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a b s t r a c t

We address the problem of finding a suitable definition of a value similar to that of Shapley’s, when the
games are defined on a subfamily of coalitions with no structure. We present two frameworks: one based
on the familiar efficiency, linearity and null player axioms, and the other on linearity and the behavior on
unanimity games. We give several properties and examples in each case, and give necessary and suffi-
cient conditions on the family of coalitions for the approaches to coincide.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In cooperative games in characteristic function form we are given a finite set N ¼ f1;2; . . . ;ng of players and a real valued function v—
which we will refer to as the game—defined on all the subsets of N;PðNÞ, with vð;Þ ¼ 0. A value is a mapping / which assigns to each game
v and i 2 N a real number /iðvÞ.

Perhaps the most celebrated value is the one given by Shapley (1953), which has been extensively studied and generalized.
When n is large, the exponentially large data involved make it certainly unrealistic to have a complete knowledge of v in practice. Even if n

is small, some coalitions may not actually form, either because the players cannot meet or communicate with each other, or because of
incompatibilities among them (for instance, ‘‘parties” in voting). Thus, the study of the so called restricted games was initiated by the works
of Thrall and Lucas (1963), Aumann and Dréze (1974), Myerson (1977a,b), and Owen (1977), to cite a few. Some of these studies consider the
way in which coalitions are formed, such as Myerson’s communication graph, while others focus on the axioms and underlying structures,
such as lattices, antimatroids, or convex geometries. The book by Bilbao (2000) presents a general treatment and references in this direction.

There have been many other types of generalizations of the Shapley value, such as that by Shapley and Shubik (1954), where subfamilies
of games are considered, but we do not study them here, nor do we consider the relation with the core. For recent treatments of the Shapley
value and its generalizations, we refer the reader to the corresponding chapters in the book by Aumann and Hart (2002), and to the paper
by Moretti and Patrone (2008).

This work concerns the problem of finding a suitable definition of a value / satisfying properties similar to those of Shapley’s, when the
underlying family of coalitions has no structure. Recent papers related to our work are those by Honda and Grabisch (2006), Lange and
Grabisch (2009) and Faigle and Peis (2008). It is worth mentioning also the work by Castro et al. (2009), where the calculation of the Shap-
ley value is based on sampling, alleviating the problem of huge data for large n.

Indicating by � the inclusion between two sets, and by ( the strict inclusion, we assume there is a family of coalitions K;K � PðNÞ,
with ; and N in K, and consider the associated family of games defined on it, V ¼ fv : K! R;vð;Þ ¼ 0g. Notice that we do not ask for
superadditivity of games, i.e., the condition vðA [ BÞP vðAÞ þ vðBÞ for all disjoint A and B is not required for v to be in V (K need not
be closed under disjoint unions).

Note. From now on, / will denote a value function defined on the set of games V of a family of coalitions K.

Shapley (1953) introduced his value, denoted here by /S, by means of three axioms. Although a number of alternative set of axioms have
been proposed, we discuss mostly those originally given by Shapley, adapting them to our setting.
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The first axiom, symmetry, is defined by taking a permutation p on N and considering for v 2V the game v � p (the composition), and
the symmetry axiom asks that /iðv � pÞ ¼ /pðiÞðvÞ for all p;v and i. Since in general we do not have pðKÞ 2K for all K 2K, this axiom
makes sense only partially in our context (that is, only for permutations leaving invariant K). For example, if N ¼ f1;2;3g and
K ¼ f;; f1g; f1;2g; f1;3g;Ng, we may say that the players 2 and 3 play a symmetrical role. But, if K ¼ f;; f1g; f2g; f1;3g;Ng, there are
no symmetric players.

A related and much weaker concept is that of equivalent players, a property of the family K which does not depend on the value /:

Definition 1.1. The players i and j in N are equivalent (with respect to the family K) if fK 2K : i 2 Kg ¼ fK 2K : j 2 Kg.

If there is no way to distinguish between two players, we may ask that they obtain the same payoff:

Property 1.2 (EE). / is egalitarian on equivalent players if whenever i and j are equivalent players, /iðvÞ ¼ /jðvÞ for all games v.

Notice that if K ¼ PðNÞ, there are no players which are different and equivalent, and EE is trivially satisfied. We call it property rather
than axiom, since it depends on the family of coalitions being considered.

Shapley’s second axiom is currently called the carrier axiom, though he denominated it efficiency. Recall that a set R is a carrier of v if
vðSÞ ¼ vðS \ RÞ for all S � N, and the axiom states that vðRÞ ¼

P
i2R/iðvÞ for every carrier R of v. Although N is a carrier of any game, for an

arbitrary family of coalitions K we may not have S \ R 2K for all S;R 2K (the intersection property). So again, this axiom does not make
sense in a general context.

Here we use the term efficiency following current practice:

Axiom 1.1 (E). / is efficient if
P

i2N/iðvÞ ¼ vðNÞ for all v 2V.

Recall that for K ¼ PðNÞ; i 2 N is a null player for v if vðSÞ ¼ vðS [ figÞwhenever S � N and i R S, and that the carrier axiom is equivalent
to E and the null player axiom. In general we may not have S and S [ fig in K, but this time we may adapt the definition.

Let GK ¼ ðK;AÞ be the directed graph whose nodes are the coalitions in K and ðK;K 0Þ 2A if K(K 0 and there is no K 00 2K such that
K(K 00(K 0. Formally, GK is the transitive reduction of the graph induced by the inclusion on K. For i 2 N, let Ai ¼ fðK;K 0Þ 2A : i 2 K 0 n Kg.

The following definition coincides with the usual one when K ¼ PðNÞ:

Definition 1.3. i 2 N is a null player for v 2V if vðKÞ ¼ vðK 0Þ for all ðK;K 0Þ 2Ai.

Axiom 1.2 (N). / satisfies the null player axiom if for every v 2V;/iðvÞ ¼ 0 for every null player i of v.

The third and final axiom by Shapley, which he called aggregation, asks for the equality /ðv þwÞ ¼ /ðvÞ þ /ðwÞ for all v ;w 2V, but it is
more convenient to ask for linearity, i.e., adding the condition /ðavÞ ¼ a/ðvÞ for any constant a > 0, so that we have independence from
scale. Let us observe that, since we are not assuming superadditivity of games, if v 2V then �v 2V, and, actually, V is a linear space on R

of dimension jKj � 1 (jAj denotes the cardinal of the finite set A).

Axiom 1.3 (L). / is linear if /ðav þ bwÞ ¼ a/ðvÞ þ b/ðwÞ whenever v ;w 2V and a; b 2 R.

The linearity of a value immediately leads to the study of its behavior on linear bases of V. Usually two such bases are considered, both
parameterized by K� ¼ fR 2K : R–;g. The first one consists of the elementary games ER, defined for R 2K� by

ERðKÞ ¼
1 if R ¼ K;
0 otherwise;

�
and the other consists of the unanimity games UR ðR 2K�Þ, defined by

URðKÞ ¼
1 if R � K;

0 otherwise:

�
Unlike elementary games, unanimity games are superadditive and therefore better suited to cooperative game theory. On the other hand,
elementary games are easier to work with because of the simple representation

v ¼
X

K2K�
vðKÞEK for all v 2V: ð1:1Þ

Shapley showed that, when K ¼ PðNÞ, the carrier and symmetry axioms imply the following property, which we take as axiom (cf. Aumann,
1990):

Axiom 1.4 (EU). / is egalitarian on unanimity games if for all T 2K�,

/iðUTÞ ¼
1=jTj if i 2 T;

0 otherwise:

�
Notice that neither the carrier nor the symmetry axioms can be used for general families, but EU makes perfect sense in our setting.

