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Signatures of classical structures in the leading eigenstates of quantum dissipative systems
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By analyzing a paradigmatic example of the theory of dissipative systems—the classical and quantum
dissipative standard map—we are able to explain the main features of the decay to the quantum equilibrium
state. The classical isoperiodic stable structures typically present in the parameter space of these kinds of systems
play a fundamental role. In fact, we have found that the period of stable structures that are near in this space
determines the phase of the leading eigenstates of the corresponding quantum superoperator. Moreover, the
eigenvectors show a strong localization on the corresponding periodic orbits (limit cycles). We show that this
sort of scarring phenomenon (an established property of Hamiltonian and projectively open systems) is present

in the dissipative case and it is of extreme simplicity.
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I. INTRODUCTION

Open quantum systems have received great attention
recently [1]. One of the main reasons has been the development
of quantum information and computation [2,3], but also
the experiments with cold atoms [4,5], and Bose-Einstein
condensates [6] can significantly profit from their study. The
route to chaos that is a typical feature of dissipative systems has
recently been studied in optomechanics [7]. The interest has
also been focused on many body systems [8]. In this case the
study of the rocked open Bose-Hubbard dimer has revealed
the connection between the interactions and bifurcations in
the mean field dynamics. Very recently, quantum bifurcation
diagrams have been obtained [9]. In all these areas the
properties of the leading eigenstates of the associated quantum
superoperators are of the utmost relevance, motivating our
study.

The spectra of quantum dissipative systems follow a
recently found Weyl law [10]. On the other hand, asymptotic
states associated to an eigenvalue Ao = 1 have been inves-
tigated in a system that is of interest in directed transport
studies, the dissipative modified kicked rotator map [11,12].
However, the results obtained can be assumed to be of general
nature and thus applicable to any kind of dissipative system.
There, the fundamental role played by the so called isoperiodic
stable structures (ISSs) of the classical system has been
investigated. In particular it was conjectured that their quantum
counterparts (qISSs) have the simple shape of the ISSs only
for exceptionally large regular structures. In the majority of
the cases qISSs look approximately the same as the quantum
chaotic attractors that are at their vicinity in parameter space
[13]. This conjecture was proven in [11] by means of a sys-
tematic exploration of the quantum parameter space, showing
how sharp classical borders become blurred and neighboring
areas influence each other through quantum fluctuations. This
phenomenon was called parametrical tunneling.
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We here investigate the other aspect of this phenomenon,
that is, how the presence of an ISS, even if not visible
in the smooth quantum parameter space, manifests itself
in the quantum dynamics. We focus on the properties of
the leading eigenstates, which rule the transitory behavior.
It turns out that their phase space structure as well as the
phase of their corresponding eigenvalues can be related to the
shape and periodicity of a neighboring ISS, respectively. This
leads to localization on the corresponding unstable periodic
orbits (limit cycles). Hence, this phenomenon, ubiquitous
in the quantum chaos literature dealing with Hamiltonian
systems, and also in the optics area that treats projectively
open resonators [14], is also present in the dissipative arena,
adopting a very simple behavior.

For our calculations we choose a paradigmatic case of
dissipative dynamics: the classical and quantum dissipative
standard map (DSM). The corresponding parameter space (in
the parameter range we are considering) consists of a large
regular region and a chaotic sea where regular structures are
embedded.

We explain the details of the classical and quantum dissipa-
tive standard map in Sec. II, together with the techniques used
to study their properties. In Sec. III we present our results
focusing on the details of the parameter space and taking
special care of the Husimi representations of the eigenvectors
associated to the leading eigenstates. We close with Sec. [V
where we state our conclusions.

