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Abstract We prove space-time parabolic Besov regularity in terms of integrability
of Besov norms in the space variable for solutions of the heat equation on cylindrical
regions based on Lipschitz domains.
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1 Introduction and Statement of the Result

In [8] Jerison and Kenig prove that, for harmonic functions on Lipschitz domain,
some Besov norms are equivalent to Sobolev norms. On the other hand (see [5]),
estimates in Besov norms for solutions of elliptic problems on Lipschitz domains,
become an important tool for the study of the rate of convergence for nonlinear ap-
proximation methods. In [1] the authors prove that for a temperature u, a weighted
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Lp norm in space-time is bounded by a mixed norm of the type Lp in time and Besov
in space on a cylindrical domain with Lipschitz section.
In this note we investigate the simultaneous, in space and time, Besov regularity of

solutions of the heat equation in terms of the Lp integrability in time of space Besov
regularity. A temperature on a cylindrical set � = D × (0, T ), with D a domain
on R

d , is a solution of the heat equation ∂u
∂t

= �u, where � is the Laplace operator
on D ⊂ R

d . The space of all temperatures u in � shall be denoted by �(�). Our
main result is contained in the following statement.

Theorem 1.1 Let D be a Lipschitz domain in R
d and T > 0. Then

�(�) ∩ Lp((0, T );Bλ
p(D)) ⊆ B

λ−ε
p (�),

for every 0< λ < 1, 1< p < ∞ and every 0< ε < λ.

Here B
α
p(�) is a parabolic Besov space which involves Besov regularity of order

α in space variables and α
2 in time. The precise definition that we shall give by inter-

polation, is contained in Sect. 2. On the other hand, Lp((0, T );Bλ
p(D)) denotes the

space defined by the mixed norm

‖u‖Lp((0,T );Bλ
p(D)) =

(∫ T

0
‖u(·; t)‖p

Bλ
p(D)

dt

) 1
p
.

Let us point out that extensions of Theorem 1.1 for the case λ ≥ 1 can be deduced
from the action of derivatives on both scales of Besov spaces involved.
We would like to observe that this result can be seen as another manifestation

of the regularizing property of diffusions. Of course without the restriction to the
set of temperatures the inclusion of Lp((0, T );Bλ

p(D)) in B
λ−ε
p (�) is not true. In

fact, for λ large enough, and ε small, the functions in B
λ−ε
p (�) are continuous in �.

Let us point out that the result in Theorem 1.1 can be regarded as a second step for
the program explicitly stated in the introduction of [1]. In particular we expect that
the result proved in this note, could be some help to obtain improvements of Besov
regularity for temperatures of the type of those in [5] for harmonic functions.
Section 2 is devoted to briefly introduce the spaces of regularity considered here.

Section 3 contains localizations of the main result in [1] which provide Lp(�) es-
timates for gradients of temperatures in terms of mixed Lebesgue-Besov norms in
space-time. In Sect. 4 we give the proof of Theorem 1.1. The proof is, as in [8], an
application of the trace method of interpolation, taking care of the different types of
points in the parabolic boundary of �.

2 Parabolic Besov Spaces

In the statement of Theorem 1.1 two classes of Besov spaces are involved. By Bα
p(D)

we denote the standard elliptic Besov space Bα
p,p(D). By B

α
p(�) we denote a par-

abolic Besov space that we shall define precisely in this section.
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The full scale of Besov spaces on the free space R
d , usually denoted by Bα

p,q(Rd),
is well known and several equivalent characterizations are possible. Given an open
subset D in R

d one can define Bα
p,q(D) as the linear space of all the restrictions

to D of the functions in Bα
p,q(Rd). We shall only deal with the case p = q and for

simplicity, we shall write Bα
p(D) instead of Bα

p,p(D). An intrinsic approach to Bα
p(D)

is also possible. Under the assumption in Theorem 1.1, regarding the regularity ofD,
both approaches to Bα

p(D) are equivalent.
From the PDE’s point of view, perhaps the most natural approach is the one pro-

vided by real interpolation between Lebesgue and Sobolev spaces. More precisely,
we have that, for 0 < α < 1 and 1 ≤ p ≤ ∞, the space Bα

p(D) coincides with the

α-interpolated between Lp(D) andW 1
p(D), usually denoted by (Lp(D),W 1

p(D))α,p

(see [2, 9]). When dealing with the parabolic spaces it will be convenient to realize
that we can also get Bα

p(D) for 0 < α < 1 as α
2 -interpolated between Lp(D) and

W 2
p(D). In other words

Bα
p(D) = (

Lp(D),W 2
p(D)

)
α
2 ,p

(2.1)

for 0< α < 1.
Less standard are the parabolic Besov spaces. Even when we shall only precisely

introduce this scale by interpolation, let us mention that the regularity involved in this
type of functions is now controlled by the underlying parabolic distance. Results in
this direction are contained in [4, 7, 10, 11]. Moreover in general settings like spaces
of homogeneous type, which contains the parabolic case, a theory of Besov regularity
is quite developed, see for example [6]. We shall only introduce the parabolic Besov
spaces which are strictly necessary for the proof our main result.
As usual ∇ denotes the gradient in space variables. By ∇2,1 we shall denote the

vector valued differential operator which applied to a smooth function v(x, t) defined
on �, produces the vector of all the second order spatial derivatives of v and its first
order derivative with respect to the time variable t . The anisotropic Sobolev space
W
2,1
p (�) is the closure of C∞(�) with respect to the norm

‖v‖
W
2,1
p (�)

= ‖v‖Lp(�) +
d∑

i=1

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lp(�)

+
d∑

i=1

d∑
j=1

∥∥∥∥ ∂2v

∂xi∂xj

∥∥∥∥
Lp(�)

+
∥∥∥∥∂v

∂t

∥∥∥∥
Lp(�)

.

With this notation in mind for W
2,1
p (�), we may think of Lp(�) as W

0,0
p (�), be-

cause no regularity in any variable is required. Hence we can look for the interpolated
spaces betweenW

0,0
p (�) and W

2,1
p (�). For 0< α < 2 we define

B
α,

α
2

p (�) = (
Lp(�),W 2,1

p (�)
)

α
2 ,p

.

For simplicity we introduce the notation B
α
p(�) for the space B

α,
α
2

p (�). Notice that

the intersection of B
α
p(�) = B

α,
α
2

p (�) with the space of functions which do not de-
pend on time is, from (2.1), precisely Bα

p(D). On the other hand the intersection of
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B
α
p(�) with the space of functions on � which do not depend on the space variable,

is the space B

α
2
p ((0, T )).

The only subtle point in the proof of our main result is contained in the so called
trace space method. This approach was already used by Jerison and Kenig in the
elliptic case in order to show that for harmonic functions, Besov regularity is equiva-
lent to Sobolev regularity. For the sake of completeness we shall briefly describe the
method for the particular case of parabolic spaces. We shall follow, with our special
function spaces, the scheme introduced in p. 72 of the book Interpolation Spaces by
Bergh and Löfström (see [3]).
Since we have to deal with the problem of proving that a temperature belongs to a

particular parabolic Besov space, we only state the sufficient conditions contained in
Corollary 3.12.3 in [3] adapted to our particular situation.
Let A0 = W

2,1
p (�) and A1 = Lp(�). If we want to show that a function v =

v(x, t) defined on � belongs to the space

B
α
p(�) = (

Lp(�),W 2,1
p (�)

)
α
2 ,p

= (
W 2,1

p (�),Lp(�)
)
1−α
2 ,p

= (A0,A1)1−α
2 ,p

we only have to find an m-times differentiable function f : R
+ → W

2,1
p (�)+Lp(�)

with f (0) = v (in the sense that f (s) → v in W
2,1
p (�) + Lp(�) as s → 0), two

positive numbers η0 and η1 with η1 < m such that 1 − α
2 = η0

η0+m−η1
and the inte-

grals

∫ ∞

0
‖sη0f (s)‖p

W
2,1
p (�)

ds

s

and ∫ ∞

0
‖sη1f (m)(s)‖p

Lp(�)

ds

s

are both finite. For our particular problem we shall use only two realizations of the
above described situation. Precisely

(2.a) v ∈ B
α
p(�) if there exist f : R

+ → W
2,1
p (�) + Lp(�) with f (0) = v and

η0 > 0 such that

∫ ∞

0
‖sη0f (s)‖p

W
2,1
p (�)

ds

s
+

∫ ∞

0
‖s2−

α
2−α

η0f ′′(s)‖p

Lp(�)

ds

s
< ∞; (2.2)

(2.b) v ∈ B
α
p(�) if there exist g : R

+ → W
2,1
p (�)+Lp(�) with g(0) = v and τ0 > 0

such that∫ ∞

0
‖sτ0g(s)‖p

W
2,1
p (�)

ds

s
+

∫ ∞

0
‖s1−

α
2−α

τ0g′(s)‖p

Lp(�)

ds

s
< ∞. (2.3)
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3 Gradient Estimates and Localizations of Temperatures

In this note D is a Lipschitz domain in R
d . Let us start by stating a local version in

time of Corollary 6.2 in [1]. Given a bounded Lipschitz domain D in R
d and T > 0

we shall write δ = δ(x; t) to denote the parabolic distance of (x; t) ∈ � = D × (0, T )

to the parabolic boundary of �, ∂par� = (∂D × [0, T )) ∪ (D × {0}). In other words
with ρ((x; t), (y; s)) =max{|x − y|,√|t − s|}

δ(x; t) = inf{ρ((x; t), (y; s)) : (y; s) ∈ ∂par�}.

Theorem 3.1 Let 0 < λ < 1 and 1 < p ≤ ∞ be given. There exists a constant C

depending on p, λ and D but not on T such that for every temperature u in � we
have the inequalities ∥∥δ1−λ|∇u|∥∥

Lp(�)
≤ C‖u‖Lp((0,T );Bλ

p(D)), (3.1)∥∥δ2−λ|∇2,1u|∥∥
Lp(�)

≤ C‖u‖Lp((0,T );Bλ
p(D)). (3.2)

The proof is the same that the proof of Corollary 6.2 in [1] once a pointwise
maximal estimate of the type

sup
0<δ<δ(x;t)

δ1−λ|∇(Kδ ∗ u)(x; t)| ≤ CM−
T [M#,λ

D u](x; t), (3.3)

is proved. Here Kδ(x; t) = 1
δd+2K(x

δ
; t

δ2
) with K(x; t) = 1

4
|x|2
t2

η((4πt)
1
2 e

|x|2
d4t ) and

η is a nonnegative C∞(R) function defined on R supported in [0,1] satisfying∫ 1
0 η(r)rd−1dr = d−1. On the right hand side of the above inequalityM−

T is the one-
sided, one dimensional Hardy-Littlewood maximal operator on the interval [0, T ], in
other words for t ∈ [0, T ]

M−
T g(t) = sup

0<h<t

1

h

∫ t

t−h

|g(s)|ds.

On the other handM
#,λ
D is the Calderón sharp maximal operator for the space variable

on D, precisely

M
#,λ
D f (x) = sup

0<δ<d(x)

1

|B(x, δ)|1+ λ
d

∫
B(x,δ)

|f (y) − f (x)|dy,

where d(x) = inf{|x − y| : y ∈ ∂D}. We point out that (3.3) follows from the mean
value formula for solutions of the heat equation as in the proof of Theorem 5.1 in [1].
The fact that u is a temperature in Theorem 3.1 is used in the required mean value

representation and in order to obtain estimates for the partial derivative with respect
to time in terms of second order space derivatives. The next result, which shall be
used in Sect. 4, proves that even when a smooth localization of a temperature is not a
temperature, estimates like those in (3.1) and (3.2) are still true for such functions.
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Lemma 3.2 Let u be a temperature in �. Let ζ ∈ C∞(Rd+1). Then the function
v = ζu defined in � satisfies the inequalities

‖v‖Lp(�) ≤ C‖u‖Lp((0,T );Bλ
p(D)), (3.4)∥∥δ1−λ|∇v|∥∥

Lp(�)
≤ C‖u‖Lp((0,T );Bλ

p(D)), (3.5)∥∥δ2−λ
∣∣∇2,1v∣∣∥∥

Lp(�)
≤ C‖u‖Lp((0,T );Bλ

p(D)), (3.6)

for some constant C which is independent of u.

Proof Let us first notice that (3.4) follows from the boundedness of ζ on � and from
the inequality ‖u‖Lp((0,T );Bλ

p(D)) ≥ ‖u‖Lp(�).

