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Algebra Universalis

Canonicity in subvarieties of BL-algebras

Manuela Busaniche and Leonardo Manuel Cabrer

Abstract. We prove that every subvariety of BL-algebras which is not finitely gen-
erated is not σ-canonical. We also prove π-canonicity for an infinite family of subva-
rieties of BL-algebras that are not finitely generated. To do so we study the behavior
of canonical extensions of ordered sums of posets.

1. Introduction

Canonical extensions were introduced by Jónsson and Tarski for Boolean

algebras with operators (see [20] and [21]) and generalized for distributive

lattices, lattices, and posets with different internal operations in [14], [15], [13]

and [11]. They provide an algebraic formulation of what is otherwise treated

via topological duality or relational methods.

If A = (A, {fi, i ∈ I}) is a distributive lattice with operations, the canonical

extension Aσ of the lattice (A,∧,∨) is a doubly algebraic distributive lattice

that contains A as a separating and compact sublattice. The main problem is

to extend the extra operations {fi, i ∈ I} to Aσ and check if this new structure

is an algebra in the same class as A. There are two natural ways to extend

an operation f : one is the canonical extension fσ and the other is the dual

canonical extension fπ (see [14] or Lemma 2.1). Then there are two possible

candidates for the canonical extension of A, namely the canonical extension Aσ

and the dual canonical extension Aπ. A class of algebras is called σ-canonical

or π-canonical if it is closed under canonical or dual canonical extensions,

respectively.

BL-algebras were introduced by Hájek (see [17]) as the algebraic counter-

part of basic logic. BL-algebras can be viewed as distributive lattices with

additional operations; therefore, one can analyze canonicity for different sub-

varieties of these algebras. The failures of σ-canonicity and π-canonicity for

the variety of BL-algebras were proved in [7], together with the non-canonicity

for some well known subvarieties of BL-algebras. There are also some results

in [22] that imply non-canonicity for BL-algebras.
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An interesting approach to the study of BL-algebras is the one developed in

[1]. The results obtained there rely on the following two facts: the variety of

BL-algebras is generated by BL-chains (totally ordered BL-algebras) and each

BL-chain can be uniquely decomposed as the ordinal sum of a totally ordered

family of totally ordered Wajsberg hoops. Based on these two facts, we study

σ- and π-canonicity for subvarieties of BL-algebras.

The main idea of our study is characterizing the behavior of canonicity with

respect to the operation of ordinal sum. This requires a careful investigation

of canonical extensions of ordered sum of posets. Such an investigation is

carried out in Section 2. Once this is accomplished, in Section 3 we completely

characterize π- and σ-canonical extensions for ordinal sum of hoops in terms

of canonical extensions for the summands.

In the fourth section, after giving some preliminaries on BL-algebras, we

analyze σ-canonicity for each subvariety of BL-algebras. We conclude that

the only subvarieties of BL-algebras that enjoy σ-canonicity are those that

are finitely generated. Although the negative results about σ-canonicity for

some subvarieties of BL-algebras still hold in the case of π-canonicity, we give

some non-trivial positive results on π-canonicity for special subvarieties of BL-

algebras.

In the first section we collect all the preliminary results and definitions

about canonicity necessary to achieve our aim. For details, see [14] and [11].

Notation. Throughout the paper, we will denote algebras by boldface letters

A,B,C, etc., and their corresponding universes by the ordinary type of the

same letter A,B,C, etc. We denote a poset by 〈X,≤〉. When there is no

danger of confusion, we denote the poset 〈X,≤〉 simply by the universe X.

2. Preliminaries on canonical extensions

An extension e of a poset 〈X,≤〉 is an order embedding e : X → Y . To

simplify notation, we suppress the embedding e and call 〈Y,≤〉 an extension

of 〈X,≤〉, assuming that X is a subposet of Y . An element of Y is called

closed if it is the infimum in Y of some non-empty downdirected subset F of

X. Dually, if an element of Y is the supremum of some non-empty updirected

subset F of X, it is called open.

An extension Y of a poset X is called a completion if Y is a complete lattice.

In this case, Y is called dense if each element of Y is both the supremum of the

closed elements below it and the infimum of the open elements above it. The

extension Y is called compact if given D,U ⊆ X, non-empty downdirected and

updirected sets, respectively, such that
∧

Y D ≤
∨

Y U , then there exist x ∈ D

and y ∈ U such that x ≤ y. If a completion Y of X is dense and compact it

is called a canonical extension of X.

Every poset 〈X,≤〉 has a canonical extension which is unique up to an

isomorphism that fixes 〈X,≤〉 (see [11, Theorems 2.5 and 2.6]). We will denote
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it by 〈X,≤〉σ or Xσ. From now on, we denote by K(Xσ) and O(Xσ) the sets

of closed and open elements of Xσ, respectively. We recall some easy facts

that will be used in the course of the proofs without explicit mention:

• X = K(Xσ) ∩ O(Xσ),

• If x ∈ K(Xσ), then x =
∧

Xσ{y ∈ X : x ≤ y},

• If x ∈ O(Xσ), then x =
∨

Xσ{y ∈ X : x ≥ y},

•
∧

Xσ Xσ =
∧

Xσ X and
∨

Xσ Xσ =
∨

Xσ X.

• X = Xσ if and only if X is a finite lattice.

Given an order preserving map f : X → Y , we consider two extensions

fσ, fπ : Xσ → Y σ, that can be computed according to the next lemma.

Lemma 2.1 (Lemma 3.4, [11]). For every order preserving map f : X → Y

we have:

(1) fσ (c) =
∧
{f (x) : c ≤ x ∈ X} for every c ∈ K (Xσ);

(2) fσ (a) =
∨
{fσ (c) : a ≥ c ∈ K (Xσ)};

(3) fπ (o) =
∨
{f (x) : o ≥ x ∈ X} for every o ∈ O (Xσ);

(4) fπ (a) =
∧
{fπ (o) : a ≤ o ∈ O (Xσ)}.

In case f : X → Y is an order reversing map, the canonical and dual canon-

ical extensions of f are defined by the following procedure:

• Consider the function g : Xd → Y , where Xd denotes the poset whose

order is obtained by reversing the order of X and g(x) = f(x) for every

x ∈ X.

• Compute gσ, gπ : (Xd)σ → Y according to Lemma 2.1, using the fact that

K
((

Xd
)σ)

= O (Xσ) and O
((

Xd
)σ)

= K (Xσ) .

• Since
(
Xd

)σ
= (Xσ)

d
, let fσ, fπ : Xσ → Y be such that fσ(x) = gσ(x)

and fπ(x) = gπ(x) for each x ∈ Xσ.

Let f :
∏n

i=1 Xi → Y be a map that preserves the order in some coordinates

and reverses it in others. The extensions fσ, fπ : (
∏n

i=1 Xi)
σ
→ Y σ can be

computed following the previous procedure coordinatewise and recalling that

• (X × Y )
σ

= Xσ × Y σ,

• K ((X × Y )
σ
) = K (Xσ) × K (Y σ),

• O ((X × Y )
σ
) = O (Xσ) × O (Y σ).

Let A =
〈
A, {fi}i∈I

〉
be an algebra and ≤ an order over the set A. If

every operation fi preserves or reverses the order in each coordinate, we de-

fine two candidates to extend the algebra A: the canonical extension Aσ =〈
Aσ, {fσ

i }i∈I

〉
and the dual canonical extension Aπ =

〈
Aσ, {fπ

i }i∈I

〉
of A.

A class of algebras is σ-canonical or π-canonical if it is closed under canonical

or dual canonical extensions, respectively.

There are many results, positive and negative, about canonicity of classes

of algebras. Two of the most important are the following theorem and its

corollary.



378 M. Busaniche and L. M. Cabrer Algebra Univers.

Theorem 2.2 (see [15]). If a class K of similar algebras with distributive lattice

reduct is closed under ultraproducts and σ-canonical (π-canonical) extensions,

then the variety generated by K is σ-canonical (π-canonical).

Corollary 2.3. If V is a finitely generated variety of algebras with a distribu-

tive lattice reduct, then V is σ-canonical and π-canonical.

3. Canonical extensions of sums of posets

In this section, we will describe the behavior of canonical extensions of

ordered sums of posets.