II. DISSIPATIVE STANDARD MAP:
CALCULATION METHODS

The standard map can be thought of as describing the
dynamics of a particle moving in a coordinate x with [x €
(—00, + 00)] thatis periodically kicked by the single harmonic
potential:

+00

V(x.t) = klcos(x)] »_ 8(t —mr), (1)

m=—00

where k is the strength of these kicks and t is the period.
Dissipation can be added to obtain the DSM [15],

s = ys + k[sin(x)]
X =x+Ts. 2)
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We take s as the momentum variable conjugated to x and y
(0 < y <1) is the dissipation parameter. By varying it the
map performs a transition from the Hamiltonian standard map
(y = 1) to the one-dimensional circle map (y = 0). We can
define a rescaled momentum variable p = ts and the quantity
K = kt in order to simplify things.

This map can be easily quantized by taking x — X, s —
i = —i(d/dx)(h = 1).Since [X, p] = it (Where p = 171), the
effective Planck constant is Zi.; = 7. In order to reach the
classical limit 7. — 0, while K = hek remains constant.
We have taken fieir = 0.042, i.e., a finite value. Quantum
dissipation leads us to a master equation [16] for the density
operator p in such a way that

p = —ilHs,p] —

Here H, = /1%/2 + V(%,1) is the system Hamiltonian, {,}is
the anticommutator, and L, are the Lindblad operators given
by [17,18]

Ly=g) Vn+1in)n+1],
A )
Ly=g) ~n+1l=n){-n—1,

with n=0,1,... and g =+/—Iny (to comply with the

Ehrenfest theorem).

In order to perform the classical evolution we directly use
the map of Eq. (2). In some cases, for comparison purposes,
we will be interested in a coarse grained version of the exact
dynamics [19]. For this we will use the Ulam method [20]
which is an approximation to the Perron-Frobenius operator
arising from the Liouville equation for the map in Eq. (2),
obtained by discretizing the phase space.

In the quantum case we numerically integrate Eq. (3)
and obtain the evolution of the density matrix (symbolically)
as p.41 = e®p;, where e® is a nonunital superoperator of
dimension N? x N?2. The effective /i is given by Jiegr o< 1/N.
Classical and quantum dissipation provides with a natural
bound that allows for the truncation of the phase space, leaving
all the relevant dynamics inside of the resulting domain, and
providing with finite (super)operators. The diagonalization of
the Ulam superoperator and of the quantum e” is performed
by the Arnoldi method [21].

III. PROPERTIES OF THE LEADING EIGENSTATES:
THE DECAY TOWARDS EQUILIBRIUM

In order to characterize the behavior of the leading
eigenstates of the DSM we need first to explore the parameter
space spanned by k and y. An efficient method to measure
the chaoticity or simplicity of the eigenstates is by means of
the participation ratio n = (), P(p[)z)_l/N, where P(p;) is
the probability of the momentum p;. This gives the effective
fraction of basis elements that expand the quantum state, and it
depends on the nature of the basis. The momentum one fits our
purposes since it allows us to tell if a distribution is pointlike or
not. Moreover, we have extended this concept to the classical
case by calculating the same n, with P(p;) being a discretized
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FIG. 1. Top panel (a) shows the participation ratio 7 vs parameters
k and y (for details see main text). Bottom panels (b) and (c) illustrate
probability in momentum P(p) as a function of k for y = 0.33
corresponding to the ranges shown in green lines in panel (a).

limiting momentum ( p) distribution. This distribution has been
obtained after evolving 10000 time steps a bunch of 10000
random initial conditions in the p = [—k/(1 — y); k/(1 — y)]
band of the cylindrical phase space (i.e., the trapping region
defined in [22]). We have taken a number of bins given by
a Hilbert space dimension N = 1000. Taking a finer coarse
graining would not affect the main properties in which we
are interested since the distance among points of the simple
limit cycles is always greater than the bin size. It is worth
mentioning that the DSM contains multistability regions with
a great number of coexisting attractors [22]. However, we
are interested in clearly identifying those regions where just
regular behavior is found and those where a chaotic attractor is
present. For this objective our measure is a very suitable one.
Results are shown in Fig. 1(a).