On the other hand, since also each derivative of ζ is bounded on � and from
Leibniz rule we have

∂v

∂xi

= ζ
∂u

∂xi

+ ∂ζ

∂xi

u,

∂2v

∂xj ∂xi

= ζ
∂2u

∂xj ∂xi

+ 2 ∂ζ

∂xj

∂u

∂xi

+ ∂2ζ

∂xj ∂xi

u,

∂v

∂t
= ζ

∂u

∂t
+ ∂ζ

∂t
u,

in order to prove (3.5) and (3.6) it is enough to estimate the Lp(�) norms of the func-
tions δ1−λu, δ2−λu, δ2−λ|∇u| by ‖u‖Lp((0,T );Bλ

p(D)). Since D is bounded we have

that |δ1−λu| ≤ C|u| and |δ2−λu| ≤ C|u|. On the other hand, |δ2−λ∇u| ≤ C|δ1−λ∇u|
and the result follows from (3.1). �

Let us now produce a smooth partition of the identity in�. We shall closely, and as
a for as possible, follow the elliptic notation introduced in [8]. Precisely, the setD is a
bounded and open set in R

d for which there exists a positive number r small enough
such that for each point x0 ∈ ∂D the set D ∩ B(x0, r) is the set above the graph
of a Lipschitz function ϕ of d − 1 variables x′ in some local orthogonal coordinate
system (x′, y) around x0. Since ∂D is compact there exists a constantM independent
of x0 ∈ ∂D such that |∇ϕ| ≤ M .
This localization at the boundary of the elliptic domain D, induces a classification

of the points in � = D × (0, T ) in four different types according to its relative po-
sition with respect to the parabolic boundary of �. Precisely, with r > 0 given by
the Lipschitz character of ∂D, we shall write OI to denote the set of points in �

with parabolic distance to the parabolic boundary, ∂par�, of � larger than r
2 . In other

words,

OI =
{
(x; t) ∈ � : ρ((x; t); ∂par�) >

r

2

}
=

{
(x; t) ∈ � : d(x) >

r

2
and t > r2

}
.
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Fig. 1 Decomposition for d = 1

By OII we shall denote any of the cylindrical domains of the form B(x, r) ×
(r2, T ) with x ∈ ∂D. Let

OIII =
{
(x; t) ∈ R

d+1 : x ∈ D,d(x) >
r

2
and |t | < 2r2

}
.

Finally, OIV shall denote any of the cylindrical domains of the form B(x, r) ×
(−2r2,2r2) with x ∈ ∂D.
Since ∂D is compact, the family of open sets containing OI, OIII and a finite

number of sets of type OII and type OIV provides an open covering of the parabolic
closure of � (� ∪ ∂par�). To precise the notation let us say that the family

{OI, OIII} ∪ {B(xi, r) × (−2r2,2r2) : i = 1, . . . , i0}
∪ {B(xi, r) × (r2, T ) : i = 1, . . . , i0}

is a finite open covering of the parabolic closure of �, xi ∈ ∂D. Hence we can find
a corresponding sequence ζI, ζIII, ζ i

IV and ζ i
II, i = 1, . . . , i0, of C∞(Rd+1) functions

such that ζI + ζII + ∑i0
i=1(ζ

i
II + ζ i

IV) ≡ 1 on the parabolic closure of �. Moreover,
ζIII and each ζ i

IV are compactly supported on OIII and B(xi, r)× (−2r2,2r2) respec-
tively. The function ζI instead, vanishes on the parabolic boundary of the cylindrical
domain OI. The same is true for each ζ i

II, in other words, ζ
i
II ≡ 0 on the parabolic

boundary of the cylindrical domain B(xi, r) × (r2, T ). We give a schematic repre-
sentation of this decomposition for the simple case of d = 1 and D = (0,1) in Fig. 1.

4 Proof of Theorem 1.1

Take u a temperature in � such that u ∈ Lp((0, T );Bλ
p(D)). We have to check that

u belongs to B
λ−ε
p (�) for every 0 < ε < λ. Notice first that since the number of

functions ζI, ζIII, ζ i
IV and ζ i

II is finite and depends only on D, and since

u = uζI + uζIII +
i0∑

i=1
(uζ i

II + uζ i
IV)

= vI + vIII +
i0∑

i=1
(vi
II + vi

IV)
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it will be enough to prove that each one of the terms in the sum on the right hand side
above belongs to B

λ−ε
p (�) for 0< ε < λ.

We shall prove that each one of the four different types vI, vIII, vi
II and vi

IV of local-
izations of u belong to B

λ−ε
p (�). For each such a type of localization we aim to prove

the finiteness of the B
λ−ε
p (�) norm from the fact that u ∈ �(�)∩Lp((0, T );Bλ

p(D)).
For ζ of type I, since v = ζu vanishes on a neighborhood of the parabolic boundary
of � and u ∈ �(�), we have that v belongs to any Besov space since it certainly
belongs to W

2,1
p (�). For each one of the other three types (II, III and IV) of lo-

calization functions, we shall choose an adequate function f (or g), and adequate
number η0 (or τ0) in (2.a) (or (2.b)) with α = λ − ε in order to prove the finiteness
of B

λ−ε
p (�).