Definition 3.1. Let I be a poset, and let 〈Xi,≤i〉 be a family of pairwise

disjoint non-empty posets indexed by I. The ordered sum
⊎

I 〈Xi,≤i〉 is a

poset whose universe is
⋃

i∈I Xi and the order is defined by

a ≤� b iff

{
a, b ∈ Xi and a ≤i b for some i ∈ I, or

a ∈ Xi and b ∈ Xj for some i < j in I.

Note that ordered sums preserve existing joins and meets of non-empty sets.

Given an ordered sum X =
⊎

I 〈Xi,≤i〉, we define χ : X → I by χ (a) = i if

and only if a ∈ Xi.

Hence, χ is an order preserving function that preserves arbitrary existing

joins and meets. This function will help us deal with canonical extensions of

ordered sums of posets.

Lemma 3.2. Let I be a complete lattice, and let 〈Xi,≤i〉 be a family of

pairwise disjoint non-empty complete lattices indexed by I. The ordered sum

X =
⊎

I 〈Xi,≤i〉 is a complete lattice.

Proof. Let A ⊆
⋃

i∈I Xi, and let χ be the function previously defined. Since

I is a complete lattice, there exists j ∈ I such that j =
∨

I χ (A) .

Assume first that j ∈ χ (A), i.e., A ∩ Xj �= ∅. Let us check that
∨

X A =∨
Xj

(A ∩ Xj). Observe that for each x ∈ A,

x ≤�

∨
Xj

(A ∩ Xj) .

Now let c ∈ X be such that x ≤� c for each x ∈ A. Since the ordinal sum

preserves the existing joins, the assumption A∩Xj �= ∅ yields
∨

Xj
(A ∩ Xj) =∨

X (A ∩ Xj) ≤� c.

Assume now that j /∈ χ (A). We claim that
∨

X A =
∧

Xj
Xj . This is clear

if A = ∅. Otherwise, for each x ∈ A, since χ(x) < j , then x ≤�

∧
Xj

Xj . Now

let y ∈
⋃

i∈I Xi be such that x ≤� y for every x ∈ A. Hence, χ (x) ≤ χ (y) for

every x ∈ A. We obtain that j ≤ χ (y), and then
∧

Xj
Xj ≤� y.

The result for arbitrary meets follows similarly. �

From now on, we omit the symbol � in the notation ≤�. We next state the

main result of this section.
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Theorem 3.3. Let I be a poset, and let 〈Xi,≤i〉 be a family of pairwise

disjoint non-empty posets indexed by I. Assume also that each poset 〈Xi,≤i〉

is downdirected and updirected. Then

(
⊎

I 〈Xi,≤i〉)
σ

is isomorphic to
⊎

Iσ 〈Yj ,≤j〉

where 〈Yj ,≤j〉 = 〈Xj ,≤j〉
σ

if j ∈ I and 〈Yj ,≤j〉 = 〈{0j} ,=j〉 if j /∈ I.

Proof. Let Q =
⊎

Iσ 〈Yj ,≤j〉. By the previous lemma, Q is a complete lat-

tice that extends the poset
⊎

I 〈Xi,≤i〉. Observe that {0j : j ∈ K (Iσ) \ I} ⊆

K (Q) and {0j : j ∈ O (Iσ) \ I} ⊆ O (Q). Also, for each i ∈ I, we have the

inclusions K(Xσ
i ) ⊆ K(Q) and O(Xσ

i ) ⊆ O(Q). We prove that Q is dense and

compact.

Density. Let x ∈ Q. Then x ∈ Yj for some j ∈ Iσ. We distinguish two

different possibilities:

Case 1: j ∈ I. Hence x ∈ Xσ
j = Yj . Since Xj is downdirected,

∧
Xσ

j
Xj is

a closed element less than x. Therefore, the set {c ∈ K (Yj) : c ≤ x} is non-

empty. Thus,

x =
∨

Yj
{c ∈ K(Yj) : c ≤ x} =

∨
Q {c ∈ K (Yj) : c ≤ x}

≤
∨

Q {c ∈ K (Q) : c ≤ x} ≤ x.

Analogously, we obtain that x =
∧

Q {d ∈ O (Q) : x ≤ d} using that Xj is

updirected.

Case 2: j /∈ I. Then x = 0j . Since j ∈ Iσ and Iσ is a dense extension of I,

then j =
∨

I{k ∈ K(Iσ) : k ≤ j}. The function χ preserves the existing joins;

therefore,

χ
(∨

Q ({c ∈ K (Yk) : k ∈ I, k ≤ j} ∪ {0k : k ∈ K (Iσ) \ I, k ≤ j})
)

=
∨

I ({χ(c) : c ∈ K (Yk) , k ∈ I, k ≤ j} ∪ {χ(0k) : k ∈ K (Iσ) \ I, k ≤ j})

=
∨

I ({k ∈ I : k ≤ j} ∪ {k ∈ K (Iσ) \ I : k ≤ j}) = j.

Since the only element in Yj is 0j , we conclude that∨
Q ({c ∈ K (Yk) : k ∈ I, k ≤ j} ∪ {0k : k ∈ K (Iσ) \ I, k ≤ j}) = 0j .

Thus,

x = 0j =
∨

Q ({c ∈ K (Yk) : k ∈ I, k ≤ j} ∪ {0k : k ∈ K (Iσ) \ I, k ≤ j})

≤
∨

Q {c ∈ K (Q) : c ≤ x} ≤ x.

Similarly, x =
∧

Q {d ∈ O (Q) : x ≤ d}. We conclude that Q is a dense exten-

sion of
⊎

I 〈Xi,≤i〉.

Compactness. Let D,U ⊆
⊎

I 〈Xi,≤i〉 be down and updirected sets, respec-

tively, such that
∧

Q D ≤
∨

Q U . Since χ preserves arbitrary existing joins and

meets, ∧
Iσ χ (D) = χ

(∧
Q D

)
≤ χ

(∨
Q U

)
=

∨
Iσ χ (U) .

From the compactness of Iσ, there exist k ∈ χ (D) and l ∈ χ (U) such that

k ≤ l.
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Assume first that we can choose k < l. This being the case, there are x ∈ D

and y ∈ U such that χ (x) = k and χ (y) = l. Hence, x ≤ y and the result

follows.

If there is no element in χ(D) strictly smaller than an element of χ(U), we

are in the case l = k and s ≤ t for every t ∈ χ (D) and s ∈ χ (U). Hence, our

assumption implies k =
∧

Iσ χ (D) =
∨

Iσ χ (U) = l.

Therefore, it is easy to see that∧
Q D =

∧
Xσ

k
(D ∩ Xk) =

∨
Xσ

k
(U ∩ Xk) =

∨
Q U.

Clearly, D∩Xk and U∩Xk are down and updirected subsets of Xk, respectively.

The compactness of Xσ
k implies that there exist x ∈ D∩Xk and y ∈ U∩Xk such

that x ≤ y. We conclude that Q is a compact extension of
⊎

I 〈Xi,≤i〉. �

The assumption that each Xi is down and updirected in the previous the-

orem is crucial. As evidence of its importance we present the next example.

Example 3.4. Consider the boolean lattice with two atoms B (see Figure 1).

Let I = {1, 2, 3}, with 1 < 2 < 3 and let the sets X1, X2 and X3 be given by

X1 = {0} , X2 = {a, b} and X3 = {1} , with the order inherited from B. Then

B =
⊎

I 〈Xi,≤i〉. Since B is a finite lattice, Bσ = B. On the other hand, the

poset Q =
⊎

I 〈Xi,≤i〉
σ

is given by Figure 1. Hence, Bσ is not isomorphic to

Q. The reason is that X2 is neither downdirected nor updirected.

To conclude these preliminaries, we present a characterization of closed and

open elements of an ordered sum of posets together with a corollary for later

use.

Theorem 3.5. Let I be a poset, and for each i ∈ I, let 〈Xi,≤i〉 be a down

and updirected poset. If Q = (
⊎

I〈Xi,≤i〉)
σ
, we have

(1) K (Q) = {0j : j ∈ K (Iσ) \ I} ∪
(⋃

i∈I K(〈Xi,≤i〉
σ)

)
, and

(2) O (Q) = {0j : j ∈ O (Iσ) \ I} ∪
(⋃

i∈I O(〈Xi,≤i〉
σ)

)
.
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Proof. Denote Xi = 〈Xi,≤i〉 and X =
⊎

I Xi; thus, Q = Xσ.