The diagonal line that can be clearly seen in this figure
corresponds to the onset of chaotic behavior. On the right
side of this line, in general tiny “regular islands” (where
only regular behavior is present) can be found within the
“chaotic sea”. These are the previously mentioned ISSs, i.e.,
Lyapunov stable islands that come organized into families in
the parameter space, which usually have long antenna like
branches leading to nicknaming them as “shrimps”.

The bifurcations diagrams along a line with fixed dissipa-
tion parameter y = 0.33 and k in the intervals 4.0 < k < 6.0
(region 1) and 6.7 < k < 7.0 (region 2) are shown in panels
Figs. 1(b) and 1(c) [we display the probability in momentum
P(p) as a function of k]. They complement Fig. 1(a) by
providing information on the limit cycles which characterize
the selected regular regions.

We first present the results of the diagonalization of the
quantum superoperator e with an effective /i = 0.042 for
four representative points of region 1. In order to easily
understand the following discussion, we have enlarged this
area of the parameter space in the left panel of Fig. 2. Case
(a) corresponds to (y = 0.33,k = 4.0) located in the regular
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FIG. 2. Participationratio  vs parameters k and y (see main text).
Detail of Fig. 1(a) for 0.32 < y < 0.34. In the left panel 4 < k < 6,
while in the right panel 6.7 < k < 6.9.

region, case (b) to (y = 0.33,k =5.13) in the interior of
the largest regular island found in the explored parameter
space. The two other points belong to the chaotic set: (y =
0.33,k =5.5) [case (c)] is in the vicinity of the island,
while (y = 0.33,k = 6.0) [case d)] lies in a region where
no islands are visible at our resolution. Figure 3 shows
the eigenvalue spectra in complex space for these four cases.
The corresponding Husimi representations of the invariant
state (left panels) and of the leading eigenstate (right panels)
are displayed in Fig. 4.

The invariant state shown in Fig. 4(a) for parameters deep
inside the regular region exhibits a pointlike structure which
coincides, within quantum uncertainty, with a stable periodic
orbit with winding number 0/2. This orbit has been calculated
with the method proposed in [23] and is marked with crosses.
It corresponds to the period-2 limit cycle which is visible in the
bifurcation diagram of Fig. 1(b). The leading resonance with
A1 = —0.985 733 shown in the right panel of Fig. 4(a) presents
a very similar pointlike distribution. Moreover we have verified
that all states corresponding to eigenvalues close to the unit
circle in the spectrum of Fig. 3(a) have a simple structure. For
real eigenvalues the Husimi distributions look very much the
same as the one of Fig. 4(a) while for the largest complex eigen-
values which have phases approximately equal to multiples of
/3 they are peaked on a period-3 limit cycle also present
in this region [see Fig. 1(b)]. As we go to lower eigenvalues
of the spectrum all pointlike eigenstates get more and more
blurred. These results confirm that in the regular region of
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FIG. 3. 100 largest eigenvalues of the quantum superoperator e*
for (a) k = 4.0, (b) k =5.13, (¢c) k = 5.5, (d) k = 6.0. In all cases
y = 0.33, and Zier = 0.042.
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FIG. 4. Husimi representation of the invariant state (left panel)
and leading eigenstate (right panel) for (a) k = 4.0, (b) k = 5.13, (¢)
k=15.5,(d) k =6.0.In all cases y = 0.33, and /iy = 0.042. In the
right panels of (a) and (b) the periodic points of the ISSs are marked
with crosses.

the parameter space quantum dynamics reproduces (within
quantum uncertainty) the main features of the classical one.