In his 1953 paper, Shapley presented also a bargaining model in which, starting with a single player, players are added one at a time
until everyone has been admitted, and each player is given her marginal contribution (according to the game v) when incorporated. If every
order is possible and all orders are equally probable, then /S

i ðvÞ is the corresponding expectation.
These marginal contributions are quite apparent in the usual expression for /S,

/S
i ðvÞ ¼

Xn

t¼1

ðt � 1Þ! ðn� tÞ!
n!

X
i2T:jTj¼t

ðvðTÞ � vðT n figÞÞ; ð1:2Þ

which leads to the following definition:
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Definition 1.4. / is marginalist if there exist coefficients kiðK;K 0Þ 2 R, defined for each i 2 N and ðK;K 0Þ 2Ai, such that

/iðvÞ ¼
X

ðK;K 0 Þ2Ai

kiðK;K 0Þ ðvðK 0Þ � vðKÞÞ for all i 2 N and v 2V: ð1:3Þ

When convenient, we set kiðK;K 0Þ ¼ 0 if i R K 0 n K , so that the sum in (1.3) may be taken over all ðK;K 0Þ 2A, and not just Ai.

If K ¼ PðNÞ, there is only one player in K 0 n K if ðK;K 0Þ 2A, and precisely K is regular (Honda and Grabisch, 2006) if jK 0 n Kj ¼ 1 for all
ðK;K 0Þ 2A. In general, we may have several players in K 0 n K , and the following property states that in every arc the marginal gain is equally
distributed among its members.

Property 1.5 (IS). A marginalist value / has internal symmetry if it may represented in the form (1.3) with

kiðK;K 0Þ ¼ kjðK;K 0Þ for all ðK;K 0Þ 2A and i; j 2 K 0 n K: ð1:4Þ

As is the case of EE, IS is satisfied by every value when K ¼ PðNÞ. Actually, IS implies EE, since i and j are equivalent players if and only
if Ai ¼Aj. As the representation as a marginalist value need not be unique, it may be the case that in one representation (1.4) is satisfied
but not in another (see Example 2.5).

1.1. Summary of results

In this paper we present two frameworks for defining a Shapley value on general subfamilies, exhibiting differences and similarities.
In Section 2 we discuss the first one, based on N, L and E, and related to Shapley’s bargaining model. We show that N and L are equiv-

alent to marginalism (Theorem 2.4), though the representation may not be unique (Example 2.5), and we characterize those K for which it
is (Theorem 2.6). By adding E, we show that a marginalist value determines a flow in GK (Theorem 2.7), and by adding IS, we obtain the
converse (Theorem 2.8).

N, L and E are not enough to uniquely determine the Shapley value when K ¼ PðNÞ, and another axiom, such as symmetry in the clas-
sical setting, is needed. This remains true for general K, even if IS is required, and in the last part of Section 2 we discuss several possi-
bilities. In Section 2.1, closely related to the probabilistic study by Weber (1988), we use the decomposition of a flow along ; � N paths in
GK (Theorem 2.10 and Example 2.11). We present different models according to the weights given to the paths, and show their differences
in Example 2.12. In Section 2.2, we present a generalization of the potential flow model of Lange and Grabisch (2009), obtaining uniqueness
(Theorem 2.18) when the regularity axiom, R (defined in Section 2), is satisfied.

In Section 3 we study the second framework, which is inspired in the Hart and Mas-Colell (1989) treatment of the potential. We use L
and EU to find existence and uniqueness of a value, /U , which also satisfies E and EE (Theorem 3.1). We devote the remainder of this section
to study when /U is marginalist, giving first some examples and then some necessary conditions under sensible hypotheses. Theorem 3.4
reveals a quantity related to the coefficients of /S in (1.2) and the potential models. As a consequence, we obtain that for regular families,
/U is marginalist if and only if K ¼ PðNÞ (Corollary 3.7). Corollary 3.8 exposes a property, P-1, on coalitions and Theorem 3.9 shows that P-
1 implies that /U is marginalist. In Corollary 3.10 we completely characterize those families for which /U is marginalist with nonnegative
marginal coefficients. Finally, in Example 3.12 we show that P-1 may not be simplified easily.

In the last section we make a few concluding comments.

2. Marginalist and efficient values

For i 2 N, let us define

Kþ
i ¼ fK 2K : ðK;K 0Þ 2Ai for some K 0 2Kg;

K�
i ¼ fK 2K : ðK 0;KÞ 2Ai for some K 0 2Kg;
Ki ¼Kþ

i [K�
i ;

so that Ki is the set of coalitions which are endpoints of an arc in Ai. For a given i 2 N, let us denote by cðiÞ the number of (weak) components
induced by Ai, and denote each of them by Ci;k ¼ ðKi;k;Ai;kÞ; k ¼ 1; . . . ; cðiÞ. Notice that Ci;k is directed and bipartite: if ðK;K 0Þ 2Ai, then
K 2Kþ

i if and only if K 0 2K�
i , and we cannot have K 2K�

i \Kþ
i .

Note. If a graph G is directed, we will denote by G� the underlying undirected version.

Example 2.1. Let n ¼ 5 and

K ¼ f;; K1 ¼ f1g; K2 ¼ f2g; K3 ¼ f1;2;3;4g; K4 ¼ f1;2;3;5g;Ng:

There are 8 arcs in A,

e1 ¼ ð;;K1Þ; e2 ¼ ð;;K2Þ; e3 ¼ ðK1;K3Þ; e4 ¼ ðK1;K4Þ; e5 ¼ ðK2;K3Þ; e6 ¼ ðK2;K4Þ; e7 ¼ ðK3;NÞ; e8 ¼ ðK4;NÞ;

so that

A1 ¼ fe1; e5; e6g; A2 ¼ fe2; e3; e4g; A3 ¼ fe3; e4; e5; e6g; A4 ¼ fe3; e5; e8g; A5 ¼ fe4; e6; e7g:

Hence, we have

cð1Þ ¼ cð2Þ ¼ cð4Þ ¼ cð5Þ ¼ 2; cð3Þ ¼ 1;

and numbering arbitrarily on k the components Ci;k ¼ ðKi;k;Ai;kÞ, we may write, for example (others are symmetrical):

K1;1 ¼ f;;K1g; A1;1 ¼ fe1g; K1;2 ¼ fK2;K3;K4g; A1;2 ¼ fe5; e6g; K3;1 ¼ fK1;K2;K3;K4g; A3;1 ¼ fe3; e4; e5; e6g:
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Notice that C�i;k are actually trees for i–3 and k ¼ 1;2, but C�3;1 is a cycle. h

The following results are easy to prove.

Lemma 2.2. / satisfies N if and only if /iðvÞ ¼ 0 whenever v 2V and i 2 N are such that for all k ¼ 1; . . . ; cðiÞ and ðR;R0Þ 2Ai;k there holds
vðRÞ ¼ vðR0Þ.

Lemma 2.3. If / satisfies N; i 2 N, and S R Ki, then /iðESÞ ¼ 0.

It is clear that a marginalist value satisfies N and L, and we now show that there are no others (cf. Bilbao, 2000, Chapter 7, Lange and
Grabisch, 2009, Property 3).

Theorem 2.4. / is marginalist if and only if it satisfies N and L.

Proof. If / satisfies N and L, using (1.1) and Lemma 2.3 we obtain

/iðvÞ ¼
X

K2Ki

vðKÞ/iðEKÞ ¼
XcðiÞ
k¼1

X
K2Ki;k

vðKÞ/iðEKÞ: ð2:1Þ

Letting

v i;k ¼
X

K2Ki;k

EK for k ¼ 1; . . . ; cðiÞ; ð2:2Þ

we have

v i;kðRÞ ¼ v i;kðR0Þ 2 f0;1g for ðR;R0Þ 2Ai; k ¼ 1; . . . ; cðiÞ;

since either R and R0 are in the same component Ci;k and exactly one term in (2.2) is 1, or else they are in different components and all terms
are 0. Hence, using N,

/iðv i;kÞ ¼ 0 for k ¼ 1; . . . ; cðiÞ: ð2:3Þ

For each component Ci;k, let us fix Ki;k 2Ki;k. From (2.2) we may write

EKi;k
¼ v i;k �

X
K2Ki;k :K–Ki;k

EK ;

and using L and (2.3),

/iðEKi;k
Þ ¼ /iðv i;kÞ �

X
K2Ki;k :K–Ki;k

/iðEKÞ ¼ �
X

K2Ki;k :K–Ki;k

/iðEKÞ: ð2:4Þ

Thus, using (2.1) and (2.4),

/iðvÞ ¼
XcðiÞ
k¼1

X
K2Ki;k

vðKÞ/iðEKÞ ¼
XcðiÞ
k¼1

vðKi;kÞ/iðEKi;k
Þ þ

X
K2Ki;k :K–Ki;k

vðKÞ/iðEKÞ

0@ 1A ¼XcðiÞ
k¼1

X
K2Ki;k :K–Ki;k

ðvðKÞ � vðKi;kÞÞ/iðEKÞ: ð2:5Þ

For each K 2Ki;k;K–Ki;k, let ðK0 ¼ Ki;k;K1; . . . ;Ks ¼ KÞ be a path joining Ki;k and K in C�i;k, and let Pi;kðKÞ be the subgraph of Ci;k induced by this
path. We write each term of the sum in (2.5) as a telescoping sum:

ðvðKÞ � vðKi;kÞÞ/iðEKÞ ¼
Xs

j¼1

ðvðKjÞ � vðKj�1ÞÞ/iðEKÞ ¼
X

ðK 0 ;K 00 Þ2Ai;k

ki;k;KðK 0;K 00Þ ðvðK 00Þ � vðK 0ÞÞ;

where for K–Ki;k,

ki;k;KðK 0;K 00Þ ¼
/iðEKÞ if ðK 0;K 00Þ is an arc in Pi;kðKÞ;
�/iðEKÞ if ðK 00;K 0Þ is an arc in Pi;kðKÞ;
0 otherwise:

8><>:
and ki;k;Ki;k

ðK 0;K 00Þ ¼ 0 for all ðK 0;K 00Þ R Ai. We may rewrite (2.5) as

/iðvÞ ¼
XcðiÞ
k¼1

X
K2Ki;k

X
ðK 0 ;K 00Þ2Ai;k

ki;k;KðK 0;K 00Þ ðvðK 00Þ � vðK 0ÞÞ ¼
X

ðK 0 ;K 00Þ2A

kiðK 0;K 00Þ ðvðK 00Þ � vðK 0ÞÞ;

where

kiðK 0;K 00Þ ¼
XcðiÞ
k¼1

X
K2Ki;k

ki;k;KðK 0;K 00Þ if ðK 0;K 00Þ 2Ai;

and kiðK 0;K 00Þ ¼ 0 otherwise. h

Since the path in the previous proof need not be unique, it comes as no surprise that there may be different representations in the form
(1.3).
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Example 2.5. Consider N and K as in Example 2.1. The value / defined by

/iðvÞ ¼
vðK1Þ if i ¼ 1;
1
3 ðvðK3Þ � vðK1ÞÞ if i ¼ 2;3;4;
vðNÞ � vðK3Þ if i ¼ 5;

8><>:
may be written also as

/1ðvÞ ¼ vðK1Þ; /2ðvÞ ¼ /4ðvÞ ¼
1
3
ðvðK3Þ � vðK1ÞÞ; /3ðvÞ ¼

1
3
ðvðK3Þ � vðK2ÞÞ �

1
3
ðvðK4Þ � vðK2ÞÞ þ

1
3
ðvðK4Þ � vðK1ÞÞ;

/5ðvÞ ¼ vðNÞ � vðK3Þ:

In one representation / satisfies (1.4) (and therefore / satisfies IS), but not in the other. Moreover, / is strongly monotone in the sense of
Young (1985), although in the second representation some of the coefficients are negative (see also Remark 2.9). h

Theorem 2.6. If A�
i is acyclic for all i 2 N, then the representation of the marginalist value / in (1.3) is unique. Conversely, if there exists a value /

whose representation in the form (1.3) is unique, then A�
i is acyclic for all i 2 N.

Proof. If A�
i is acyclic for all i 2 N, by taking differences between two representations we may assume that there exist coefficients liðK;K

0Þ,
defined for i 2 N and ðK;K 0Þ 2Ai, such thatX

ðK;K 0Þ2Ai

liðK;K
0ÞðvðK 0Þ � vðKÞÞ ¼ 0 for all v 2V:

By taking v ¼ EK , we obtainX
ðK;K 0Þ2Ai

liðK;K
0Þ ¼ 0 for all K 2Kþ

i ;X
ðK 0 ;KÞ2Ai

liðK
0;KÞ ¼ 0 for all K 2K�

i :

If K is a leaf of the tree C�i;k and ðK;K 0Þ is the only edge of C�i;k, we must have liðK;K
0Þ ¼ 0 or liðK

0;KÞ ¼ 0, depending on whether K is in Kþ
i or

K�
i . Eliminating K and this edge, repeating the procedure on each remaining leaf and then on every component, we see that necessarily

liðK;K
0Þ ¼ 0 for all ðK;K 0Þ 2Ai.

Conversely, if for some i 2 N a component Ci;k contains an undirected cycle r ¼ ðK0;K1; . . . ;K‘ ¼ K0Þ, we may assume K0 2Kþ
i and we

may write, since ‘ is necessarily even (because Ci;k is bipartite),

0 ¼
X‘
s¼1

ð�1ÞsðvðKsÞ � vðKs�1ÞÞ:

Hence, the null value ð/ � 0Þ has at least two different representations, and therefore so does any marginalist value. h

Our next result relates marginalist and efficient values with flows in GK (cf. Bilbao, 2000, Chapter 7; Lange and Grabisch, 2009, Property
5).

Setting K�� ¼ fK 2K : K–;;Ng, a flow in GK is a function f : A! R such thatX
K 0 :ðK 0 ;KÞ2A

f ðK 0;KÞ ¼
X

K 0 :ðK;K 0 Þ2A

f ðK;K 0Þ for all K 2K��;

i.e., the conservation equations hold at interior nodes. Noticing that we do not ask for f P 0, the conservation equations implyX
K:ð;;KÞ2A

f ð;;KÞ ¼
X

K:ðK;NÞ2A
f ðK;NÞ;

and this common number is called the value of the flow (regrettably, the term ‘‘value” is used for two quite different objects).
If vðA; xÞ is the indicator function of the set A (that is, vðA; xÞ ¼ 1 if x 2 A and is 0 otherwise), and / is marginalist and written in the form

(1.3), X
i2N

/iðvÞ ¼
X
i2N

X
ðK;K 0 Þ2Ai

kiðK;K 0ÞðvðK 0Þ � vðKÞÞ ¼
X

ðK;K 0Þ2A
ðvðK 0Þ � vðKÞÞ

X
i2N

kiðK;K 0ÞvðAi; ðK;K 0ÞÞ
 !

¼
X

ðK;K 0 Þ2A

KðK;K 0ÞðvðK 0Þ � vðKÞÞ; ð2:6Þ

where

KðK;K 0Þ ¼
X
i2N

kiðK;K 0ÞvðAi; ðK;K 0ÞÞ ¼
X

i:i2K 0nK

kiðK;K 0Þ:

If R 2K��;v ¼ ER, and / is efficient, from (2.6) we obtain, successively,X
i2N

/iðERÞ ¼ �
X

ðR;K 0 Þ2A

KðR;K 0Þ þ
X
ðK;RÞ2A

KðK;RÞ ¼ ERðNÞ ¼ 0;
X

ðR;K 0 Þ2A

KðR;K 0Þ ¼
X
ðK;RÞ2A

KðK;RÞ:
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On the other hand, if v ¼ EN , (2.6) turns intoX
i2N

/iðENÞ ¼
X
ðK;NÞ2A

KðK;NÞ ¼ ENðNÞ ¼ 1:

Thus we have:

Theorem 2.7. If / is marginalist (written in the form (1.3)) and efficient, then the quantities

KðK;K 0Þ ¼
X

i:i2K 0nK

kiðK;K 0Þ; ðK;K 0Þ 2A; ð2:7Þ

define a flow of value 1 in GK.

We may always find a converse by forcing internal symmetry:

Theorem 2.8. Suppose K is a flow of value 1 in GK. Then, if

kiðK;K 0Þ ¼
KðK;K 0Þ
jK 0 n Kj

for all i 2 N and all ðK;K 0Þ 2Ai;

the value / defined by (1.3) is a marginalist and efficient value satisfying IS.

Proof. Only efficiency needs to be checked, and this is easily done. h

Remark 2.9. In our setting, the strong monotonicity of Young (1985) may be expressed as: if v 2V satisfies vðK 0ÞP vðKÞ for all
ðK;K 0Þ 2Ai, then /iðvÞP 0. Lange and Grabisch (2009) show that for marginalist values on regular families, it is equivalent to having non-
negative coefficients k in (1.3). This does not hold in general, as it is possible to construct a marginalist value satisfying E, IS, strong mono-
tonicity, unique representation, but such that some of the coefficients in (1.3) are negative.

Notice that the value / in Example 2.5 satisfies strong monotonicity and has a representation with some negative coefficients, but the
representation is not unique. h

2.1. Maximal chains

In a network with source s and sink t, the simplest s � t flow we can think of is a flow along a s � t path, having value, say, 1 for arcs of
the path and 0 for other arcs. Since GK is a ; � N network, where the (simple, directed) ; � N paths are maximal chains for inclusion, this
suggests that for a maximal chain W ¼ ðK0 ¼ ;;K1; . . . ;K‘ðWÞ ¼ NÞ of length ‘ðWÞ, we consider the flow of value 1 associated with W,

KWðK;K 0Þ ¼
1 if ðK;K 0Þ ¼ ðKj�1;KjÞ for some j ¼ 1; . . . ; ‘ðWÞ;
0 otherwise;

�
and the corresponding marginalist, efficient and satisfying IS value given by Theorem 2.8,

wW;iðvÞ ¼
X‘ðWÞ
j¼1

vðKjÞ � vðKj�1Þ
jKj n Kj�1j

vðKj n Kj�1; iÞ for i 2 N; v 2V: ð2:8Þ

Writing wW;ðvÞ in the form (1.3), we obtain

kiðK;K 0Þ ¼
1

jK 0 n Kj
vðW; ðK;K 0ÞÞvðK 0 n K; iÞ; ð2:9Þ

where we interpret that the arc ðK;K 0Þ 2W if and only if ðK;K 0Þ ¼ ðKj�1;KjÞ for some j ¼ 1; . . . ; ‘ðWÞ.
Let us denote with W the family of all maximal chains, and for a given c : W! R satisfyingX

W2W
cðWÞ ¼ 1; ð2:10Þ

let us consider the sum of the flows KW weighted by c,

KðK;K 0Þ ¼
X

W2W
cðWÞKW ðK;K 0Þ ¼

X
W2W
ðK;K 0Þ2W

cðWÞ for ðK;K 0Þ 2A; ð2:11Þ

we see that K is a flow on GK of value 1.
The corresponding value,

�/ðvÞ ¼
X

W2W
cðWÞwW ;ðvÞ; ð2:12Þ

is marginalist, efficient and satisfies IS, and writing it in the form (1.3), from (2.9) and (2.11) we see that the corresponding coefficients are

�kiðK;K 0Þ ¼
vðK 0 n K; iÞ
jK 0 n Kj

X
W2W
ðK;K 0 Þ2W

cðWÞ ¼ KðK;K 0Þ
jK 0 n Kj

vðK 0 n K; iÞ: ð2:13Þ
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We have:

Theorem 2.10. For a value /, the following are equivalent:

(i) There exists c : W! R satisfying (2.10) such that / may be written as in (2.12).
(ii) There exists K : A! R defining a flow in GK of value 1 such that / may be written as

/iðvÞ ¼
X

ðK;K 0 Þ2Ai

KðK;K 0Þ
jK 0 n Kj

ðvðK 0Þ � vðKÞÞ: ð2:14Þ

(iii) / is marginalist, efficient and satisfies IS.

Proof. That (i) implies (ii) follows from the previous discussion: the coefficients c in (2.10) define the flow of value 1 in (2.11), which in
turn defines the value / ¼ �/ in (2.12) with marginal coefficients given by (2.13). Conversely, if (ii) is satisfied, we may decompose the flow
K along ; � N paths (there are no cycles in GK), and find coefficients c so that (2.10) holds and (2.11) holds with K ¼ K. By (2.12) we obtain
the value �/, whose marginal coefficients coincide with those of /, by (2.13) and (2.14), and therefore / ¼ �/. In all, (ii) implies (i), and they
are equivalent.

(ii) implies (iii) by Theorem 2.8. On the other hand, if (iii) is satisfied, by Theorem 2.7 we may find a flow K in GK, of value 1, satisfying
(2.7), and the internal symmetry implies

kiðK;K 0Þ ¼
KðK;K 0Þ
jK 0 n Kj

for all i 2 N and ðK;K 0Þ 2A;

so that (ii) is satisfied. Therefore, (ii) and (iii) are equivalent. h

The coefficients c in Theorem 2.10 need not be unique or nonnegative, as the following example shows.

Example 2.11. Let K ¼ f;;K1 ¼ f1g;K2 ¼ f2g;K3 ¼ f1;2g;K4 ¼ f1;2;3g;K5 ¼ f1;2;4g;N ¼ f1;2;3;4gg. The maximal chains or ; � N
paths are

W1 ¼ ð;;K1;K3;K4;NÞ; W2 ¼ ð;;K1;K3;K5;NÞ; W3 ¼ ð;;K2;K3;K4;NÞ; W4 ¼ ð;;K2;K3;K5;NÞ;
so that if KðK;K 0Þ ¼ 1=2 for all ðK;K 0Þ 2A, and / is defined by (2.14), then

/ ¼ wW1
þ wW3

¼ wW2
þ wW4

¼ aðwW1
þ wW3

Þ þ bðwW2
þ wW4

Þ;

as long as aþ b ¼ 1 (so that we may take, say, a < 0). h

If c satisfies (2.10) and cðWÞP 0 for all W 2W, we may think either that / is a convex combination of the wW ;’s, or, in the spirit of
Shapley’s bargaining model, that the coefficient cðWÞ is the probability of the chain W being chosen. At any rate, when varying c (keeping
nonnegativity), we obtain what might be called the Weber set (Weber, 1988).