For the first assertion, recall that in the proof of Theorem 3.3 it is ob-

served that {0j : j ∈ K (Iσ) \ I} ∪
(⋃

i∈I K (Xσ
i )

)
⊆ K (Q) . Let x ∈ K (Q).

There exists a downdirected set F ⊆ X such that x =
∧

Q F . Then χ (x) =∧
Iσ χ (F ) = j.

Suppose that j ∈ I. Hence, x ∈ Xσ
j . This implies that x =

∧
Q F ≤

∨
Q Xj .

Since Xj is updirected, by the compactness of Q with respect to X, there exist

y ∈ Xj and z ∈ F such that x ≤ z ≤ y. Therefore, F ∩ Xj �= ∅ and

x =
∧

Q F =
∧

Xσ
j
(F ∩ Xj).

We conclude that x ∈ K
(
Xσ

j

)
.

On the other hand, if j /∈ I, then x = 0j . Since F is downdirected, the set

χ (F ) ⊆ I is downdirected. Therefore, j =
∧

Iσ χ (F ) ∈ K (Iσ) \ I; the result

follows.

The proof of the second assertion can be obtained in an analogous way. �

Corollary 3.6. Let L be a totally ordered set (a chain) with a greatest element

�. Then

(1) Lσ \ {�} = (L \ {�})σ
;

(2) K ((L \ {�})σ
) = K (Lσ) \ {�};

(3) O ((L \ {�})σ
) = O (Lσ) \ {�}.

Proof. Let I = {1, 2} with the natural order. Then X1 = L \ {�} and X2 =

{�} are ordered sets with the orders inherited from L. Clearly, L =
⊎

I Xi.

The result is a consequence of Theorems 3.3 and 3.5. �

4. Hoops and canonical extensions of ordinal sums

The theory of hoops serves as a base for the theory of BL-algebras (see

[1]). As we shall see in the course of this section, basic hoops are algebras

with a distributive lattice structure. Given a family of hoops indexed by a

totally ordered set, a new hoop can be obtained as the ordinal sum of the

members of the family. Our purpose is to investigate the canonical extensions

of ordinal sums of hoops. This investigation is based on the ordered sum of

posets studied in the previous section, and it will help us deal with canonical

extensions of BL-algebras in subsequent ones.

Definition 4.1. A hoop is an algebra B = 〈B, ∗,→,�〉, such that 〈B, ∗,�〉 is

a commutative monoid and for all x, y, z ∈ B,

x → x = �, (4.1)

x ∗ (x → y) = y ∗ (y → x), (4.2)

x → (y → z) = (x ∗ y) → z. (4.3)



382 M. Busaniche and L. M. Cabrer Algebra Univers.

If B = 〈B, ∗,→,�〉 is a hoop, the natural order on B is defined by a ≤ b iff

a → b = � and B satisfies the residuation law:

a ∗ b ≤ c iff a ≤ b → c.

The partial order on any hoop is a semilattice order, where a∧ b = a ∗ (a → b)

and � is the largest element in the order.

A hoop is called basic if it is isomorphic to a subdirect product of totally

ordered hoops. Basic hoops form a subvariety BH of the variety of hoops,

axiomatized by the equation

((x → y) → z) → (((y → x) → z) → z) = �. (4.4)

In every basic hoop, the natural order is a distributive lattice order, where

∨ can be defined from the hoop operations. Hence, every basic hoop B has

the underlying structure of a distributive lattice. Moreover, the operation ∗

preserves the order in both coordinates, and → reverses the order in the first

coordinate and preserves it in the second.

Next we recall the definition of ordinal sum. In the literature, the definition

of ordinal sum involves only families of hoops and the resulting algebra is

also a hoop (see [2]). For our purposes, we have generalized the definition for

arbitrary algebras of the same similarity type as hoops.

Definition 4.2. Let (I,≤) be a totally ordered set. For each i ∈ I let Bi =

〈Bi, ∗i,→i,�〉 be an algebra of type (2, 2, 0) such that for every i �= j, Bi∩Bj =

{�}. We define the ordinal sum as an algebra
⊕

i∈I Bi = 〈∪i∈IBi, ∗,→,�〉 of

the same type with the operations ∗,→ given by

x ∗ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∗i y if x, y ∈ Bi,

x if x ∈ Bi \ {�}, y ∈ Bj and i < j,

y if y ∈ Bi \ {�}, x ∈ Bj and i < j.

x → y =

⎧⎪⎪⎨
⎪⎪⎩
� if x ∈ Bi \ {�}, y ∈ Bj and i < j,

x →i y if x, y ∈ Bi,

y if y ∈ Bi, x ∈ Bj and i < j.

We explain the relation among the ordered sum of posets and the ordinal

sum of hoops in the next remark.

Remark 4.3. Let I be a totally ordered set, and for each i ∈ I, let Bi be

a hoop. Consider the posets 〈Bi,≤i〉, where ≤i is the natural order of the

algebra Bi. Then the ordinal sum
⊕

i∈I Bi is a hoop whose natural order ≤

is given by

a ≤ b iff

{
a, b ∈ Bi and a ≤i b for some i ∈ I, or

a ∈ Bi, b ∈ Bj and a �= � for some i < j in I.
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Therefore, the underlying poset 〈
⊕

i∈I Bi,≤〉 of
⊕

i∈I Bi can be described as

follows: let α /∈ I and I ′ = I ∪ {α}, with α > i for each i ∈ I. Then

〈
⊕

i∈I Bi,≤〉 =
⊎

I′ Zi

where Zi = Bi \ {�} with the restricted order if i ∈ I, and Zα = 〈{�},=〉.

For simplicity, we denote by B1 ⊕ B2 the ordinal sum of two summands,

assuming 1 < 2.

We are ready to describe the σ- and π-canonical extensions of sums of hoops

using the canonical extensions of its components. To achieve this aim, we

need to consider two different algebras of type (2, 2, 0) with the same ordered

universe. Let L2 = 〈{0, 1}, ∗L2
,→L2

, 1〉, with 0 < 1 and operations given by

∗L2
0 1

0 0 0

1 0 1

→L2
0 1

0 1 1

1 0 1

L2 is a basic hoop with two elements and � = 1.

Now let M = 〈{0, 1}, ∗M,→M, 1〉, with the same order as L2 and binary

operations defined by

∗M 0 1

0 0 0

1 0 1

→M 0 1

0 0 1

1 0 1

Clearly, M is not a hoop. However, it plays an important role in the fol-

lowing theorem.

Theorem 4.4. Let I be a totally ordered set, and for each i ∈ I, let Bi =

〈Bi, ∗i,→i,�〉 be a hoop such that Bi \ {�} is updirected under the natural

order of Bi. Then

(1)
(⊕

i∈I Bi

)π ∼=
⊕

i∈Iσ Di, where Di =

{
Bπ

i if i ∈ I,

L2 if i /∈ I;

(2)
(⊕

i∈I Bi

)σ ∼=
⊕

i∈Iσ Ci, where Ci =

{
Bσ

i if i ∈ I,

M if i /∈ I.

Proof. We denote B =
⊕

i∈I Bi, C =
⊕

i∈Iσ Ci, and D =
⊕

i∈Iσ Di. Their

corresponding universes (as well as their lattice reducts) are denoted by B, C,

and D, respectively. As usual, Bσ is the canonical extension of the poset B.

For each i ∈ I, since the poset Bi \ {�} is updirected and every hoop is a

meet-semilattice, we conclude that Bi\{�} is down and updirected. Following

Theorem 3.3 and Remark 4.3, it is easy to check that the lattices Bσ and D

are isomorphic.

Since the algebra M is not a hoop, if Iσ �= I, then the ordinal sum C is

not a hoop. Then C does not have a natural order. However, if we consider

C ordered as the ordered sum (
⊎

Iσ Ci \ {�})
⊎
〈�,=〉, we easily see that the

lattices C and Bσ are isomorphic.
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Without danger of confusion, for each j ∈ Iσ \ I, let 0j be the only element

in Cj \ {�} as well as the only element in Dj \ {�}.