Estimates for v = vi
II In this case v = vi

II = uζ i
II. Assume that Oi

II = B(pi, r) ×
(r2, T ), with pi ∈ ∂D. Since the Laplace operator is invariant under translations and
under orthogonal transformations of R

d , there is no loss of generality by assuming
that pi = 0 and that the coordinate system x = (x′, y); x′ ∈ R

d−1, y ∈ R is the one
for which locally, inside B(0, r), the boundary of D coincides with the graph of the
Lipschitz function ϕ.
With the above convention we have that the function v is given in this coordinate

system by v(x′, y; t) = ζ(x′, y; t)u(x′, y; t) where ζ is of type II. Let θ(s) be a non-
negative C∞ function on R supported in (− r

4 ,
r
4 ) and equals to one on the interval

[− r
8 ,

r
8 ]. In order to show that this function v belongs to B

λ−ε
p (�) we shall use (2.a)

with η0 = 2 − λ + ε (0 < ε < λ), α = λ − ε and f (s) is the function on � which
takes the value v(x′, y + s; t)θ(s) at the point (x; t) = (x′, y; t) ∈ �. In other words
f (s)(x; t) = v(x′, y + s; t)θ(s). Notice that the required condition f (0) = v clearly
holds from the choice of f (s) which actually is the natural extension of the f used
in [8] for the elliptic case. In the proof of (2.2) we shall also be proving that f takes
values in the space W

2,1
p (�) + Lp(�).

Let us start by proving the finiteness of the first term on the left hand side of (2.2).
For fixed s > 0 and T > t > 0 we shall also use the expression f (s, t) to denote the
function defined on D which takes the value f (s)(x; t) at each point x ∈ D. Hence
we shall start estimating for t and s fixed the Lp(D) norms of the functions f (s, t),
∇f (s, t) and ∇2,1f (s, t).
Since

‖f (s, t)‖p

Lp(D) =
∫ ∫

D

|v(x′, y + s; t)|pθp(s) dx′dy

= θp(s)

∫ ∫
D

|v(x′, y + s; t)|p dx′dy

= θp(s)

∫
x′∈Bd−1(0,r)

(∫ +∞

ϕ(x′)
|v(x′, y + s; t)|p dy

)
dx′

= θp(s)

∫
x′∈Bd−1(0,r)

(∫ +∞

ϕ(x′)+s

|v(x′, y; t)|p dy

)
dx′
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≤ θp(s)

∫
x′∈Bd−1(0,r)

(∫ +∞

ϕ(x′)
|v(x′, y; t)|p dy

)
dx′

= θp(s)

∫ ∫
D

|v|p dx,

by integration in the variable t , we get from (3.4) in Lemma 3.2 that

‖f (s)‖p

Lp(�) ≤ Cθp(s)‖u‖p

Lp((0,T );Bλ
p(D))

. (4.1)

For ∇f (s, t) if xi , i = 1, . . . , d − 1, is any one of the d − 1 components of x′ and
xd = y, we have that∥∥∥∥ ∂f

∂xi

(s, t)

∥∥∥∥p

Lp(D)

=
∫ ∫

D

∣∣∣∣ ∂v

∂xi

(x′, y + s; t)θ(s)

∣∣∣∣p dx′dy

= θp(s)

s(1−λ)p

∫ ∫
D

∣∣∣∣s1−λ ∂v

∂xi

(x′, y + s; t)
∣∣∣∣p dx′dy.

Now, we claim that cs ≤ d(x′, y + s) for x = (x′, y) ∈ D, where d(z) is the distance
of the point z ∈ D to the boundary ∂D of D, and c is some geometric constant. On
the other hand since the truncation function ζ is of type II, then for those values of t
for which ζ and v do not vanish we have that d(x′, y + s) = δ(x′, y + s; t). Hence∥∥∥∥ ∂f

∂xi

(s, t)

∥∥∥∥p

Lp(D)

≤ c
θp(s)

s(1−λ)p

∫ ∫
D

∣∣∣∣δ1−λ(x′, y + s; t) ∂v

∂xi

(x′, y + s; t)
∣∣∣∣p dx′dy

≤ c
θp(s)

s(1−λ)p

∫ ∫
D

∣∣∣∣δ1−λ ∂v

∂xi

∣∣∣∣p dx

for i = 1, . . . , d , s > 0 and 0 < t < T . In the last inequality an argument similar to
the one used in the proof of (4.1) can be used. After integration in the variable t and
application of (3.5) we get