As already mentioned, N, L and E jointly do not guarantee uniqueness of the value (and much less of the coefficients c), even if IS is
required. Let us give some examples of axioms or properties we may require of the coefficients c so as to obtain uniqueness.

1. All chains have equal weight or probability, cðWÞ ¼ 1=jWj. This is the case of the Shapley value, when K ¼ PðNÞ, and corresponds to an
indifference principle, an idea which goes back to Laplace.

2. A chain has more weight if it is longer. For instance, if proportional to the length, we would set

cðWÞ ¼ ‘ðWÞP
W 02W

‘ðW 0Þ
:

3. Conversely, we may ask it to have less weight if it is longer. For instance, we may take the harmonic mean of the cardinals,

cðWÞ ¼ 1=‘ðWÞP
W 02W

ð1=‘ðW 0ÞÞ
:

4. Borrowing from Information Theory, we could define the entropy of a chain W ¼ ðK0 ¼ ;;K1; . . . ;K‘ ¼ NÞ by

HðWÞ ¼ �
X‘
k¼1

pklog2pk;

where pk ¼ jKk n Kk�1j=n, and then weigh according to this index. For instance, substituting HðWÞ for ‘ðWÞ in models 2 or 3.

Notice that in all these models we have cðWÞP 0, and that the corresponding values coincide if ‘ðWÞ ¼ n for all W 2W. In particular, in
all of them we get back the Shapley value, /S, if K ¼ PðNÞ.

The next example illustrates the differences between these models.

Example 2.12. Consider K ¼ f;;K1 ¼ f1g;K2 ¼ f1;2g;K3 ¼ f3g;N ¼ f1;2;3gg, having just two maximal chains, W1 ¼ ð;;K1;K2;NÞ and
W2 ¼ ð;;K3;NÞ. Then:

cðW1Þ ¼ cðW2Þ ¼ 0:5; in model 1;
cðW1Þ ¼ 0:6; cðW2Þ ¼ 0:4; in model 2;
cðW1Þ ¼ 0:4; cðW2Þ ¼ 0:6; in model 3;
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and, assuming c proportional to the entropies, in model 4 we have

HðW1Þ ’ 1:58496; HðW2Þ ’ 0:918296;
cðW1Þ ’ 0:63316; cðW2Þ ’ 0:36684: �

Example 3.2 shows another possibility when K has a particular structure, in which we still have c P 0, but is not included in any of the
models above.

2.2. The potential model of Lange and Grabisch

Taking a somewhat different route from the previous subsection, we follow now Lange and Grabisch (2009), extending their potential
flow model. They obtained uniqueness of the value for regular families by adding the following:

Axiom 2.13 (R). A value / : V! Rn represented in the form (2.14) satisfies the regularity axiom ifX
ðK;K 0Þ2W

KðK;K 0Þ; ð2:15Þ

is constant for all W 2W, i.e, it is independent of W 2W.

Recall that a flow f : A! R is potential if there exists P : K! R, the potential of the flow, such that (in our setting)

f ðK;K 0Þ ¼ PðK 0Þ � PðKÞ for all ðK;K 0Þ 2A: ð2:16Þ

The potential P is not unique, since P þ c is also a potential for any constant c, so it is usual to fix the potential at a point, for instance, by
asking Pð;Þ ¼ 0. For K 2K, let us set

dþðKÞ ¼ fK 0 2K : ðK;K 0Þ 2Ag;
d�ðKÞ ¼ fK 0 2K : ðK 0;KÞ 2Ag;
dðKÞ ¼ dþðKÞ [ d�ðKÞ;

that is, dðKÞ is the set of neighbors of K in G�K, and let

d�ðKÞ ¼ jd�ðKÞj; dþðKÞ ¼ jdþðKÞj; dðKÞ ¼ jdðKÞj;

be the corresponding degrees.
The following result shows that the value of the potential at an inner node is the average of the potentials of its neighbors, reminiscent

of the behavior of harmonic functions of continuous variables.

Lemma 2.14. If f is a flow in GK with potential P, then

PðKÞ ¼ 1
dðKÞ

X
K 02dðKÞ

PðK 0Þ for all K–;; N: ð2:17Þ

Proof. Since f is a flow,
P
ðK 0 ;KÞ2Af ðK 0;KÞ ¼

P
ðK;K 0 Þ2Af ðK;K 0Þ for all K 2K��, or, using (2.16),X

ðK 0 ;KÞ2A

ðPðKÞ � PðK 0ÞÞ ¼
X

ðK;K 0 Þ2A

ðPðK 0Þ � PðKÞÞ for all K 2K��:

In turn, these equations are equivalent to

dðKÞPðKÞ �
X

K 02dðKÞ

PðK 0Þ ¼ 0 for all K 2K��: � ð2:18Þ

Lemma 2.15. Given a family K and a 2 R, there exists a unique potential flow whose potential P satisfies Pð;Þ ¼ 0 and PðNÞ ¼ a.

Proof. The equations (2.18) and the conditions Pð;Þ ¼ 0 and PðNÞ ¼ a, determine a linear system of the form

ðD� AÞP ¼ b; ð2:19Þ

where A is the adjacency matrix of the graph bG induced by K�� in G�K, and D is a diagonal matrix with DKK ¼ dðKÞ. D� A is diagonally dom-
inant, sinceX

K 02K��

AKK 0 ¼ jdðKÞ \K��j 6 dðKÞ for all K 2K��;

with strict inequality if ; 2 dðKÞ or N 2 dðKÞ. Hence, if bG is connected, the matrix A� D is irreducible and therefore invertible (see e.g., Ortega,
1990), and (2.19) has a unique solution P. If bG is not connected (as in Example 2.12), we repeat this procedure for each component. The equa-
tions (2.18), equivalent to those in (2.17), ensure that (2.16) defines a flow. h

By choosing a suitable constant a and using linearity, we obtain:

Corollory 2.16. Given a family K, there exists a unique potential flow of value 1 (and Pð;Þ ¼ 0).
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Lemma 2.17. Let / be representable in the form (2.14). Then, / satisfies R if and only if K is a potential flow, i.e., there exists P : K! R such that
Pð;Þ ¼ 0 and

KðK;K 0Þ ¼ PðK 0Þ � PðKÞ for all ðK;K 0Þ 2A: ð2:20Þ

Proof. Assume / is in the form (2.14) and satisfies R. For K 2K, let us consider a chain W such that K 2W , and define

PðKÞ ¼
X

ðK 0 ;K 00Þ2W
K 00�K

KðK 0;K 00Þ:

PðKÞ does not depend on the chosen chain, since if W 0 is another chain with K 2W 0, and we consider the chain W 00 which coincides with W 0

up to K and then continues as in W, using R we would haveX
ðK 0 ;K 00 Þ2W

KðK 0;K 00Þ ¼
X

ðK 0 ;K 00Þ2W 0
KðK 0;K 00Þ ¼

X
ðK 0 ;K 00 Þ2W 00

KðK 0;K 00Þ;

and since W and W 00 coincide from K on, and W 0 and W 00 up to K,X
ðK 0 ;K 00 Þ2W

K 00�K

KðK 0;K 00Þ ¼
X

ðK 0 ;K 00Þ2W 00

K 00�K

KðK 0;K 00Þ ¼
X

ðK 0 ;K 00Þ2W 0

K 00�K

KðK 0;K 00Þ:

So, if ðK;K 0Þ 2A, we may choose a chain containing K and K 0, obtaining PðK 0Þ ¼ PðKÞ þKðK;K 0Þ. Conversely, if / may be written in the form
(2.14) and there exists a function P such that (2.20) holds, the sum in (2.15) is telescopic and reduces to PðNÞ � Pð;Þ ¼ PðNÞ for every
W 2W. h

Theorem 2.10, Corollary 2.16 and Lemma 2.17 imply the following result (cf. Lange and Grabisch, 2009, Theorem 6):

Theorem 2.18. Given a family K, there exists a unique / satisfying N, L, E, IS and R. Moreover, / may be written in the form (2.14), with K
defined by (2.20), where P is a potential satisfying Pð;Þ ¼ 0 and PðNÞ ¼ 1.