From the descriptions of closed and open elements obtained in Theorem

3.5, Corollary 3.6 and from Remark 4.3, we can assert that

K(Bσ) = {0j : j ∈ K(Iσ) \ I} ∪ (
⋃

i∈I K(Bσ
i \ {�})) ∪ {�};

O(Bσ) = {0j : j ∈ O(Iσ) \ I} ∪ (
⋃

i∈I O(Bσ
i \ {�})) ∪ {�}.

To prove (1), we have to see that the canonical extensions ∗π and →π of

the operations of B that are defined according to Lemma 2.1, coincide with

the operations ∗D and →D in D given by the definition of ordinal sum.

We check first that ∗π = ∗D. From the fact that ∗D and ∗π are commutative,

we need only consider the following cases:

Suppose that a, b ∈ O(Bσ); one of four cases occurs.

Case 1: a, b ∈ O(Bσ
j \ {�}) = O(Bσ

j ) \ {�} for some j ∈ I. Then

a ∗π b =
∨

D {c ∗ d : c ≤ a, d ≤ b and c, d ∈ B}

=
∨

D {c ∗ d : c ≤ a, d ≤ b and c, d ∈ Bj \ {�}}

=
∨

Bj
{c ∗j d : c ≤ a, d ≤ b and c, d ∈ Bj \ {�}} = a ∗π

j b = a ∗D b.

Case 2: a, b ∈ Dj \ {�} and j ∈ O(Iσ) \ I. Then a = b = 0j and

0j ∗
π 0j =

∨
D {c ∗ d : c, d ≤ 0j and c, d ∈ B}

=
∨

D {c : c ≤ 0j and c ∈ B} = 0j = 0j ∗D 0j .

Case 3: a ∈ Dj \ {�}, b ∈ Dk \ {�} with j < k. Since a, b ∈ O(Bσ), then

j, k ∈ O (Iσ). Thus, there exists l ∈ I such that j < l ≤ k and

a ∗π b =
∨

D {c ∗ d : c ≤ a, d ≤ b and c, d ∈ B}

=
∨

D {c ∗ d : c ≤ a, d ≤ b, χ(d) ≥ l and c, d ∈ B}

=
∨

D {c : c ≤ a, c ∈ B} = a = a ∗D b.

Case 4: b = �. We easily obtain that a ∗π b = a = a ∗D b.

Assume now (a, b) /∈ O(Bσ)×O(Bσ); one of the following three cases occurs.

Case 1: a, b ∈ Bσ
j . Then

a ∗π b =
∧

D {c ∗π d : a ≤ c and b ≤ d, c, d ∈ O(Bσ)}

=
∧

D

{
c ∗π d : a ≤ c and b ≤ d, c, d ∈ O

(
Bσ

j

)}
=

∨
Bσ

j

{
c ∗B d : a ≤ c and b ≤ d, c, d ∈ O

(
Bσ

j

)}
=

∨
Bσ

j

{
c ∗π

j d : a ≤ c and b ≤ d, c, d ∈ O
(
Bσ

j

)}
= a ∗π

j b = a ∗D b.

Case 2: a, b ∈ Dj \ {�} for some j ∈ Iσ \ O (Iσ). Since j /∈ I, we have

a = b = 0j . Hence,

0j ∗
π 0j =

∧
D {c ∗π d : 0j ≤ c, d and c, d ∈ O(Bσ)}

=
∧

D {c : 0j ≤ c and c ∈ O(Bσ)} = 0j = 0j ∗D 0j .
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Case 3: a ∈ Dj \ {�}, b ∈ Dk \ {�}, and j < k. Let l ∈ O (Iσ) be such that

j ≤ l < k. Then

a ∗π b =
∧

D {c ∗π d : a ≤ c and b ≤ d, c, d ∈ O(Bσ) and χ (c) ≤ l}

=
∧

D {c ∗D d : a ≤ c < b ≤ d, c, d ∈ O(Bσ) and χ (c) ≤ l}

=
∧

D {c : c ≤ a, c ∈ O(Bσ)} = a = a ∗D b.

The implication of B is order reversing in the first coordinate and order

preserving in the second coordinate. Therefore, by Lemma 2.1 and the remarks

below it, to compute →π, we have to consider first (a, b) ∈ O((Bd ×B)σ), i.e.,

a ∈ K(Bσ) and b ∈ O(Bσ). Note that in this case, if a, b ∈ Dj \ {�} for some

j ∈ Iσ, then j ∈ K (Iσ) ∩ O (Iσ) = I. Therefore, we need only consider the

following four cases.

Case 1: a, b ∈ Dj \ {�} for some j ∈ I, i.e., a ∈ K(Bσ
j \ {�}) and b ∈

O(Bσ
j \ {�}). Then

a →π b =
∨

D {c → d : a ≤ c, d ≤ b and c, d ∈ B}

=
∨

D {c → d : a ≤ c, d ≤ b and c, d ∈ Bj \ {�}}

= a →π
j b = a →D b.

Case 2: a ∈ Dj \ {�}, b ∈ Dk \ {�} with j < k. Since a ∈ K(Bσ) and

b ∈ O(Bσ), we have j ∈ K (Iσ) and k ∈ O (Iσ). Thus, there exist l, m ∈ I

such that j ≤ l < m ≤ k and

a →π b =
∨

D {c → d : a ≤ c, d ≤ b and c, d ∈ B}

=
∨

D {c → d : a ≤ c, d ≤ b, χ(c) ≤ l, χ(d) ≥ m and c, d ∈ B}

=
∨

D {c → d : a ≤ c < d ≤ b and c, d ∈ B} = � = a →D b.

Case 3: a ∈ Dj \ {�}, b ∈ Dk \ {�} with j > k. Thus, b ≤ a and

a →π b =
∨

D {c → d : a ≤ c, d ≤ b and c, d ∈ B}

=
∨

D {c → d :, d ≤ b ≤ a ≤ c and c, d ∈ B}

=
∨

D {d : d ≤ b, b ∈ B} = b = a →D b.

Case 4: a = � or b = �. It is easy to see that a →π b = b = a →D b.

Assume now (a, b) /∈ K(Bσ)×O(Bσ). Then one of the following four cases

occurs:

Case 1: a, b ∈ Bσ
j . Then

a →π b =
∧

D {c →π d : c ≤ a, b ≤ d, c ∈ K(Bσ) and d ∈ O(Bσ)}

=
∧

D

{
c →π d : c ≤ a, b ≤ d, c ∈ K

(
Bσ

j

)
and d ∈ O

(
Bσ

j

)}
=

∧
Bσ

j

{
c →D d : c ≤ a, b ≤ d, c ∈ K

(
Bσ

j

)
and d ∈ O

(
Bσ

j

)}
=

∧
Bσ

j

{
c →π

j d : c ≤ a, b ≤ d, c ∈ K
(
Bσ

j

)
and d ∈ O

(
Bσ

j

)}
= a →π

j b = a →D b.
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Case 2: a, b ∈ Dj \ {�} for some j ∈ Iσ \ I. Then a = b = 0j and

0j →π 0j =
∧

D {c →π d : c ≤ 0j ≤ d, c ∈ K(Bσ) and d ∈ O(Bσ)}

=
∧

D {c →D d : c ≤ 0j ≤ d, c ∈ K(Bσ) and d ∈ O(Bσ)}

= � = 0j →D 0j .

Case 3: a ∈ Dj \ {�}, b ∈ Dk \ {�} and j < k. Since a ≤ b,

a →π b =
∧

D {c →π d : c ≤ a, b ≤ d, c ∈ K(Bσ) and d ∈ O(Bσ)}

=
∧

D {c →D d : c ≤ a ≤ b ≤ d, c ∈ K(Bσ) and d ∈ O(Bσ)}

= � = a →D b.

Case 4: a ∈ Dj \ {�}, b ∈ Dk \ {�} and j > k. By the density of Iσ, there

exist l ∈ O (Iσ) and m ∈ K (Iσ) such that k ≤ l < m ≤ j. Then

a →π b =
∧

D {c →π d : c ≤ a, b ≤ d, c ∈ K(Bσ) and d ∈ O( Bσ)}

=
∧

D {c →D d : b ≤ d < c ≤ a, c ∈ K(Bσ), d ∈ O(Bσ), χ (d) ≤ l}

=
∧

D {d : b ≤ d, d ∈ O(Bσ) and χ (d) ≤ l} = b = a →D b.