This is not the case for parameters belonging to an ISS.
As shown in Fig. 4(b) the invariant state does not follow the
asymptotic classical distribution characterized by a period-
2 limit cycle, but has instead the complex structure of a
strange attractor. In fact, it looks very much the same as
the states obtained in the chaotic region which are shown
in the two panels below. This is an indication that regarding
the equilibrium states the ISS cannot be resolved at our value
of li.;r. However the situation is different if we look at the
leading eigenstate shown in the right panel of Fig. 4(b). Its
Husimi distribution is strongly localized on a periodic orbit
with winding number 2/2 marked by crosses in this figure.
The corresponding eigenvalue is real and large (1, ~ 0.9) as
we can see from the spectrum of Fig. 3(b), hinting at a long
decay time towards the complex invariant state. The following
states are significantly shorter lived (|1;] ~ 0.6) and even if
they show some localization on orbits present in the island,
they essentially have the structure of the attractor.
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FIG. 5. Largest eigenvalues of the quantum superoperator e
(with i = 0.042) and of the Perron-Frobenius superoperator (with
N = 300) for (a) k = 6.86, (b) k = 6.8. In all cases y = 0.33. Black
dots correspond to the quantum model while (red) gray squares to the
classical one.

We obtain analogous results for parameters which do
not belong to the ISS but are close to it. As expected, the
equilibrium state shown in Fig. 4(c) is a complex attractor, this
time in agreement with the asymptotic classical distribution.
However, as in the previous case, the presence of the regular
island influences the leading eigenstate. Even if the distribution
shown in the right panel of Fig. 4(c) is not strictly pointlike it
still has a clearly enhanced probability on the periodic orbit 2/2
which is unstable now. In fact, the enhancement of probability
on an unstable periodic orbit is the definition of scarring. The
corresponding eigenvalue A; = 0.8 is real and fairly large,
indicating a long transient also in this case. The spectrum
in Fig. 3(c) shows the existence of a second real eigenvalue
~0.7 considerably larger than the radius of the dense disk. It
corresponds to a state with a similar scarred structure.

Finally, the calculation for parameters further away from
regular islands gives the typical features of chaotic dynamics.
Both the equilibrium state and the leading resonance in
Fig. 4(d) are quantum chaotic attractors. No exceptional
long-lived states exist. The spectrum of Fig. 3(d) shows the
presence of a considerable gap between eigenvalue 1 and the
dense disk of eigenvalues (|A;| = 0.5).

We now analyze some examples in region 2 where only
small ISSs exist, hardly visible in parameter space. In order
to better see this, we have enlarged this region in the right
panel of Fig. 2. We focus on the largest ones recognizable
in the bifurcation diagram of Fig. 1(c), one centered at k =
6.86 and the other at k = 6.8. They are characterized by a
period-3 and a period-10 limit cycle respectively. The results
of the diagonalization of the quantum superoperator for (a)
(y =0.33,k = 6.86) and (b) (y = 0.33,k = 6.8) are shown
in Figs. 5 and 6. For comparison purposes the spectra of the
Perron-Frobenius superoperator corresponding to the classical
map for these parameters are also indicated in Fig. 5.

The Husimi distribution of the invariants displayed in the
left panels of Fig. 6 look very similar in both cases and
have the structure of strange attractors, thus differing from
the asymptotic pointlike classical distributions. This is to be
expected since, as we have seen in the previous cases, the
quantum equilibrium distributions are not affected by the
presence of regular regions unless these are really large. For
their part, the spectra shown in Fig. 5 also present at first sight
the characteristic features of chaotic behavior, in the sense
that they both have a well defined gap (associated with the
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FIG. 6. Husimi representation of the invariant state (left panel)
and leading eigenstate (right panel) for (a) k = 6.86, (b) k = 6.8. In
all cases y = 0.33, and /iy = 0.042. In the right panels the periodic
points of the ISSs are marked with crosses.

decay time towards the invariant) between A = 1 and the disk
where the remaining eigenvalues concentrate. However if we
look closer at the spectrum of Fig. 5(a) we observe that the
complex phases of the leading eigenvalues (with [A| ~ 0.59)
are multiples of ~ 27 /3, just as the ones in the corresponding
Perron-Frobenius spectrum. This quantum classical corre-
spondence is confirmed if we look at the structure of the
corresponding eigenstate shown in the right panel of Fig. 6(a)
which is strongly scarred by the periodic orbit with winding
number 2/3 (indicated with crosses) characterizing the island.

