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Cook and Forzani (2009), hereafter CF09, propose a likeli-
hood-based method for dimension reduction that advances ex-
isting methods such as SIR (Li 1991) and SAVE (Cook and
Weisberg 1991). CF09 acknowledge that their likelihood-based
method is related to the method of Zhu and Hastie (2003), here-
after ZH03, but add that “[their] full maximum likelihood esti-
mator (MLE) of the central subspace under normality would
prove to have advantages over . . . the Zhu–Hastie method un-
der the same assumptions.” In this letter, we explain more fully
the relationship between the methods in CF09 and ZH03.

In CF09, continuous responses are first discretized into sev-
eral groups. Thus, we assume without loss of generality that the
response variable y is categorical, say y = 1,2, . . . ,h. The rele-
vant notation from CF09 we need includes: �̃ = V̂ar(x); �̃y =
V̂ar(x|y); PS = projection onto subspace S ; |A|0 = products
of nonzero eigenvalues of A; n = total sample size; and ny =
number of observations in the subgroup indexed by y.

Let S be a dimension-reduction subspace, and suppose
dim(S) = d is given. CF09 propose estimating S by maximiz-
ing

L∗
d(S) = log |PS �̃PS |0 −

h∑
y=1

ny

n
log |PS �̃yPS |0 (1)

with respect to S . Our Equation (1) above is CF09’s equa-
tion (1), except that additive terms not depending on S are re-
moved and the remaining terms are scaled by a factor of 2/n.
Neither difference alters the maximization problem.

In ZH03, we proposed sequentially maximizing a likelihood-
ratio criterion. This we did for general densities, but also used
the Gaussian as a special illustrative example. In the special
case that x|y is normally distributed, our method amounts to
maximizing

LR(α) =
h∑

y=1

(
ny

n

)
(logαT�̃α − logαT�̃yα) (2)

sequentially over unit vector α—after the first maximizing so-
lution is obtained, say α̂1, we maximize (2) again, adding an
extra constraint such as α ⊥ α̂1, and so on. Equation (2) above
is equation (4.3) in ZH03, expressed here using the notation
of CF09. Noting that n = ∑h

y=1 ny by definition, it is easy to
see that, if d = 1 in Equation (1), then Equations (1) and (2)
are identical. The case of d > 1 was not considered in ZH03

because we took a sequential approach to optimize (2). In other
words, the basis vectors of S were obtained one at a time, so
it sufficed to consider only the one-dimensional case of the ob-
jective function. In short, the underlying proposals in CF09 and
ZH03 are the same; the main difference lies in joint optimiza-
tion versus sequential optimization.

Although the subspace resulting from d steps of our sequen-
tial algorithm would be suboptimal with respect to (1), the ap-
proach might be seen to be more practical: the sequence of
subspaces would be nested. On the other hand, the (d − 1)-
dimensional solution to (1) will not in general be nested in the
d-dimensional solution. Nesting is desirable if we want to esti-
mate a suitable value for d.

We think that the formulation in ZH03, of which (2) is a spe-
cial case, is more direct and intuitive. In addition, it does not
make any parametric assumption about the distribution of x|y,
and thus is more general than CF09. The general formulation of
ZH03 sequentially maximizes

LR(α) = log

∏h
y=1

∏
xj∈Cy

p̂(α)
y (αTxj)∏h

y=1
∏

xj∈Cy
p̂(α)(αTxj)

over unit vector α, where Cy refers to the subgroup indexed by

y; p̂(α)
y is the (nonparametric) MLE for the conditional distrib-

ution of x|y in the direction of α; and p̂(α) is the (nonparamet-
ric) MLE of the marginal distribution of x in the direction of
α regardless of subgroup membership. As shown in ZH03, this
is a generalization of Fisher’s LDA problem that seeks direc-
tions to maximize between/within variance, or equivalently be-
tween/total variance. Here the sequential approach is even more
compelling, since it requires only one-dimensional density es-
timation.
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REPLY TO ZHU AND HASTIE

In CF09 we used the method of maximum likelihood to de-
rive an estimator—called LAD—of the central subspace SY|X
that can dominate other dimension reduction methods like
IRE, SIR, SAVE, and DR. Computation of the LAD estimator,
ŜY|X = arg max L∗

d(S), is correctly represented by (1) in Zhu
and Hastie’s letter, hereafter ZH. Reasoning by analogy from
Fisher’s linear discriminant, ZH03 proposed a sequential non-
parametric algorithm for discriminant analysis. Although CF09
and ZH03 differ on their starting points, goals, and levels of
theoretical development, the estimators do match in a special
parametric case. We discuss that parametric case first and then
turn to the nonparametric setting.