The proof of (2) is similar to the previous one. The only important detail

that differs from (1) is the fact that the sum involves algebras of the form M

when the index is in Iσ \ I, whereas in (1) it involves L2. Observe that the

operations ∗M and ∗L2
coincide, while →M and →L2

are different only in the

pair (0, 0).

Therefore, to prove (2), we need only verify that 0j →σ 0j = 0j →C 0j

when 0j ∈ Cj \ {�} with j /∈ I. Thus, j /∈ K(Iσ) ∩ O(Iσ). Since σ- and

π-canonical extensions coincide on closed and open elements, we obtain that

0j →σ 0j =
∨

C {b →σ c : c ≤ 0j ≤ b, b ∈ O and c ∈ K}

=
∨

C {b →π c : c ≤ 0j ≤ b, b ∈ O, c ∈ K and c < b}

=
∨

C {b →D c : c ≤ 0j ≤ b, b ∈ O, c ∈ K and c < b}

=
∨

C {c : c ≤ 0j , c ∈ K} = 0j = 0j →C 0j . �

Corollary 4.5. Let I = {1, . . . , n} be a finite set with the usual order inherited

from N. For each i ∈ I, let Bi be a hoop, and assume that Bi\{�} is updirected

for each 1 ≤ i < n. Then(⊕
i∈I Bi

)π ∼=
⊕

i∈I (Bπ
i ) and

(⊕
i∈I Bi

)σ ∼=
⊕

i∈I (Bσ
i ) .

Proof. Since the underlying lattice of
⊕

i∈I Bi is
(⊎

I\{n}(Bi \ {�})
) ⊎

Bn,

the hypothesis that Bn \ {�} is an updirected set can be omitted from the

statement of Theorem 4.4, yielding the result. �

Corollary 4.6. Let I be a totally ordered set. For each i ∈ I, let Bi be a

totally ordered hoop.

(1) If Bi is finite for every i ∈ I, then
(⊕

i∈I Bi

)π
is a totally ordered bounded

hoop.

(2) If I is infinite, then
(⊕

i∈I Bi

)σ
is not a hoop.
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5. Canonical extensions of subvarieties of BL-algebras

In [1], a deep study of subvarieties of BL-algebras is developed. That study

is based on a decomposition of totally ordered BL-algebras (BL-chains) into or-

dinal sums of some algebraic structures called totally ordered Wajsberg hoops.

In this section we use this decomposition and the fact that subvarieties of BL-

algebras are generated by BL-chains to investigate canonical extensions of

subvarieties of BL-algebras.

5.1. Background on BL-algebras.

Definition 5.1. A BL-algebra is an algebra A = 〈A,→, ∗,⊥,�〉 such that

• 〈A,→, ∗,�〉 is a basic hoop;

• A is bounded with lower bound ⊥, i.e., ⊥ ≤ a for each a ∈ A.

Therefore, BL-algebras are bounded distributive lattices with monotone

operators in the sense of [13]. References about BL-algebras can be found in

[1], [17] and [18]. BL-algebras form a variety BL (see [17]). From the definition

of basic hoops, we conclude:

Theorem 5.2. Every subvariety of BL is generated by BL-chains.

Remark 5.3. Readers familiar with the theory of residuated lattices (see [12])

can think of BL-algebras as commutative bounded integral residuated lattices

satisfying prelinearity and divisibility.

Theorem 5.4 (see [17]). The following are proper subvarieties of BL.

(1) The variety MV of MV-algebras, see [8].

(2) The variety G of Gödel algebras (linear Heyting algebras), see [10, 19, 23].

(3) The variety PL of product algebras, see [9].

(4) The variety B of Boolean algebras.

An implicative filter of a BL-algebra A is a subset F ⊆ A satisfying that

� ∈ F , and if x ∈ F and x → y ∈ F , then y ∈ F . Implicative filters are in

one-to-one correspondence with congruences in BL-algebras (see [17, Lemma

2.3.14]). It is worth noticing that an implicative filter F of a BL-algebra A is

closed under ∗. Therefore F is the universe of a subhoop of the hoop reduct

of A.

A Wajsberg hoop is a hoop satisfying the equation

(x → y) → y = (y → x) → x.

Wajsberg hoops form a variety of hoops that we denote by WH. Readers

interested in more information about Wajsberg hoops may see [2]. The next

theorem shows the strong relation between BL-chains and totally ordered Wa-

jsberg hoops.
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Theorem 5.5 (see [1] and [5]). Every nontrivial BL-chain can be uniquely

(up to isomorphism) decomposed into the ordinal sum of a family of nontrivial

totally ordered Wajsberg hoops whose bottom component is bounded.

We also have that if I is a totally ordered set with a lower bound 0, and for

each i ∈ I, Wi is a totally ordered Wajsberg hoop with W0 bounded, then

the algebra
⊕

i∈I Wi is a BL-chain. An interesting consequence of Theorem

4.4 and the previous result is the next result.

Lemma 5.6. Let I be a totally ordered set with a lower bound. For each

i ∈ I, let Bi be a finite totally ordered Wajsberg hoop. Then
(⊕

i∈I Bi

)π
is a

BL-chain.

To conclude this section, we present some important definitions that involve

finite BL-chains and ordinal sums.

The algebra L2 defined in the previous section is the reduct of the BL-chain

〈{0, 1}, ∗L2
,→L2

, 0, 1〉 that we will also call L2. Generalizing this definition,

let Lm denote the �Lukasiewicz m-element chain, i.e., the unique (up to iso-

morphism) MV-chain whose universe is the set{
0

m − 1
,

1

m − 1
, . . . ,

m − 1

m − 1

}
,

with the usual order and the operations given by

x ∗ y = max{0, x + y − 1} and x → y = min{1 − x + y, 1}.

Since bounded Wajsberg hoops are reducts of MV-algebras, with an abuse of

notation we shall use Lm to denote both structures: the MV-chain and the

Wajsberg hoop. For example, Ln will denote the MV-chain 〈Ln, ∗,→, 0, 1〉 as

well as the Wajsberg hoop 〈Ln, ∗,→, 1〉. Then we shall understand Ln ⊕ Lm

as the BL-algebra obtained from the ordinal sum of the MV-chain Ln and the

Wajsberg hoop Lm.

5.2. σ-canonicity of subvarieties of BL. We shall prove the following the-

orem that extends the results in [16] for MV-algebras and those in [7] for

BL-algebras:

Theorem 5.7. Given a subvariety V of BL-algebras, the following statements

are equivalent:

(1) V is σ-canonical.

(2) V is finitely generated.

The implication (2) → (1) is an immediate consequence of Corollary 2.3. We

devote the rest of the subsection to proving the opposite implication. The proof

will be based on Theorem 5.2 and on some results of [7] that we summarize in

the next theorem.

Theorem 5.8. Let V be a subvariety of BL-algebras.

(1) If PL ⊆ V, then V is not σ-canonical.
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(2) If there is a subvariety S ⊆ MV such that S ⊆ V and S is not finitely

generated, then V is not σ-canonical.

(3) If G ⊆ V, then V is not σ-canonical.

Before starting with the proof of Theorem 5.7, we compile some necessary

results about Wajsberg hoops and ordinal sums that can be found in [1].

Theorem 5.9. Every totally ordered Wajsberg hoop W satisfies one and only

one of the following conditions:

(1) W is cancellative, i.e., it satisfies that if x ∗ y = x ∗ z, then y = z;

(2) W is bounded. In this case W is the bottom-free reduct of a totally ordered

MV-algebra (MV-chain).

Obviously, if W is a finite set, then W is the bottom-free reduct of a finite

MV-chain.

Lemma 5.10. If A is a finite BL-chain, then A ∼=
⊕

i∈I Lsi
for some finite

set I ⊆ N and 2 ≤ si ∈ N.

Lemma 5.11. Let B be a BL-chain, and let B =
⊕

i∈I Wi be its decompo-

sition into totally ordered Wajsberg hoops given by Theorem 5.5. Let 0 be the

bottom element of I. The subhoops of B are totally ordered hoops of the form

C =
⊕

i∈J Vi such that J ⊆ I and for each i ∈ J , Vi is a subhoop of Wi.

The subalgebras of B are obtained similarly, but we must require that 0 ∈ J

and that V0 is a subalgebra of W0.