We now focus on the spectrum of Fig. 5(b). In this case
the limit cycle has period 10, and this periodicity manifests
itself in the longest-lived eigenvalues of the Perron-Frobenius
spectrum, which have phases equal to the tenth roots of unity.
However no traces of this periodic-10 family are present in the
quantum spectrum nor in the structure of the leading eigenstate
of Fig. 6(b). In fact, the distribution of this state is very similar
to the one shown in the panel above, i.e., it is peaked on the
period-3 orbit. Moreover it corresponds to an eigenvalue with
a phase ~2m /3 as in the previous case. This seems to indicate
that limit cycles with high periodicity that clearly determine
the coarse grained classical dynamics for a given point in
parameter space even at relatively low resolution (in our case
N = 300) are not robust enough to manifest in the quantum
case. Rather, the quantum behavior is influenced by regularity
regions which might not be the closest ones in parameter space,
but correspond to shorter limit cycles.

IV. CONCLUSIONS

The standard map is a paradigmatic model in the classical
and the quantum chaos literature, while the dissipative version
shares the same status for the theory of dissipative systems.
Its classical parameter space shows a rich structure, proper
of nonintegrable dissipative systems, which consists of a
large regular region and a chaotic domain in which ISSs
are embedded. As it has been established in previous works,
these small stable structures are washed away by quantum
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fluctuations, implying that the equilibrium states (in regions
other the regular region) have the structure of chaotic attractors,
independently of their location in the chaotic sea.

In this work we have investigated how the presence of an
ISS affects its neighborhood in parameter space by focusing on
the spectral properties of the quantum mechanical superopera-
tor. We have found that the ISSs play a fundamental role in the
morphology of the leading eigenvectors of spectra obtained for
parameters where they are present (at the classical level), but
more interestingly, also at their vicinity. These eigenvectors
turn out to be particularly long lived and show a clear scarring
by a limit cycle that belongs to the ISS. The second effect
concerns the complex phases of the corresponding eigenvalues
which are related to the periodicity of these limit cycles.

Our results strongly suggest that three factors are involved
in the appearance of this mechanism (which shows another
aspect of the parametrical tunneling). In the first place, the
distance of the considered parameter space location to the ISS
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should be short in terms of the distance to other structures.
Second, its size in parameter space should be greater than
or the same as other neighboring regions. Finally, the period
of the related periodic orbit should be short enough to be
perceived by quantum mechanics (in fact, this is also an
important property in order to even find them in the classical
explorations [22]). We consider that, given the paradigmatic
nature of our model, these results could be generic properties
of quantum dissipative systems. The rigorous proof of these
statements will be addressed in the future.

ACKNOWLEDGMENTS

Support from CONICET under Project No. PIP 112
201101 00703 is gratefully acknowledged. One of us (L.E.)
acknowledges support from ANPCYT under Project No. PICT
2243-(2014).

[1] A. Rivas and S. F. Huelga, Open Quantum Systems (Springer-
Verlag, Berlin, Heidelberg, 2012).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[3] J. Preskill, Lecture Notes for Physics 229: Quantum Informa-
tion and Computation, http://www.theory.caltech.edu/
people/preskill/ph229/

[4] P. H. Jones, M. Goonasekera, D. R. Meacher, T. Jonckheere, and
T. S. Monteiro, Phys. Rev. Lett. 98, 073002 (2007); T. Salger,
S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina, and
M. Weitz, Science 326, 1241 (2009).

[5] T. S. Monteiro, P. A. Dando, N. A. C. Hutchings, and M. R.
Isherwood, Phys. Rev. Lett. 89, 194102 (2002); G. G. Carlo, G.
Benenti, G. Casati, S. Wimberger, O. Morsch, R. Mannella, and
E. Arimondo, Phys. Rev. A 74, 033617 (2006).