Proof. To see the existence, Corollary 2.16 shows that there exists a potential flow of value 1 on GK, Theorem 2.10 then shows that this
flow induces a value / satisfying N, L, E and IS, and representable in the form (2.14), so that we may apply Lemma 2.17 to show that it also
satisfies R and satisfies (2.20).

To see the uniqueness, if / satisfies N, L, E and IS, Theorem 2.10 implies that it is representable in the form (2.14), and since / satisfies R,
Lemma 2.17 shows that the corresponding flow K is a potential flow. The uniqueness now follows from Corollary 2.16. h

Let us make a few comments on this model.

� Although there are some similarities between this model and that of Hart and Mas-Colell (1989), the latter is a potential on the value for
a given game, and the former is a potential on the coefficients (the flow).

� Lange and Grabisch (2009) give an example of their model on regular families in which some of the coefficients K are negative, and
hence some of the coefficients c (by (2.11)), unlike the models we presented in Section 2.1. Of course, the corresponding value in their
example is not strongly monotone in the sense of Young (1985) (see Remark 2.9).

� Furthermore, the potential model applied to the family K in Example 2.11, yields KðK;K 0Þ ¼ 1=2 for all ðK;K 0Þ 2A. Therefore, the coef-
ficients c of Section 2.1 are not uniquely defined in general.

� Comparing with the models in Section 2.1, in the potential flow model some arcs and chains with fewer information could receive a
larger weight. For instance, when applied to Example 2.12, it coincides with the harmonic means model 3.

3. Unanimity games

If / satisfies L and EU, then

/i

X
T2K�

aT UT

 !
¼
X

T2K�
aT/iðUTÞ ¼

X
T2K�

aT

jTjvðT; iÞ for all i 2 N;

and since unanimity games form a basis of V, we have:

Theorem 3.1. There exists a unique value, /U, satisfying L and EU, and it is given by

/U
i

X
T2K�

aT UT

 !
¼
X

T2K�

aT

jTjvðT; iÞ for all i 2 N: ð3:1Þ

Moreover, /U satisfies E and EE.

Notice that:

� The expression (3.1) does not involve explicitly any arcs of GK (it is not in marginalist form), and it is well defined as long as there is a
nonempty coalition in the family. In particular, N 2K is not needed (but then E does not make much sense).

� /U is the restriction of the Shapley value /S to the subspace generated by fUT : T 2K; T–;g. That is, if for T 2K� and K 2 PðNÞ we let
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UTðKÞ ¼
1 if T � K;

0 otherwise;

�
and for v ¼

P
T2K�aT UT we let �v ¼

P
T2K�aT UT , which is defined on PðNÞ, then /UðvÞ ¼ /Sð�vÞ.

� Hence, for any v 2V, we may find a (unique) potential for /UðvÞ along the lines of Hart and Mas-Colell (1989), looking at the potential
for �v .

� Hart and Mas-Colell (1989, p. 605) consider also a monotonicity property, which /U satisfies.
� In general, /U is not marginalist in the sense of (1.3), since it does not satisfy the null player axiom (consider K ¼ f;; f1g;N ¼ f1;2gg and

v ¼ UN). However, through the extensions mentioned above, we do obtain a different kind of marginalism.

Let us give now some examples in which /U is marginalist.

Example 3.2. Consider K ¼ f;;K1 ¼ f1g;K2 ¼ f2;3g;N ¼ f1;2;3gg, whose maximal chains are W1 ¼ ð;;K1;NÞ and W2 ¼ ð;;K2;NÞ. /U is
marginalist, since it may be checked that (recall (2.8)):

/UðvÞ ¼ 2
3

wW1
ðvÞ þ 1

3
wW2
ðvÞ;

so that, with the notations of Theorem 2.10,

cðW1Þ ¼
2
3

and cðW2Þ ¼
1
3
:

However, it does not fit in any of the models 1, 2, or 3 of Section 2.1, since both chains have length 2, but W1 has weight 2/3 and W2 has
weight 1/3. It does not fit the entropy model 4 either, since both chains have an arc of length 1 and another of length 2, and hence equal
entropy. Lastly, it does not fit the potential model of Section 2.2, since summing the flows along W1 we obtain 4/3, and summing the flows
along W2 we obtain 2/3.

Since players 2 and 3 are equivalent in K, we may consider N ¼ f�1; �2g, identify �1 with f1g; �2 with f2;3g;Pð�NÞ with K, and any game �v
on Pð�NÞ with a game v on K. Hence, if U is the Shapley value on N, it is natural to define / on K by

/1ðvÞ ¼ U�1ð�vÞ; /2ðvÞ ¼ /3ðvÞ ¼
1
2

U�2ð�vÞ:

Thus, /U
2 ðUNÞ ¼ /U

3 ðUNÞ ¼ 1=3, whereas /2ðUNÞ ¼ /3ðUNÞ ¼ 1=4.
The previous example is easily generalized. If � denotes the equivalence relation between players, we may consider any set N and K so

that if N ¼ N= �, then K is isomorphic to Pð�NÞ. In this case, /U is marginalist, and /S on N induces a value on K which differs from /U .
It is not the case that whenever /U is marginalist then K is isomorphic to Pð�NÞ for some N, as may be readily seen by taking n ¼ 3,

K ¼ f;; f1;2g; f1;3g; f2;3g;Ng, in which there are no equivalent players and jKj ¼ 5. h

Our next goal is to find conditions, necessary and/or sufficient, for the marginalism of /U . We will find it useful to refer to the following
equation: if /U is marginalist and is written in the form (1.3), then

/U
i ðUTÞ ¼

X
ðK;K 0 Þ2Ai
T å K;T�K 0

kiðK;K 0Þ ¼
1
jTjvðT; iÞ for T 2K� and i 2 N; ð3:2Þ

with the understanding that a sum is zero if it has no terms.

Lemma 3.3. Suppose /U is marginalist and written in the form (1.3). Then, for all i 2 N:

(i) there exists a unique K 2K such that ðK;NÞ 2Ai, and,
(ii) kiðK;NÞ ¼ 1=n for such K.