Lemma 5.12. Every totally ordered Gödel algebra (Gödel chain) is of the form⊕
i∈I L2 where I is a totally ordered set. The variety G of Gödel algebras is

generated by an infinite family of non-isomorphic finite Gödel chains or by

any infinite Gödel chain.

Remark 5.13. The previous Lemma and Corollary 4.6 provide an alternative

proof of the fact that G, as a subvariety of BL-algebras, is not σ-canonical.

Indeed, for any infinite bounded totally ordered set I, the algebra
⊕

i∈I L2 ∈ G.

Corollary 4.6 implies that (
⊕

i∈I L2)
σ is not even a hoop. Therefore, any

variety V ⊆ BL that satisfies G ⊆ V is not σ-canonical.

The following two theorems are crucial to prove Theorem 5.7. However,

their proofs are long and may distract the reader’s attention from the main

point. Therefore, we have put them in an appendix at the end of the paper.

Theorem 5.14. Let W be an infinite totally ordered Wajsberg hoop, and let

B = L2 ⊕ W be a BL-chain. Then the variety of BL-algebras generated by B

contains PL.

Theorem 5.15. Let V be a variety of BL-algebras. If there exists an infinite

set T of natural numbers such that {L2
⊕

Lt : t ∈ T} ⊆ V, then there exists

an infinite totally ordered Wajsberg hoop W such that L2 ⊕ W ∈ V.
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We fix some notation for the sequel. If A is a BL-algebra, we denote by

〈A〉BL the subvariety of BL-algebras generated by A. In case A has a reduct

that is a Wajsberg hoop, 〈A〉WH denotes the subvariety of Wajsberg hoops

generated by the hoop reduct of A.

We have settled all the necessary machinery to prove the implication

(1) → (2) in Theorem 5.7. Let V be a variety of BL-algebras that is not finitely

generated. By Theorem 5.2, there exists a set of BL-chains S such that V is

generated by S. There are two possible cases for S: it contains an infinite

BL-chain or it contains an infinite number of non-isomorphic finite BL-chains.

S contains an infinite BL-chain. Let B ∈ S be an infinite BL-chain.

From Theorem 5.5, we know that B admits a unique decomposition B =⊕
i∈I Wi. For each i ∈ I, Wi is a totally ordered Wajsberg hoop and W0 is a

bounded Wajsberg hoop, where 0 is the bottom element of the totally ordered

set I. Since B is infinite, at least one of the following statements is satisfied:

(1) W0 is an infinite MV-chain,

(2) there exists i ∈ I with 0 < i such that Wi is an infinite totally ordered

Wajsberg hoop.

(3) I is infinite and for every i ∈ I, Wi is a finite totally ordered Wajsberg

hoop.

If case (1) holds, then by Lemma 5.11, W0 is a subalgebra of B. Therefore,

〈W0〉BL ⊆ V and clearly 〈W0〉BL ⊆ MV is not finitely generated (see [8,

Chapter 8]). Hence, by (ii) in Theorem 5.8, we conclude that V is not σ-

canonical.

In the second case, from Lemma 5.11, the algebra L2⊕Wi is a subalgebra of

B. From Theorem 5.14, we conclude that PL ⊆ 〈L2⊕Wi〉BL ⊆ V. Therefore,

V is not σ-canonical because of (i) in Theorem 5.8.

In case (3), observe that each Wi is the reduct of a finite MV-chain, Lsi
.

Since L2 is a subalgebra of Lsi
for each i ∈ I, by Lemma 5.11,

⊕
i∈I L2 is a

subalgebra of B. Thus, by Lemma 5.12,
⊕

i∈I L2 is an infinite Gödel algebra

that generates G. We conclude G ⊆ V and from item (iii) in Theorem 5.8 (see

also Remark 5.13), V is not σ-canonical.

S contains an infinite number of non-isomorphic finite BL-chains.

From Lemma 5.10, let the non-isomorphic finite algebras in S be given by

Bj
∼=

⊕
i∈Ij

Ln(j,i) (j ∈ J)

where J is an infinite set of indices, and for each j ∈ J , Ij is a finite totally

ordered set. Let |Ij | be the cardinal of the set Ij and 0j its bottom element.

We split the proof into two different cases:

(1) There exists k ∈ N such that |Ij | ≤ k for all j ∈ J .

(2) {|Ij | : j ∈ J} is unbounded.

If (1) happens, since {Bj : j ∈ J} is an infinite set of non-isomorphic

BL-chains, then T = {n(j, i) : j ∈ J and i ∈ Ij} is infinite.
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Suppose first that {n(j, 0j) : j ∈ J} ⊆ T is infinite. By Lemma 5.11,

{Ln(j,0j) : j ∈ J}

is an infinite set of non-isomorphic MV-chains contained in V. In [8, Propo-

sition 8.1.2], it is proved that {Ln(j,0j) : j ∈ J} generates the variety MV.

Therefore MV ⊆ V and by item (ii) in Theorem 5.8, V is not σ-canonical.

If {n(j, 0j) : j ∈ J} is finite, then the set {n(j, i) : j ∈ J, 0j < i ∈ Ij} ⊆ T

is infinite. This being the case, from Lemma 5.11,

{L2 ⊕ Ln(j,i) : j ∈ J, 0j < i ∈ Ij}

is an infinite set of non-isomorphic BL-chains contained in V. Because of

Theorem 5.15 and Theorem 5.14, there is an infinite totally ordered Wajsberg

hoop W such that L2 ⊕W ∈ V and PL ⊆ V. Then the hypothesis of item (i)

in Theorem 5.8 is satisfied and we have the desired result.

To deal with (2), for each j ∈ J , let Aj =
⊕

Ij
L2. Lemma 5.11 implies

that for each j ∈ J , the algebra Aj is isomorphic to a subalgebra of Bj .

Using Lemma 5.12, we conclude that {Aj : j ∈ J} ⊆ V is an infinite set of

non-isomorphic Gödel chains and G ⊆ V. Then the result follows from (iii) in

Theorem 5.8.

5.3. About π-canonicity. We present some positive and some negative re-

sults about π-canonicity.

Theorem 5.16 (see [7] and [22]). Let V be a subvariety of BL-algebras.

(1) If PL ⊆ V, then V is not π-canonical.

(2) If there is a subvariety S ⊆ MV such that S ⊆ V and S is not finitely

generated, then V is not π-canonical.

(3) If V ⊆ G or V is finitely generated, then V is π-canonical.

Theorem 5.17. Let V be a subvariety of BL, and let A ∈ V be a BL-chain.

Assume that the decomposition of A, according to Theorem 5.5, is given by

A =
⊕

i∈I Wi. If there is an i ∈ I such that Wi is infinite, then V is not

π-canonical.

Proof. Let 0 be the least element of I. If W0 is infinite, then 〈W0〉BL is

a subvariety of MV not finitely generated. Since 〈W0〉BL ⊆ V, by (2) of

Theorem 5.16 we conclude that V is not π-canonical. Otherwise, there exists

i ∈ I with 0 < i such that Wi is infinite; by Lemma 5.11, L2 ⊕ Wi is a

subalgebra of A. Now the result follows from Theorem 5.14 and item (1) of

Theorem 5.16. �

To obtain new positive results about π-canonicity, we need to consider the

variety GG of generalized Gödel algebras. Generalized Gödel algebras can

be though of as the bottom-free reducts of Gödel algebras (linear Heyting

algebras). They form a variety GG that is the subvariety of basic hoops char-

acterized by the equation x ∗ x = x.
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As quoted in Theorem 5.16, item (3), the variety G of Gödel algebras is π-

canonical and it is not σ-canonical. A proof of this fact can be deduced from

the results in [15] (see [7]). A slight modification of that argument justifies the

following result.

Lemma 5.18. The variety GG is π-canonical and not σ-canonical.

Let n ∈ N. Consider the class Kn = {Ln ⊕ G : G ∈ GG}. The next result

implies that Kn is a class of BL-algebras.

Theorem 5.19. Let A be a basic hoop. For each n ∈ N, Ln ⊕ A is a BL-

algebra.