‖|∇f (s)|‖p

Lp(�) ≤ C
θp(s)

s(1−λ)p
‖u‖p

Lp((0,T );Bλ
p(D))

. (4.2)

For ∇2,1f (s, t), the second order space derivatives can be bounded with the same
geometric argument in the following way∥∥∥∥ ∂2f

∂xj ∂xi

(s, t)

∥∥∥∥p

Lp(D)

=
∫ ∫

D

∣∣∣∣ ∂2v

∂xj ∂xi

(x′, y + s; t)θ(s)

∣∣∣∣p dx′dy

= θp(s)

s(2−λ)p

∫ ∫
D

∣∣∣∣s2−λ ∂2v

∂xj ∂xi

(x′, y + s; t)
∣∣∣∣p dx′dy
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≤ c
θp(s)

s(2−λ)p

∫ ∫
D

∣∣∣∣δ2−λ(x′, y + s; t) ∂2v

∂xj ∂xi

(x′, y + s; t)
∣∣∣∣p dx′dy

≤ c
θp(s)

s(2−λ)p

∫ ∫
D

∣∣∣∣δ2−λ ∂2v

∂xj ∂xi

∣∣∣∣p dx.

For ∂f
∂t
a similar argument gives

∥∥∥∥∂f

∂t
(s, t)

∥∥∥∥p

Lp(D)

≤ c
θp(s)

s(2−λ)p

∫ ∫
D

∣∣∣∣δ2−λ ∂v

∂t

∣∣∣∣p dx.

The last two inequalities together with (3.6) give, after integration with respect to
time ∥∥∣∣∇2,1f (s)

∣∣∥∥p

Lp(�)
≤ C

θp(s)

s(2−λ)p
‖u‖p

Lp((0,T );Bλ
p(D))

. (4.3)

Hence from (4.1), (4.2) and (4.3) we get that∫ ∞

0
‖sη0f (s)‖p

W
2,1
p (�)

ds

s

≤ C‖u‖p

Lp((0,T );Bλ
p(D)

∫ ∞

0
s(2−λ+ε)p

(
1+ 1

s(1−λ)p
+ 1

s(2−λ)p

)
θp(s)

ds

s

≤ C‖u‖p

Lp((0,T );Bλ
p(D)

∫ r
4

0
s(2−λ+ε)p

(
1+ 1

s(1−λ)p
+ 1

s(2−λ)p

)
ds

s

= C‖u‖p

Lp((0,T );Bλ
p(D)

∫ r
4

0

(
s(2−λ+ε)p + s(1+ε)p + sεp

)ds

s
.

Since ε > 0 we get that the first term in (2.2) is finite.
In order to get an upper estimate for the second term in (2.2), let us start by noticing

that since f ′(s) is the function ∂v
∂y

(x′, y + s; t)θ(s)+v(x′, y + s; t)θ ′(s) we have that
f ′′(s) is the function

∂2v

∂y2
(x′, y + s; t)θ(s) + 2∂v

∂y
(x′, y + s; t)θ ′(s) + v(x′, y + s; t)θ ′′(s).

On the other hand, with the same arguments used to prove (4.1), (4.2) and (4.3) we
obtain

‖v(x′, y + s; t)θ ′′(s)‖p

Lp(�) ≤ C|θ ′′(s)|p‖u‖p

Lp((0,T );Bλ
p(D))

, (4.4)∥∥∥∥∂v

∂y
(x′, y + s; t)θ ′(s)

∥∥∥∥p

Lp(�)

≤ C
|θ ′(s)|p
s(1−λ)p

‖u‖p

Lp((0,T );Bλ
p(D))

, (4.5)

∥∥∥∥∂2v

∂y2
(x′, y + s; t)θ(s)

∥∥∥∥p

Lp(�)

≤ C
θ(s)p

s(2−λ)p
‖u‖p

Lp((0,T );Bλ
p(D))

. (4.6)
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Hence, since θ , θ ′ and θ ′′ are bounded and supported in [− r
4 ,

r
4 ] the second term

on the left of (2.2) is bounded by

C

(∫ r
4

0
s(2− λ−ε

2−λ+ε
η0)p

(
1

s(2−λ)p
+ 1

s(1−λ)p
+ 1

)
ds

s

)
‖u‖p

Lp((0,T );Bλ
p(D))

≤ C̃

(∫ r
4

0
sη0p

ds

s s(2−λ)p

)
‖u‖p

Lp((0,T );Bλ
p(D))

= C̃

(∫ r
4

0

ds

s1−εp

)
‖u‖p

Lp((0,T );Bλ
p(D))

.