[6] D. Vorberg, W. Wustmann, R. Ketzmerick, and A. Eckardt, Phys.
Rev. Lett. 111, 240405 (2013).

[7] L. Bakemeier, A. Alvermann, and H. Fehske, Phys. Rev. Lett.
114, 013601 (2015).

[8] M. Hartmann, D. Poletti, M. Ivanchenko, S. Denisov, and
P. Hénggi, New J. Phys. 19, 083011 (2017).

[9] M. V. Ivanchenko, E. A. Kozinov, V. D. Volokitin, A. V. Liniov,
I. B. Meyerov, and S. V. Denisov, Ann. Phys. (Berlin) 529,
1600402 (2017).

[10] G. G. Carlo, A. M. F. Rivas, and M. E. Spina, Phys. Rev. E 84,
066201 (2011); M. E. Spina, A. M. F. Rivas, and G. G. Carlo,
J. Phys. A: Math. Theor. 46, 475101 (2013).

[11] L. Ermann and G. G. Carlo, Phys. Rev. E 91, 010903(R) (2015);
G. G. Carlo, L. Ermann, A. M. F. Rivas, and M. E. Spina, ibid.
93, 042133 (2016).

[12] M. W. Beims, M. Schlesinger, C. Manchein, A. Celestino,
A. Pernice, and W. T. Strunz, Phys. Rev. E 91, 052908
(2015).

[13] G. G. Carlo, Phys. Rev. Lett. 108, 210605 (2012).

[14] E. G. Vergini and G. G. Carlo, J. Phys. A: Math. Gen. 33, 4717
(2000); H. Cao and J. Wiersig, Rev. Mod. Phys. 87, 61 (2015);
L. Ermann, G. G. Carlo, and M. Saraceno, Phys. Rev. Lett. 103,
054102 (2009).

[15] G. Schmidt and B. W. Wang, Phys. Rev. A 32, 2994 (1985).

[16] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[17] T. Dittrich and R. Graham, Europhys. Lett. 7, 287 (1988).

[18] R. Graham, Z. Phys. B 59, 75 (1985).

[19] L. Ermann and D. L. Shepelyansky, Eur. Phys. J. B 75, 299
(2010); K. M. Frahm, and D. L. Shepelyansky, ibid. 76, 57
(2010).

[20] S. M. Ulam, A Collection of Mathematical Problems, In-
terscience Tracts in Pure and Applied Mathematics No. 8
(Interscience, New York, 1960).

[21] G. W. Stewart, Matrix Algorithms Vol. 1I: Eigensystems (SIAM,
Philadelphia, 2001); L. Ermann, K. M. Frahm, and D. L.
Shepelyansky, Rev. Mod. Phys. 87, 1261 (2015).

[22] L. C. Martins and J. A. C. Gallas, Int. J. Bifurcation Chaos 18,
1705 (2008).

[23] W. Wenzel, O. Biham, and C. Jayaprakash, Phys. Rev. A 43,
6550 (1991).

032202-5


http://www.theory.caltech.edu/people/preskill/ph229/
https://doi.org/10.1103/PhysRevLett.98.073002
https://doi.org/10.1103/PhysRevLett.98.073002
https://doi.org/10.1103/PhysRevLett.98.073002
https://doi.org/10.1103/PhysRevLett.98.073002
https://doi.org/10.1126/science.1179546
https://doi.org/10.1126/science.1179546
https://doi.org/10.1126/science.1179546
https://doi.org/10.1126/science.1179546
https://doi.org/10.1103/PhysRevLett.89.194102
https://doi.org/10.1103/PhysRevLett.89.194102
https://doi.org/10.1103/PhysRevLett.89.194102
https://doi.org/10.1103/PhysRevLett.89.194102
https://doi.org/10.1103/PhysRevA.74.033617
https://doi.org/10.1103/PhysRevA.74.033617
https://doi.org/10.1103/PhysRevA.74.033617
https://doi.org/10.1103/PhysRevA.74.033617
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1103/PhysRevLett.114.013601
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1002/andp.201600402
https://doi.org/10.1002/andp.201600402
https://doi.org/10.1002/andp.201600402
https://doi.org/10.1002/andp.201600402
https://doi.org/10.1103/PhysRevE.84.066201
https://doi.org/10.1103/PhysRevE.84.066201
https://doi.org/10.1103/PhysRevE.84.066201
https://doi.org/10.1103/PhysRevE.84.066201
https://doi.org/10.1088/1751-8113/46/47/475101
https://doi.org/10.1088/1751-8113/46/47/475101
https://doi.org/10.1088/1751-8113/46/47/475101
https://doi.org/10.1088/1751-8113/46/47/475101
https://doi.org/10.1103/PhysRevE.91.010903
https://doi.org/10.1103/PhysRevE.91.010903
https://doi.org/10.1103/PhysRevE.91.010903
https://doi.org/10.1103/PhysRevE.91.010903
https://doi.org/10.1103/PhysRevE.93.042133
https://doi.org/10.1103/PhysRevE.93.042133
https://doi.org/10.1103/PhysRevE.93.042133
https://doi.org/10.1103/PhysRevE.93.042133
https://doi.org/10.1103/PhysRevE.91.052908
https://doi.org/10.1103/PhysRevE.91.052908
https://doi.org/10.1103/PhysRevE.91.052908
https://doi.org/10.1103/PhysRevE.91.052908
https://doi.org/10.1103/PhysRevLett.108.210605
https://doi.org/10.1103/PhysRevLett.108.210605
https://doi.org/10.1103/PhysRevLett.108.210605
https://doi.org/10.1103/PhysRevLett.108.210605
https://doi.org/10.1088/0305-4470/33/25/312
https://doi.org/10.1088/0305-4470/33/25/312
https://doi.org/10.1088/0305-4470/33/25/312
https://doi.org/10.1088/0305-4470/33/25/312
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/PhysRevLett.103.054102
https://doi.org/10.1103/PhysRevLett.103.054102
https://doi.org/10.1103/PhysRevLett.103.054102
https://doi.org/10.1103/PhysRevLett.103.054102
https://doi.org/10.1103/PhysRevA.32.2994
https://doi.org/10.1103/PhysRevA.32.2994
https://doi.org/10.1103/PhysRevA.32.2994
https://doi.org/10.1103/PhysRevA.32.2994
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1209/0295-5075/7/4/001
https://doi.org/10.1209/0295-5075/7/4/001
https://doi.org/10.1209/0295-5075/7/4/001
https://doi.org/10.1209/0295-5075/7/4/001
https://doi.org/10.1007/BF01325385
https://doi.org/10.1007/BF01325385
https://doi.org/10.1007/BF01325385
https://doi.org/10.1007/BF01325385
https://doi.org/10.1140/epjb/e2010-00144-0
https://doi.org/10.1140/epjb/e2010-00144-0
https://doi.org/10.1140/epjb/e2010-00144-0
https://doi.org/10.1140/epjb/e2010-00144-0
https://doi.org/10.1140/epjb/e2010-00190-6
https://doi.org/10.1140/epjb/e2010-00190-6
https://doi.org/10.1140/epjb/e2010-00190-6
https://doi.org/10.1140/epjb/e2010-00190-6
https://doi.org/10.1103/RevModPhys.87.1261
https://doi.org/10.1103/RevModPhys.87.1261
https://doi.org/10.1103/RevModPhys.87.1261
https://doi.org/10.1103/RevModPhys.87.1261
https://doi.org/10.1142/S0218127408021294
https://doi.org/10.1142/S0218127408021294
https://doi.org/10.1142/S0218127408021294
https://doi.org/10.1142/S0218127408021294
https://doi.org/10.1103/PhysRevA.43.6550
https://doi.org/10.1103/PhysRevA.43.6550
https://doi.org/10.1103/PhysRevA.43.6550
https://doi.org/10.1103/PhysRevA.43.6550