Proof. Since Ln is bounded, we know that Ln ⊕ A is a bounded hoop. Ac-

cording to the definition of BL-algebra, it only remains to check that Ln ⊕ A

satisfies equation (4.4) from Section 3. By the residuation law and the defini-

tion of the order in any hoop, one can see that equation (4.4) is equivalent to

the inequality

(x → y) → z ≤ ((y → x) → z) → z. (5.1)

Once more from the residuation law, we know that for any x, y, z ∈ Ln ⊕ A,

the inequality

z ≤ ((y → x) → z) → z (5.2)

holds in Ln ⊕ A. We divide the proof into three cases:

Case 1: y → x ∈ Ln \{�}. Notice that y → x ∈ Ln \{�} if and only if x < y.

Hence, x → y = � and (x → y) → z = � → z = z. Inequality (5.1) follows

from inequality (5.2)

Case 2: y → x ∈ A and z ∈ Ln \ {�}. From the definition of ordinal sum the

right hand side of inequality (5.1) is ((y → x) → z) → z = z → z = �, and

the inequality holds.

Case 3: y → x ∈ A and z ∈ A. If y → x = �, then the right hand side of

(5.1) is � and the inequality holds. Otherwise, y → x ∈ A implies x, y ∈ A.

Then we are in the case x, y, z ∈ A, and inequality (5.1) holds because A is a

basic hoop. �

Theorem 5.20. Let n ∈ N, and let Vn be the variety of BL-algebras generated

by Kn. Then Vn is π-canonical.

Proof. According to Theorem 2.2, we only need to see that for each n ∈ N,

the class Kn is closed under ultraproducts and under π-canonical extensions.

Closure under ultraproducts. For an arbitrary class of algebras K, let

I(K) and Pu(K) denote the classes of isomorphic images and ultraproducts of

algebras from K, respectively. In [1, Proposition 3.3] it is proved that for a set

J , if A
j
0 and A

j
1 for j ∈ J are basic hoops, then Pu({Aj

0 ⊕ A
j
1 : j ∈ J}) =

{B0 ⊕ B1 : Bi ∈ IPu({Aj
i : j ∈ J}) for i ∈ {0, 1}}.
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Every ultrapower of a single finite algebra D is isomorphic to D (see [3,

Chapter IV, Lemma 6.5]). Hence Pu(Ln) ⊆ I(Ln). Since GG is a variety,

Pu(GG}) ⊆ GG. These assertions together yield Pu(Kn) ⊆ Kn.

Closure under π-canonical extensions. Let Ln⊕G ∈ Kn. From Corol-

lary 4.5, (Ln ⊕ G)
π

= (Ln)π ⊕ (G)π.

Since Ln is finite, (Ln)π = Ln. By Lemma 5.18, we conclude that (G)π ∈

GG; thus, (Ln ⊕ G)π ∈ Kn as desired. �

6. Appendix

In this appendix, we give the proofs of Theorem 5.14 and Theorem 5.15.

Both these proofs will use the fact that the totally ordered Wajsberg hoop,

[0, 1]WH = ([0, 1], ∗,→, 1), where x ∗ y = max(0, x + y − 1) and x → y =

min(1, 1−x+y), generates the variety of basic Wajsberg hoops, denoted BWH.

An analogous proof to that of [8, Prop. 3.5.3 and Prop. 8.11] shows that if W

is the hoop reduct of a simple infinite MV-chain, then W is isomorphic to a

subalgebra of [0, 1]WH and the variety generated by W is BWH (this is because

every infinite subhoop of [0, 1]WH is dense in [0, 1]WH and the operations ∗,→

are continuous in [0, 1]WH).

The proof of Theorem 5.14 relies on the following two important facts:

F1 (see [1]): The variety PL of Product algebras is generated by any BL-chain

of the form L2⊕W, with W a cancellative totally ordered Wajsberg hoop.

F2 (see [6, Corollary 3.5]): If W is a basic hoop, then the variety of basic

hoops generated by W coincides with the variety of basic hoops W given

by W = {C : L2 ⊕ C ∈ 〈L2 ⊕ W〉BL}.

Now we are ready to prove Theorem 5.14. To facilitate readability, we recall

the statement.

Theorem 5.14. Let W be an infinite totally ordered Wajsberg hoop and let

B = L2 ⊕ W be a BL-chain. Then the variety of BL-algebras generated by B

contains PL.

Proof. Let V be the variety of BL-algebras generated by B. Following the

result of Theorem 5.9, we can assert that one and only one of the following

cases happens:

(1) W is a cancellative totally ordered Wajsberg hoop;

(2) W is the reduct of a simple infinite MV-chain;

(3) W is the reduct of a nonsimple infinite MV-chain.

In the case of item 1, we know from F1 that B is a product algebra that

generates PL. Thus, PL = V.

If W is the reduct of a simple infinite MV-chain, the variety generated by

W is the variety BWH. Let C ∈ BWH be a cancellative totally ordered

Wajsberg hoop. By F2, L2 ⊕ C is in V. Since L2 ⊕ C generates the variety

PL, we conclude PL ⊆ V.



394 M. Busaniche and L. M. Cabrer Algebra Univers.

If W is the reduct of a nonsimple MV-chain, let A be the maximal proper

implicative filter of W. The observations following the definition of implicative

filters yields that A is a non-trivial totally ordered Wajsberg hoop. We prove

that A is cancellative. If this were not the case (absurdum hypothesis), then

from Theorem 5.9, A is bounded. Let z be the lower bound of A. Since ⊥ /∈ A

and A is non-trivial, we get z �= ⊥ and z �= �. Note that z ∗ z = z2 ∈ A, and

since it is always the case that z2 ≤ z, the fact that z is the lower bound of A

yields z2 = z. This means that z is a complemented element in the MV-chain

reduct W, which is different from ⊥ and � (see [8, Theorem 1.5.3]). But the

only complemented elements in any MV-chain are ⊥ and �. This contradiction

follows from the assumption that A has a lower bound. Therefore, we conclude

that A is cancellative.

By Lemma 5.11, L2 ⊕ A is a subalgebra of B and by F1, PL ⊆ V. �

The rest of the appendix is devoted to proving Theorem 5.15. To achieve

this aim, we investigate the behavior of equations in the BL-algebra L2 ⊕

[0, 1]WH , showing that if an equation ε fails in L2⊕ [0, 1]WH , then there exists

m ∈ N such that ε fails in every BL-algebra L2 ⊕ Lt with t ≥ m. Notice that

the universe of L2 ⊕ [0, 1]WH is the set {⊥} ∪ [0, 1] and � = 1.

Lemma 6.1 (see [4], Lemma 3.6). Assume that τ(x1, . . . , xn) is a term func-

tion in the language of BL-algebras. Let (a1, . . . , an) ∈ (L2 ⊕ [0, 1]WH)n be

such that aj ∈ [0, 1]WH for some j ∈ {1, 2, . . . , n}. Then

⊥ = τ(a1, . . . , aj−1, aj , aj+1, . . . , an)

if and only if for any y ∈ [0, 1]WH ,

⊥ = τ(a1, . . . , aj−1, y, aj+1, . . . , an).

Lemma 6.2. Let τ(x1, . . . , xn) be a term function in the language of BL-

algebras, and let (a1, . . . , an) ∈ (L2⊕[0, 1]WH)n be such that ⊥ < τ(a1, . . . , an).

Assume that aj �= ⊥ for some 1 ≤ j ≤ n. Consider

τ ′(y) = τ(a1, . . . , aj−1, y, aj+1, . . . an)

as a function defined in the real interval [0, 1]. Then the image of τ ′ is included

in [0, 1] and τ ′ is continuous.

Proof. We present a proof by induction on the complexity of τ .

If τ is a term function of complexity 0, then τ(x1, . . . , xn) = xi for some

1 ≤ i ≤ n, or τ(x1, . . . , xn) ∈ {⊥,�} for every (x1, . . . , xn) ∈ (L2⊕ [0, 1]WH)n.

If τ(x1, . . . , xn) = xj , then τ ′(y) = y is clearly continuous. If τ(x1, . . . , xn) =

xi for some i �= j, then τ ′(y) = ai ∈ [0, 1] is constant and the result holds.

If τ(x1, . . . , xn) = � for every (x1, . . . , xn) ∈ (L2 ⊕ [0, 1]WH)n, the result also

holds. Lastly, the hypothesis ⊥ < τ(a1, . . . , an) implies that it can not be the

case that τ(x1, . . . , xn) = ⊥ for every (x1, . . . , xn) ∈ (L2 ⊕ [0, 1]WH)n.

