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a b s t r a c t

Building onwork by G. Cornuéjols and B. Novick and by L. Trotter, we give different charac-
terizations of contractions of consecutive ones circulant clutters that give back consecutive
ones circulant clutters. Based on a recent result byG. Argiroffo and S. Bianchi,we then arrive
at characterizations of the vertices of the fractional set covering polyhedron of these clut-
ters. We obtain similar characterizations for the fractional set packing polyhedron using a
result by F.B. Shepherd, and relate our findings with similar ones obtained by A. Wagler for
the clique relaxation of the stable set polytope of webs. Finally, we show how our results
can be used to obtain some old and new results on the corresponding fractional set cov-
ering polyhedron using properties of Farey series. Our results do not depend on Lehman’s
work or blocker/antiblocker duality, as is traditional in the field.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Two fundamental problems in polyhedral combinatorics are the study of the fractional set covering polyhedron,

Pc(M) = {x ∈ Rn : Mx ≥ 1, x ≥ 0},

and the fractional set packing polyhedron,

Pp(M) = {x ∈ Rn : Mx ≤ 1, x ≥ 0},

whereM ∈ Rr×n is a 0–1 matrix with no zero columns, the inequalities indicate componentwise comparison, and 0n and 1n
denote the vectors in Rn of all zeros and all ones (respectively), with the subindex n omitted if no confusion arises.
Recall that a clutter, C = (V , E), is a collection of subsets of (a finite set) V with the property A 6⊂ B for all A, B ∈ E,

A 6= B. C is trivial if either E = ∅ or E = {∅}. We can associate to any nontrivial clutter C the matrixM(C ), whose columns
are indexed by V and whose rows are the incidence vectors of the members of E.
Dominating (resp. dominated) rows of M are redundant in the definition of Pc(M) (resp. Pp(M)), and we may assume

that M does not have them. Thus, M is naturally associated with a clutter C such that M = M(C ), and in this case we set
Pc(C ) = Pc(M) and Pp(C ) = Pp(M).
Of particular interest are packing polyhedra related to graphs. When C is the clutter of maximal cliques of the graph G,

Pp(C ) is often denoted by QSTAB(G), the clique relaxation of the stable set polyhedron STAB(G).
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If J ∈ Rr×n is the all ones matrix having the same dimensions as M , eliminating dominated rows of M is equivalent to
eliminating dominant rows of J−M , which is also a 0–1matrix. Moreover, for 1n ·x > 1 the inequalityMx ≤ 1r is equivalent
to the inequality (J−M )̃x ≥ 1r , where x̃ = (1n ·x−1)−1 x. Hence, wemay relate packing and covering polyhedra by studying
the nonlinear involutionΦ defined on {x ∈ Rn : 1n · x 6= 1} by

Φ(x) =
1

1n · x− 1
x. (1.1)

This was done by Shepherd [14] who showed:

Theorem 1.1. Given the clutter C , with n vertices and r edges, and corresponding matrix A = M(C ), let J ∈ Rr×n be the matrix
of all ones, Ã = J − A, and C̃ such that M(C̃ ) = Ã.
Then, the only vertices of Pp(A) in {x : 1 · x ≤ 1} are 0 and the canonical basis (called trivial vertices), and if A has no column

of zeros,Φ gives a 1–1 correspondence between the nontrivial vertices of Pp(C ) and the vertices of Pc(C̃ ).

The transformation Φ given in (1.1) is remarkably well suited to the consecutive ones circulant clutters C kn , which are
defined for positive integers n and k with 1 ≤ k ≤ n − 1, by considering V (C kn ) = Zn = {0, 1, 2, . . . , n − 1} and E(C kn )
= {Ci : i ∈ Zn}, where Ci = {i, i + 1, . . . , i + (k − 1)} (additions modulo n), and we write Mkn = M(C

k
n ). (Since no other

circulant clutters are considered in this paper, from now on ‘‘circulant’’ will be a synonym for ‘‘consecutive ones circulant’’.)
With the notations of Theorem 1.1, if C = C kn , then C̃ = C n−kn , and therefore properties of Pp(C kn )may be translated to

properties of Pc(C n−kn ), and conversely.
A webW kn is the graph having vertices Zn and edges {ij : 0 < |i − j| ≤ k}. AlthoughW kn makes sense as long as 2k < n,

it is traditional to require that 2(k+ 1) ≤ n, and in particular, n ≥ 2. ThusW 0n is the graph having n vertices and no edges,
but the complete graph is not considered to be a web. This implies that its stability number, α(W kn ), is always greater than
2. An antiwebW

k−1
n is prime if gcd(n, k) = 1.

The clutters C kn are closely related to the webs W
k
n and their graph complements, the antiwebs W

k
n. It turns out that,

for 3k ≤ n, Pp(C kn ) may be looked at as QSTAB(W
k−1
n ). Trotter [15] was one of the first to study the graph W

k−1
n , which

he denoted byW (n, k), giving several characterizations for havingW
k′−1
n′ as an induced subgraph ofW

k−1
n . For instance, he

showed:

Theorem 1.2. If k ≤ n/2, 1 ≤ k′ ≤ k, n′ ≤ n, and k′ ≤ n′/2, then W k
′
−1
n′ is a (node) induced subgraph of W

k−1
n if and only if

kn′ ≤ k′n and (k′ − 1)n ≤ (k− 1)n′. (1.2)

Of course, the same characterization holds for the webs W k−1n , and it has been used to study properties of the packing
polyhedra associated with webs and antiwebs (see, e.g., [18] for a summary). For example, Wagler [16, Theorem 2] proved:

Theorem 1.3. If k ≥ 1, STAB(W kn) has as only nontrivial facets rank constraints associated with prime antiwebs.
1

Recall that, ifG = (V , E) is a graph, any subset of nodes V ′ induces a subgraphG′ and the rank constraint
∑
i∈V ′ xi ≤ α(G

′),
which is valid in STAB(G) (but need not be a facet, and not all facets are always rank constraints).
On another track, Cornuéjols and Novick [7] studied several classes of ideal and minimally nonideal clutters.
A clutter C = (V , E) is ideal if all the vertices of Pc(C ) are 0–1. Given N ⊂ E, the deletion minor C \N and the contraction

minor C/N are defined by takingV (C \N) = V (C/N) = V−N (the set difference ofV andN), E(C \N) = {A ∈ E : A∩N = ∅},
and E(C − N) are the minimal members of {A− N : A ∈ E}. If V1 and V2 are disjoint subsets of V , C/V1 \ V2 is aminor of C ,
which is proper if either V1 6= ∅ or V2 6= ∅. Aminimally nonideal clutter (mni clutter for short) is a clutter which is not ideal
and all its proper minors are ideal. The clutters C = (V , E) and C ′ = (V ′, E ′) are isomorphic, denoted by C ∼ C ′, if there is
a bijection ϕ : V → V ′ such that A ∈ E if and only if ϕ(A) ∈ E ′.
As part of their work, Cornuéjols and Novick gave a classification of the clutters C kn which are either ideal or mni by

studying contractions of C kn which are isomorphic to another circulant clutter. The main tools in their proof are results by
Lehman [11,12], and the following lemma, which relates arithmetic conditions, contractions, and the existence of a (simple
directed) cycle in the graph Gkn, the directed graph having vertex set V (C

k
n ) = Zn, and (i, i′) is an arc of Gkn if and only if

i′ − i (mod n) is either k or k+ 1.

Lemma 1.4 (Lemma 4.5 in [7]). Suppose 2 ≤ k ≤ n − 2. If a subset N of V (C kn ) induces a simple directed cycle, D, in G
k
n, then

there exist n1, n2, n3 ∈ Z+, n1 ≥ 1, such that
(i) nn1 = kn2 + (k+ 1)n3.
(ii) gcd(n1, n2, n3) = 1.
(iii) If k− n1 ≤ 0, then C kn /N is trivial, and otherwise C kn /N ∼ C

k−n1
n−n2−n3 .

1 In this paper we allow k = 0 in the definition ofW kn (so that cliques are prime antiwebs for n ≥ 2), but Wagler defines them for k ≥ 1.
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Based on this lemma, Argiroffo and Bianchi [3] gave a characterization of the fractional vertices of Pc(C kn ): if, for given
x ∈ Rn, N denotes the set of indices i for which xi = 0, then x is a fractional vertex of Pc(C kn ) if and only if C

k
n /N is isomorphic

to some C k
′

n′ with k
′ > 1 and n′ and k′ relative primes.

The proof of Lemma 1.4 given by Cornuéjols and Novick has many points of contact with Trotter’s characterizations
(Theorems 1.2 and 2.6). In a way, Trotter studied properties of one set, while Cornuéjols and Novick studied properties of
its complement.
This relation is exposed in Section 2, where we study contractions of C kn and find different characterizations of N so that

C kn /N ∼ C k
′

n′ . In Theorem 2.5 we give structural conditions, following ideas by Cornuéjols and Novick. In Lemma 2.8 we
show how we may shift to Trotter’s point of view, and mainly repeat his arguments to obtain in Theorem 2.10 arithmetical
conditions similar to those of Theorem 1.2.
In Section 3 we study how cycles are related to these contractions, extending the work by Cornuéjols and Novick. We

show in Theorem 3.10 that if m = |N| and n′ = n − m, then C kn /N ∼ C k
′

n′ if and only if N may be partitioned (in a unique
way up to order) into d = gcd(m, k− k′) disjoint simple directed cycles in Gkn, each of lengthm/d. In Corollary 3.8 we show
that these cycles have an interlacing property.
We start Section 4 by giving different characterizations of the vertices of Pc(C kn ) (in Theorems 4.1 and 4.3), following

Argiroffo and Bianchi. With the arithmetic characterizations at hand, we may establish several properties in a simple way,
such as constructing or recognizing vertices inO(n) steps (Remark 4.4) or amonotonicity property (Corollary 4.6). Shepherd’s
transformation Φ allows us to transfer the characterizations to the vertices of Pp(C kn ) (Corollaries 4.7 and 4.8). We end
this section by relating our findings with previous results on the extreme points of QSTAB(W kn ) and Wagler’s Theorem 1.3
(Lemma 4.10 and Corollaries 4.11 and 4.12).
Finally, in Section 5 we see how these characterizations may be used to obtain some old and new results on Pc(C kn ). In

Section 5.1 we give a proof of Cornuéjols and Novick’s characterization of ideal and mni circulant clutters which does not
depend on Lehman’s results, using instead properties of Farey series. Near-ideal clutters were introduced by Argiroffo [2]
(see also [4]) as a symmetric idea to that of near-perfect graphs and matrices studied by Shepherd [13], and in Section 5.2
we study circulant clutters with this property.
In this paper, unless otherwise indicated, operations in Zn, such as addition, are indicated simply by the usual symbol,

such as +. Occasionally, the value of the modulo is emphasized by writing a+n b for a + b (mod n). (a, b)n denotes the
Zn-cyclic open interval of points strictly between a and b—so that (a, b) is an edge whereas (a, b)n is a cyclic interval—with
analogous meanings for (a, b]n, [a, b)n and [a, b]n. For consistency, the indices of the coordinates of vectors in Rn are taken
in Zn, i.e., x = (x0, x1, . . . , xn−1).
For further background on clutters, packing and covering, we refer the reader to Cornuéjols’ book [6].

2. Contractions of C k
n

In this section we study the minor C kn /N , and give necessary and sufficient conditions so that it is isomorphic to C k
′

n′ for
some n′ and k′.
Throughout most of this section, we assume n, k, and N ⊂ Zn are given, and set N = Zn − N ,m = |N| and n′ = |N|.
Recalling that Ci = [i, i+ k)n ∈ E(C kn ), we write

C i = Ci − N = Ci ∩ N for i ∈ Zn.

The point of departure is the following observation (cf. [7, Remark 4.3]):

Lemma 2.1. Let i ∈ N. Then, C i+1 is dominating if 2 ≤ k ≤ n− 1.

Let us take care first of the extreme cases for k andm.

Lemma 2.2. If N = ∅, then C kn /N = C kn is not a proper minor of C kn .
Otherwise, if N 6= ∅ we have:

• If k = 1 then C 1n /N is trivial.
• If m = n− 1 then C kn /N is trivial for k ≤ n− 1.
• If k = n− 1 > 1 then C kn /N ∼ C k−mn−m if m < n− 1, and otherwise C kn /N is trivial.

Thus, it is convenient to make the assumption:

Assumption 2.3. k andm are such that 2 ≤ k ≤ n− 1 and 0 ≤ m ≤ n− 2.

To construct C kn /N from C kn we have to throw away any dominating redundant sets in {C i : i ∈ Zn}. In view of Lemma 2.1,
we may think that we throw away first the sets C i+1 for i ∈ N , and then look for any other dominating set.
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Lemma 2.4. Under Assumption 2.3,

E(C kn /N) ⊂ {C i+1 : i ