αum(b)→ c) . . .) = 1.

But the last equality is equivalent to

αu1(b) · . . . · αum(b) ≤ c.

Summarizing, we obtain the following results.

Remark 4.11. Let A ∈ PO and a, b ∈ A. Then

1) 1/θPO(a, b) = 〈Γ(a↔ b)〉.

2) c ∈ 〈Γ(b)〉 if and only for some m,n natural numbers there exist ui ∈ A2n

(i = 1, . . . ,m) such that αu1(b) · . . . · αum(b) ≤ c.

We use the previous remark in order to prove the following proposition.

Proposition 4.12. Let A ∈ PO and a, b ∈ A. Then (c, d) ∈ θPO(a, b) if
and only if for some m,n natural numbers there exist u1, . . . , um ∈ A2n such
that αu1(a↔ b) · . . . · αum(a↔ b) ≤ c↔ d.

Proof. Let a, b ∈ A. Then it follows from Lemma 4.5 that (c, d) ∈ θPO(a, b)
if and only if (c → d, 1) ∈ θPO(a, b) and (d → c, 1) ∈ θPO(a, b), which is
equivalent to c ↔ d ∈ 1/θPO(a, b). But 1/θPO(a, b) = 〈Γ(a ↔ b)〉. Then
c↔ d ∈ 1/θPO(a, b) if and only if for some m and n natural numbers there
exist u1, . . . , um ∈ A2n such that αu1(a ↔ b) · . . . · αum(a ↔ b) ≤ c ↔ d,
which was our aim.
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We have the following description for unary PO-compatible functions.

Corollary 4.13. Let A ∈ PO and f : A → A an unary function. Then
f is a PO-compatible function if and only if for every a, b ∈ A there are
some m,n natural numbers for which there exist u1, . . . , um ∈ A2n such that
αu1(a↔ b) · . . . · αum(a↔ b) ≤ f(a)↔ f(b).

Corollary 4.13 generalizes [9, Lemma 3.3] for the case of integral residu-
ated lattices. Hence, by taking into account Corollary 4.13 we conclude that
the integral case of [9, Theorem 3.8] can be generalized for any porim.
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