Assume that we have proved the statement for all term functions τ satisfying

the hypothesis whose complexity is less than k > 0. Let τ be a term function
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of complexity k. Since τ(a1, . . . , an) �= ⊥, Lemma 6.1 implies that the image

of τ ′(y) is included in [0, 1]. To check continuity, we consider the following two

cases.

Case 1: τ = φ ∗ ϕ for some term functions φ, ϕ of complexity less than k.

Recall that ⊥ is an absorbing element for the operation ∗, i.e, x ∗ y = ⊥ if and

only if x = ⊥ or y = ⊥. Hence, from the hypothesis ⊥ < τ(a1, . . . , an), we

conclude ⊥ < φ(a1, . . . , an) and ⊥ < ϕ(a1, . . . , an). The induction hypothesis

yields that φ′(y) and ϕ′(y) are continuous functions that arise by fixing xi = ai

for all the variables except xj . Therefore, τ ′(y) = max(0, φ′(y) + ϕ′(y) − 1) is

a continuous function from [0, 1] into [0, 1].

Case 2: τ = φ → ϕ for some term functions φ, ϕ of complexity less than

k. From the hypothesis ⊥ < τ(a1, . . . , an), one possible case is that ⊥ =

φ(a1, . . . , an). If this happens, then the result of Lemma 6.1 yields that

φ(a1, . . . , aj−1, y, aj+1, . . . , an) = ⊥ for any y ∈ [0, 1]. Therefore,

φ(a1, . . . , aj−1, y, aj+1, . . . , an) ≤ ψ(a1, . . . , aj−1, y, aj+1, . . . , an)

for every y ∈ [0, 1], and the definition of the order yields � = 1 = τ ′(y) for all

y ∈ [0, 1]. If it were the case that ⊥ = ϕ(a1, . . . , an) and ⊥ < φ(a1, . . . , an),

then the definition of ordinal sum would yield ⊥ = τ(a1, . . . , an), contradict-

ing our hypothesis. Therefore, the only remaining possibility is that both

ϕ(a1, . . . , an) and φ(a1, . . . , an) are greater than ⊥. By the induction hy-

pothesis, φ′(y) and ϕ′(y) are continuous functions from [0, 1] into [0, 1] and

τ ′(y) = min(1, 1−φ′(y)+ϕ′(y)). We conclude that τ ′ is a continuous function

from [0, 1] into [0, 1]. �

As an easy generalization of the previous result we obtain

Lemma 6.3. Let τ(x1, . . . , xn) be a term function in the language of BL-

algebras, and let (a1, . . . , an) ∈ (L2⊕[0, 1]WH)n be such that ⊥ < τ(a1, . . . , an).

Assume that there are j1, j2, . . . , jk ∈ {1, . . . n} with 0 < k ≤ n such that

aji
�= ⊥. Then the function τ ′(xj1 , . . . , xjk

) that arises by fixing xi = ai in

τ , for all variables xi such that i /∈ {j1, . . . jk}, is a continuous function from

[0, 1]k into [0, 1].

Lemma 6.4. If an equation ε in the language of BL-algebras does not hold in

L2 ⊕ [0, 1]WH , then there is an m ∈ N such that ε fails in L2 ⊕ Lt for every

t ≥ m.

Proof. Every equation α = β in the language of BL-algebras can be written

equivalently as (α → β) ∗ (β → α) = �. Let ε be an equation in the language

of BL-algebras given by

τ(x1, . . . , xn) = �. (6.1)

Without danger of confusion, let τ(x1, . . . , xn) denote the term function asso-

ciated with ε. Assume that ε fails in L2 ⊕ [0, 1]WH . Then there is an n-tuple

(a1, . . . , an) ∈ (L2 ⊕ [0, 1]WH)n such that � > τ(a1, . . . , an).
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If τ(a1, . . . , an) = ⊥, we can apply Lemma 6.1 and conclude that for each

s > 2 and for each n-tuple (b1, . . . , bn) ∈ (L2 ⊕ Ls)
n that satisfies bi = ai,

if ai = ⊥, then τ(b1, . . . , bn) = ⊥. Therefore, the equation (6.1) fails in any

algebra of the form L2 ⊕ Ls with s ≥ 2.

Now assume that � > τ(a1, . . . , an) > ⊥. Since L2 is a subalgebra of

L2 ⊕ [0, 1]WH , it cannot be the case that ai = ⊥ for each i = 1, . . . , n. Let

τ ′(xj1 , . . . xjk
) be the function obtained from τ(x1, . . . , xn) by fixing xi = ai

when ai = ⊥. By Lemma 6.3, τ ′ is a continuous function from [0, 1]k into

[0, 1]. Since τ ′(aj1 , . . . , ajk
) < �, the continuity of τ ′ implies that there is an

m ∈ N such that for all t ≥ m there is a k-tuple (cj1 , . . . , cjk
) ∈ (Lt)

k that

satisfies τ ′(cj1 , . . . , cjk
) < �. Therefore, the n-tuple (d1, . . . , dn) ∈ (L2 ⊕ Lt)

n

given by

di =

{
ci if ai �= ⊥,

⊥ otherwise,

satisfies τ(d1, . . . , dn) = τ ′(cj1 , . . . , cjk
) < �. This last assertion implies that

equation (6.1) fails in L2 ⊕ Lt for all t ≥ m. �

Now we are ready to prove the promised theorem:

Theorem 5.15. Let V be a variety of BL-algebras. If there exists an infinite

set T of natural numbers such that {L2
⊕

Lt : t ∈ T} ⊆ V, then there exists

an infinite totally ordered Wajsberg hoop W, such that L2 ⊕ W ∈ V.

Proof. We shall check that L2⊕ [0, 1]WH ∈ V. Since V is a variety, it is enough

to see that for every equation ε, ε holds in L2 ⊕ [0, 1]WH if and only if it holds

in L2 ⊕ Lt for each t ∈ T . One implication is a consequence of the fact that

for each t ∈ T , L2 ⊕ Lt is a subalgebra of L2 ⊕ [0, 1]WH . The opposite one

follows from Lemma 6.4. �

Acknowledgement. The authors express their gratitude to an anonymous

referee for his/her comments to improve the style and readability of the paper.

References

[1] Agliano, R., Montagna, F.: Varieties of BL-algebras I: general properties. Journal of
Pure and Applied Algebra 181, 105–129 (2003)

[2] Blok, W.J., Ferreirim, I.M.A.: On the structure of hoops. Algebra Universalis 43,
233–257 (2000)

[3] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York
(1981)

[4] Busaniche, M.: Free algebras in varieties of BL-algebras generated by a chain. Algebra
Universalis 50, 259–277 (2003)

[5] Busaniche, M.: Decomposition of BL-chains. Algebra Universalis 52, 519–525 (2004)
[6] Busaniche, M., Cignoli, R.: Free algebras in varieties of BL-algebras generated by a

BLn-chain. Journal of the Australian Mathematical Society 80, 419–439 (2006)
[7] Cabrer, L.M.: Non canonicity of BL-algebras. Reports on Mathematical Logic 44,

107–125 (2008)
[8] Cignoli, R., D’Ottaviano, M.I., Mundici, D.: Algebraic foundations of many-valued

reasoning. Kluwer Academic Pub., Dordrecht (2000)



 Canonicity in subvarieties of BL-algebras 397

[9] Cignoli, R., Torrens, A.: An algebraic analysis of product logic. Multiple Valued
Logics 5, 45–65 (2000)

[10] Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24,
97–106 (1959)

[11] Dunn, M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational
completness of some substructural logics. Journal of Symbolic Logic 70, 713–740
(2005)

[12] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logics and the Foundations of
Mathematics, vol. 151. Elsevier (2007)

[13] Gehrke, M., Harding, J.: Bounded lattice expansions. Journal of Algebra 238,
345–371 (2001)

[14] Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Mathematica
Japonica 40, 207–215 (1994)

[15] Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Mathematica
Scandinavica 94, 13–45 (2004)

[16] Gehrke, M., Priestley, H.: Non-canonicity of MV-algebras. Houston Journal of
Mathematics 28, 449–455 (2002)
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