As stated in CF09 near the end of section 4.3 and restated in
ZH, the CF09 and ZH03 estimators are the same when X|Y
is normal and d = dim(SY|X) = 1; that is, arg max L∗

1(S) =
span{arg max LR(α)}, where LR(α) is as given in (2) of ZH.
The estimators differ when d > 1, with ZH03 proceeding se-
quentially and CF09, following the dictates of the likelihood
function, using full optimization. This is a distinction that can
have a great deal of difference.

To illustrate, we applied the sequential algorithm as de-
scribed in ZH’s Equation (2) to the bird–planes–cars data used
in CF09. A plot showing the discriminatory information con-
tained in the first two sequential linear combinations is given
in Figure 1. For visual clarity, we removed one point from the
plot, but not from the analysis. This figure can be compared di-
rectly to figures 4 and 5 in CF09. Cars are well separated in Fig-
ure 1, but birds and planes are largely over-plotted, as they were
for some of the methods represented in figure 4 of CF09. LAD
and the sequential method provide very different representa-
tion of the data, with LAD’s results being clearly preferable.
This difference is likely a consequence of the suboptimality of
the sequential method. It suggests that the sequential method
could require a larger value of d to encapsulate the data struc-
ture found by LAD.

Figure 1. Plot of the first sequential predictor α̂T
1 X versus the resid-

uals r(̂αT
2 X|̂αT

1 X) from the ordinary least squares fit of the second se-

quential predictor α̂T
2 X on the first. Birds, red �’s; planes, black ◦’s;

cars, blue ×’s.

Nesting and the ability to estimate SY|X sequentially do have
some intuitive appeal. They hold in classical dimension reduc-
tion methods like SIR and SAVE that are based on spectral
analyses of kernel matrices, but not in recent methods like IRE
and LAD. However, using sequential optimization in lieu of full
optimization is suboptimal and can have a significant inferential
cost, as illustrated in Figure 1. Although LAD does not produce
nested estimators of SY|X, it is likelihood-based and thus we
developed methods for inferring about d and testing predictors
using familiar likelihood procedures. We know of no similar in-
ference procedures for the sequential method. Recognizing that
a proper likelihood has its own intuitive appeal, the advantages
of nesting and sequential estimation are for us not sufficient to
compensate for their downside.

Turning to the nonparametric setting, the main point of ZH03
was perhaps their sequential algorithm for discriminant analy-
sis, where the density of X|Y was not specified and was largely
unrestricted. Comments on relative performance in this con-
text are not relevant because the methods have different goals
and typically estimate different quantities. Assuming that the
nonparametric algorithm of ZH03 is estimating an identified
subspace, that subspace is generally not equal to the central
subspace but it might equal the central discriminant subspace
(Cook and Yin 2001).

In principle we prefer full optimization over sequential op-
timization in nonparametric settings as well. However, added
complications arise because full optimization can be infeasi-
ble due to the difficulty in estimating multidimensional den-
sities nonparametrically. Sequential estimation then takes on
added importance, not because of its intuitive appeal, but be-
cause there may be no workable joint alternatives. Yin, Li, and
Cook (2008) studied sequential nonparametric methods for es-
timating SY|X in regressions where (Y,X) has a density. They
demonstrated that sequential estimation can be consistent for
SY|X under the conditions that the predictors are elliptically dis-
tributed and that certain densities are directionally identified.
Reasoning from their findings, we judge that further investiga-
tion is required to gain a necessary appreciation for the operat-
ing characteristics of the nonparametric sequential algorithm of
ZH03.
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