Proof. (3.2) reduces to

/U
i ðUNÞ ¼

X
ðK;NÞ2Ai

kiðK;NÞ ¼
1
n

for all i 2 N: ð3:3Þ

At least one term in the sum does not vanish, and so N 2K�
i for every i 2 N. If ð;;NÞ 2A (i.e, A has just one arc), (3.3) implies kið;;NÞ ¼ 1=n,

and the result is proved. Suppose now ð;;NÞ R A. For fixed i 2 N, let ðR;NÞ 2Ai (and hence, i R R). Applying (3.2) for T ¼ N and T ¼ R we
obtain

kiðR;NÞ þ
X

ðR0 ;NÞ2Ai
R0–R

kiðR0;NÞ ¼
1
n

and
X

ðR0 ;NÞ2Ai
R0–R

kiðR0;NÞ ¼ 0; ð3:4Þ

and therefore kiðR;NÞ ¼ 1=n. Since this holds for any ðR;NÞ 2Ai, then there is only one such arc (otherwise the first sum in (3.4) would ex-
ceed 1=n), and the result follows. h

Our next aim is to try to extend Lemma 3.3 for all T 2K�. However, we will need some extra hypotheses.
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Theorem 3.4. Suppose /U may be written in the form (1.3), and either of the following is satisfied:

H-1. kiðK;K 0ÞP 0 for all ðK;K 0Þ 2Ai,
H-2. for each T 2K� and i 2 T, there exists at most one arc of the form ðT 0; TÞ in Ai.

Then,

(i) for all T 2K� there exists aðTÞ > 0 such thatX
K2K:T�K

aðKÞ ¼ 1
jTj ;

(ii) for all i 2 T there exists a unique K 2K such that ðK; TÞ 2Ai, and kiðK; TÞ ¼ aðTÞ for such K.

Remark 3.5. Notice that if K ¼ PðNÞ, (1.2) yields

aðTÞ ¼ ðjTj � 1Þ! ðn� jTjÞ!
n!

for T–;: �

Remark 3.6. Notice also that the conclusions of Theorem 3.4 imply that the representation of /U in the form (1.3) is unique, by
Theorem 2.6. h

Proof of Theorem 3.4. Let A be the subset of coalitions T 2K such that:

A-1. If T–;, then for all K 2K with T � K;aðKÞ > 0 is defined, andX
K:T�K

aðKÞ ¼ 1
jTj and aðTÞ ¼

X
ðK;TÞ2Ai

kiðK; TÞ for all i 2 T;

(in particular, T 2K�
i for all i 2 T ,)

A-2. if T–N, for all K 0 2K with T(K 0;K 0 satisfies A-1 and

aðK 0Þ ¼ kiðK;K 0Þ if ðK;K 0Þ 2Ai and T � K:

By Lemma 3.3, we know that N 2 A, and we will proceed in a breadth first manner, coming down from N, to show that A ¼K. Let S 2K; S–N,
be such that fT 2K : S(Tg � A, and let us show that necessarily S 2 A, by considering the alternatives S ¼ ; and S–;. If S ¼ ;, we only have to
verify A-2. For K 2 dþð;Þ, there is only one arc ending in K and K satisfies A-1 since it is in A. Hence, aðKÞ ¼ kið;;KÞ for all K 2 dþð;Þ and all
i 2 K . Thus, if S ¼ ; then S 2 A. Suppose now S–;. To see that S 2 A, it will be enough to show that if we define

aðSÞ ¼ 1
jSj �

X
K:T(K

aðKÞ; ð3:5Þ

then aðSÞ > 0,

aðSÞ ¼
X
ðK;SÞ2Ai

kiðK; SÞ for all i 2 S; ð3:6Þ

and

aðKÞ ¼ kiðS;KÞ for all i and K such that ðS;KÞ 2Ai: ð3:7Þ

Let us start by showing that (3.7) holds, recalling that S–N. If i R S, (3.2) simplifies to (recall that a sum is 0 if it has no terms):

0 ¼ /U
i ðUSÞ ¼

X
K 0 :S(K 0

X
ðK;K 0 Þ2Ai

S å K

kiðK;K 0Þ ¼
X

K 0 :ðS;K 0Þ2Ai

X
ðK;K 0 Þ2Ai

S å K

kiðK;K 0Þ þ
X

K 0 :S(K 0

K 0RdþðSÞ

X
ðK;K 0 Þ2Ai

S å K

kiðK;K 0Þ: ð3:8Þ

If K 0 is such that ðS;K 0Þ 2Ai, then K 0 satisfies A-1, and we may writeX
ðK;K 0Þ2Ai

S å K

kiðK;K 0Þ ¼ aðK 0Þ � kiðS;K 0Þ;

which is nonnegative under either H-1 or H-2. Similarly, if K 0 2K; S(K 0; ðS;K 0Þ R A, and ðK;K 0Þ 2Ai, under H-1 we must have kiðK;K 0ÞP 0,
and under H-2, since K 0 satisfies A-1, we must have that kiðK;K 0Þ is either 0 or aðK 0Þ (which is positive), so that in this case also kiðK;K 0ÞP 0.
In all, (3.8) becomes

0 ¼
X

K 0 :ðS;K 0 Þ2Ai

ðaðK 0Þ � kiðS;K 0ÞÞ þ
X

K 0 :S(K 0

K 0RdþðSÞ

X
ðK;K 0 Þ2Ai

S å K

kiðK;K 0Þ: ð3:9Þ

Since the intervening terms on the right hand side are nonnegative, all the terms in the double sum vanish and aðK 0Þ ¼ kiðS;K 0Þ if ðS;K 0Þ 2Ai,
which implies (3.7).

To see that (3.6) is satisfied, consider i 2 S ðS–;Þ.

N.E. Aguilera et al. / European Journal of Operational Research 204 (2010) 125–138 135



Author's personal copy

For K 0 such that S(K 0 there are no arcs ðK;K 0Þ 2Ai with S � K . Thus, A-1 applied to K 0 2 A yieldsX
ðK;K 0Þ2Ai

S å K

kiðK;K 0Þ ¼
X

ðK;K 0Þ2Ai

kiðK;K 0Þ ¼ aðK 0Þ;

so that (3.2) becomes

/U
i ðUSÞ ¼

1
jSj ¼

X
ðK;SÞ2Ai

kiðK; SÞ þ
X

T:S(T

aðTÞ;

and therefore (by the definition of aðSÞ in (3.5))

aðSÞ ¼ 1
jSj �

X
T:S(T

aðTÞ ¼
X
ðK;SÞ2Ai

kiðK; SÞ; ð3:10Þ

which is independent of i 2 S, and (3.6) is satisfied.
It remains to be seen that aðSÞ > 0.
Recall that, by Theorem 2.7, the coefficients kiðK;K 0Þ associated with /U (which we are assuming marginalist), define a flow on GK. Using

(3.10), the equality of incoming and outgoing flows through S ðS–;;NÞ, and that K satisfies A-1 if ðS;KÞ 2A,

aðSÞ i : S 2K�
i

� ��� �� ¼ X
i:S2K�

i

aðSÞ ¼
X

i:S2K�
i

X
ðK;SÞ2Ai

kiðK; SÞ ¼
X
ðK;SÞ2A

X
i:ðK;SÞ2Ai

kiðK; SÞ ¼
X
ðS;KÞ2A

X
i:ðS;KÞ2Ai

kiðS;KÞ ¼
X
ðS;KÞ2A

aðKÞjfi : ðS;KÞ 2Aigj;

and so aðSÞ > 0. Consequently, S satisfies A-1 and S 2 A. Suppose A–K, and consider S 2K n A which is maximal for inclusion. Then, by what
we have just proved, we must have S ¼ N, which is a contradiction as N 2 A. Hence, A ¼K, and in particular, ; 2 A. Therefore, for every
T 2K�:

(a) aðTÞ is defined, aðTÞ > 0,
(b)

P
K:T�KaðKÞ ¼ 1

jTj ;

(c) aðTÞ ¼
P
ðK;TÞ2Ai

kiðK; TÞ for all i 2 T ,
(d) aðTÞ ¼ kiðK; TÞ if ðK; TÞ 2Ai.