Estimates for v = vIII In this case we shall use (2.b) in order to show that v ∈ B
λ
p(�)

which is better than the estimate obtained when v is of type II. We shall check (2.3)
with g(s)(x; t) = v(x; t + s)ω(s) for s > 0 and ω is a nonnegative C∞ function

supported in (−r2, r2) with ω ≡ 1 on [− r2

2 , r2

2 ], α = λ and τ0 = 1− λ
2 .

Let us start by estimating the first term on the left of (2.3) for the above described
choice of g, α and τ0,

‖g(s)‖p

Lp(�) =
∫ ∫

�

|v(x; t + s)ω(s)|pdxdt

= ωp(s)

∫ ∫
�

|v(x; t + s)|pdxdt

= ωp(s)

∫ s+2r2

s

(∫
D

|v(x; t)|pdx

)
dt

≤ ωp(s)

∫ ∫
�

|v(x; t)|pdxdt. (4.7)

In the last inequality we have used that r can be chosen so small that 3r2 < T . Hence
the contribution of the Lp(�) norm of g(s) to the Sobolev norm W

2,1
p (�) of g(s) in

the first term of (2.3) is bounded by

(∫ ∞

0
s
p(1−λ

2 )
ωp(s)

ds

s

)
‖v‖p

Lp(�) ≤ C

(∫ r2

0
s
p(1−λ

2 ) ds

s

)
‖u‖p

Lp((0,T );Bλ
p(D))

which is finite.
Let us now get the bound of the term corresponding to the space gradient of g(s)

in the first term of (2.3). For i = 1, . . . , d we have that∫ ∞

0
sτ0p−1

∥∥∥∥ ∂g

∂xi

(s)

∥∥∥∥p

Lp(�)

ds

≤ C

∫ r2

0
s
(1−λ

2 )p−1
(∫ ∫

{x∈D:d(x)>
r
2 ;0<t<2r2}

∣∣∣∣ ∂v

∂xi

(x; t + s)

∣∣∣∣pdxdt

)
ds
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≤ C

∫ r2

0
s
(1−λ

2 )p−1
(∫ ∫

{x∈D:d(x)>
r
2 ;s<t<2r2+s}

∣∣∣∣ ∂v

∂xi

(x; t)
∣∣∣∣pdxdt

)
ds

≤ C

∫
{x∈D:d(x)>

r
2 }

∫ 3r2

0

∣∣∣∣ ∂v

∂xi

(x; t)
∣∣∣∣p

(∫ t

0
s
(1−λ

2 )p−1
ds

)
dtdx

≤ C

∫
{x∈D:d(x)>

r
2 }

∫ 3r2

0

∣∣∣∣t (1−λ
2 ) ∂v

∂xi

(x; t)
∣∣∣∣pdtdx

≤ C

∫ ∫
�

∣∣∣∣δ2−λ(x; t) ∂v

∂xi

(x; t)
∣∣∣∣pdxdt

≤ C

∫ ∫
�

∣∣∣∣δ1−λ(x; t) ∂v

∂xi

(x; t)
∣∣∣∣pdxdt, (4.8)

where have used that for (x; t) in the support of v, δ(x; t) is of the order √t and that
r can be assumed to be less than 1. Hence from (3.5) we get∫ ∞

0
sτ0p−1

∥∥∥∥ ∂g

∂xi

(s)

∥∥∥∥p

Lp(�)

ds ≤ C‖u‖p

Lp((0,T );Bλ
p(D))

.

In order to prove that the first term in (2.3) is finite we still have to deal with the
second order space derivatives. Notice that to estimate∫ ∞

0
sτ0p−1

∥∥∥∥ ∂2g

∂xj ∂xi

(s)

∥∥∥∥p

Lp(�)

ds

in terms of
∫∫

�
|δ2−λ(x; t) ∂2v

∂xj ∂xi
(x; t)|pdxdt we can proceed exactly as in (4.8) ex-

cept for the last inequality there. The same is true for the time derivative. So that the
desired result follows from (3.6).
Let us now accomplish the analysis of the second term in (2.3) for the current

situation: g(s)(x; t) = v(x; t + s)ω(s), s > 0, α = λ and τ0 = 1− λ
2 . Since for the

derivative of g with respect to s we have

g′(s)(x; t) = ∂v

∂t
(x; t + s)ω(s) + v(x; t + s)ω′(s)

and (1− α
2−α

τ0)p − 1= (1− λ
2 )p − 1, we can proceed exactly as in (4.7) and (4.8).

Estimates for v = vi
IV As in the case of vi

II, from the invariance of the Laplacian
we can assume that 0 = pi ∈ ∂D and that the coordinate system x = (x′, y) with
x′ ∈ R

d−1 and y ∈ R is such that in the space ball B(0, r), ∂D is the graph of the
Lipschitz function ϕ.
In this case we apply (2.b) with g(s)(x; t) = v(x′, y + s; t + s2)θ(s), θ as in the

case v = vi
II, α = λ − ε and τ0 = 2− λ + ε for 0< ε < λ.

We have to prove that for this choice of g, α and τ0 the left hand side of (2.3) is
finite. Let us start by noticing that, since 1− α

2−α
τ0 = 1− λ + ε and g′(s)(x; t) =
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∂v
∂y

(x′, y + s; t + s2)θ(s)+ 2s ∂v
∂t

(x′, y + s; t + s2)θ(s)+ v(x′, y + s; t + s2)θ ′(s), we
have to show that each one of the following seven integrals is finite,

A =
∫ r
4

0
s(2−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)
|v(x′, y + s; t + s2)|pdydx′dtds;

B =
∫ r
4

0
s(2−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣ ∂v

∂xi

(x′, y + s; t + s2)

∣∣∣∣pdydx′dtds,

for i = 1, . . . , d and xd = y;

C =
∫ r
4

0
s(2−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣ ∂2v

∂xj ∂xi

(x′, y + s; t + s2)

∣∣∣∣pdydx′dtds;

D =
∫ r
4

0
s(2−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣∂v

∂t
(x′, y + s; t + s2)

∣∣∣∣pdydx′dtds;

E =
∫ r
4

0
s(1−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣∂v

∂y
(x′, y + s; t + s2)

∣∣∣∣pdydx′dtds;

F =
∫ r
4

0
sps(1−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)

∣∣∣∣∂v

∂t
(x′, y + s; t + s2)

∣∣∣∣pdydx′dtds;

G =
∫ r
4

0
s(1−λ+ε)p−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)
|v(x′, y + s; t + s2)|pdydx′dtds.

Since A ≤ G, D = F and B and E are similar, we only have to show that G, E,
C and D are finite.

Bound for G Changing variables in space variable y and in time variable t we have
that

G =
∫ r
4

0
s(1−λ+ε)p−1

∫ 2r2+s2

s2

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)+s

|v(x′, y; t)|pdydx′dtds

≤
∫ r
4

0
s(1−λ+ε)p−1

∫ 3r2

0

∫
Bd−1(0,r)

∫ +∞

ϕ(x′)
|v(x′, y; t)|pdydx′dtds

≤
∫ r
4

0
s(1−λ+ε)p−1ds

∫ ∫
�

|v|pdxdt

≤ C‖u‖p

Lp(�).

Bound for E Since

E =
∫ r
4

0
sεp−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ ∞

ϕ(x′)
s(1−λ)p

∣∣∣∣∂v

∂y
(x′, y + s; t + s2)

∣∣∣∣pdydx′dtds,
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and in the domain of integration the inequality δ(x′, y + s; t + s2) ≥ cs holds for
some constant c, after changing variables, we obtain from (3.5) that

E ≤ c

(∫ r
4

0
sεp−1ds

)(∫ ∫
�

∣∣∣∣δ1−λ ∂v

∂y

∣∣∣∣pdxdt

)
≤ C‖u‖p

Lp((0,T );Bλ
p(D))

.

Bound for C and D Since C and D both can be written in the form

∫ r
4

0
sεp−1

∫ 2r2

0

∫
Bd−1(0,r)

∫ ∞

ϕ(x′)
s(2−λ)p

∣∣V (x′, y + s; t + s2)
∣∣pdydx′dtds,

with V = ∂2v
∂xj ∂xi

for C and V = ∂v
∂t
for D, and δ(x′, y + s; t + s2) ≥ cs, we can now

use (3.6) to obtain that they are bounded by a constant times ‖u‖p

Lp((0,T );Bλ
p(D))

.

Let us point out that the estimates for the cases v = vi
II and v = vi

IV (precisely the
integral E), we have a dependence of the type ε−1 for the constants obtained in this
way.
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