(a) coupled with (b) imply (i), and (a), (c) and (d) imply (ii). h

Recall that K is regular (Honda and Grabisch, 2006) if jK n K 0j ¼ 1 for all ðK 0;KÞ 2A. Thus, if a family is regular then for every K 2K�

and every ðK 0;KÞ 2A, there is a unique i such that ðK 0;KÞ 2Ai. Theorem 3.4 says that (under certain conditions) if /U is marginalist then for
every K 2K� and every i 2 K there exists a unique K 0 such that ðK 0;KÞ 2Ai. These conditions are somewhat complementary, and the fol-
lowing result expresses that we cannot have them together unless K ¼ PðNÞ.

Corollory 3.7. If K is regular, then /U is marginalist if and only if K ¼ PðNÞ.

Proof. The classical result is that if K ¼ PðNÞ then /U ¼ /S, and therefore marginalist.
On the other hand, if K is regular then it satisfies H-2, and we may use the conclusions of Theorem 3.4 and the regularity to see that for

all K 2K� and every i 2 K , the set K n fig is in K. But this implies that K ¼ PðNÞ since N 2K. h

The following result is an elaboration on the last sum in (3.9).

Corollory 3.8. If /U is marginalist, and either H-1 or H-2 is satisfied, then K satisfies the following property:

If R; T 2K� and T � R; then fR n S : ðS;RÞ 2A; T å Sg is a partition of T: ðP—1Þ

Proof. Using Theorem 3.4, we see that if T 2K�; ðS;RÞ 2A; T å S, and T � R, then R n S � T , since if j 2 R n S and j R T , we would have

/U
j ðUTÞ ¼ 0 ¼

X
ðK;K 0 Þ2Aj

T å K;T�K 0

kjðK;K 0Þ ¼
X

ðK;K 0 Þ2Aj

T(K 0

aðK 0ÞP aðRÞ > 0:

Therefore, if T � R;
S

S:T å S
ðS;RÞ2A

R n S � T , and the union is disjoint, since if i 2 R, there is only one arc of the form ðS;RÞ in Ai. Finally, by

Theorem 3.4, for all i 2 T � R there exists an arc ðS;RÞ 2Ai. h

The following is a converse to Corollary 3.8:

Theorem 3.9. If K satisfies P-1, then /U is marginalist.

Proof. Let us define a : K� ! R recursively by setting aðNÞ ¼ 1=n, and for S 2K��,X
K:ðS;KÞ2A

jK n SjaðKÞ ¼ jSjaðSÞ; ð3:11Þ

so that aðSÞ > 0 for all S 2K�. We will show that K : A! R defined by

KðK;K 0Þ ¼ jK 0 n KjaðK 0Þ; ð3:12Þ

is a flow of value 1.
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The conservation of flow through S 2K�� is represented by the equalityX
K:ðS;KÞ2A

KðS;KÞ ¼
X

K:ðK;SÞ2A
KðK; SÞ;

which, given that P-1 is satisfied, written in terms of a is equivalent to (3.11):X
K:ðS;KÞ2A

jK n SjaðKÞ ¼
X

K:ðK;SÞ2A
jS n KjaðSÞ ¼ jSjaðSÞ:

Also, since
P
ðK;NÞ2AKðK;NÞ ¼ jNj=n ¼ 1, the value of the flow K is 1. By Theorem 2.10 we obtain a marginalist value / associated with K, such

that

kiðK;K 0Þ ¼
KðK;K 0Þ
jK 0 n Kj

¼ aðK 0Þ > 0 for all ðK;K 0Þ 2Ai:

For T 2K� and i 2 N we have

/iðUTÞ ¼
X

ðK;K 0 Þ2Ai
T å K;T�K 0

aðK 0Þ:

If i R T , the sum is 0 since the arcs ðK;K 0Þ with T å K and T � K 0 form a partition of T, and the sum has no terms. If i 2 T;/iðUTÞ ¼ 1=jTj, as the
flow through the cut fðK;K 0Þ : T å K; T � K 0g is

1 ¼
X

ðK;K 0 Þ2A
T å K;T�K 0

KðK;K 0Þ ¼
X

K 0 :T�K 0
aðK 0Þ

X
ðK;K 0Þ2A

T å K

jK 0 n Kj ¼
X

K 0 :T�K 0
aðK 0ÞjTj ¼ jTj/iðUTÞ:

Thus, /U ¼ /. h

Collecting the last results, we may say:

Corollory 3.10. /U is marginalist with nonnegative marginal coefficients in (1.3) if and only if K satisfies P-1. In this case, the representation of
/U in the form (1.3) is unique.

The proof of Theorem 3.9 shows that if we relax the condition P-1 to

For all T 2K�; fT n S : ðS; TÞ 2Ag is a partition of T; ðP—2Þ

then we have:

Lemma 3.11. If K satisfies P-2, and a is defined as in (3.11), then the quantities K defined by (3.12) define a flow in GK of value 1, and hence
induce a value which is marginalist, efficient and satisfies IS.

However, P-2 is not enough to enforce marginalism of /U as the following example shows:

Example 3.12. Let n ¼ 3 and K ¼ f;;K1 ¼ f1g;K2 ¼ f2g;K3 ¼ f3g;K4 ¼ f1;2g;Ng, which satisfies P-2. If /U were marginalist, the values of
the flow K arriving to N would be determined, so that Kð;;K3Þ ¼ KðK3;NÞ ¼ 2=3, and KðK4;NÞ ¼ 1=3. Also, by symmetry,
Kð;;K1Þ ¼ KðK1;K4Þ ¼ Kð;;K2Þ ¼ KðK2;K4Þ ¼ 1=6. If T ¼ K1, then /U

2 ðUTÞ ¼ 1=3 (even though /U
1 ðUTÞ ¼ 1 and /U

3 ðUTÞ ¼ 0). h

4. Concluding remarks

Our work shows that, when using classical axioms to define values similar to Shapley’s on general subfamilies of coalitions, the resulting
values will have quite different properties depending on the chosen set.

We presented here two broad frameworks.
The first one, based on N, L and E, gives rise to a marginalist value, with a rich mathematical theory behind, but an extra axiom or prop-

erty is needed to obtain uniqueness (e.g., symmetry in the classical setting), for which we put forward several possibilities, all of them coin-
ciding when K ¼ PðNÞ.

In contrast, the second framework uses just L and EU and gives rise to a unique value, /U , which is efficient, but need not be marginalist.
Not surprisingly, the dissimilarities are paralleled by the choice of linear bases of V.
/U has received little attention for general subfamilies, perhaps because typically it is not marginalist. As Corollary 3.7 shows, even for

such general families as the regular ones, the marginalism of /U implies that the family contains all possible coalitions.
/U challenges the marginalist approach which has been predominant in the literature and is reflected in Section 2. More precisely, what

is the ‘‘fair” value for the players in Example 3.2 when v ¼ UN?: /U assigns 1/3 to each, whereas we may think that since 2 and 3 act as a
unit, player 1 should receive 1/2, and players 2 and 3 should receive 1/4 each.

We have not pursued the appropriateness or reasonability of any of the approaches we showed, as this paper is mathematically oriented
and its only purpose is to exhibit some possibilities.
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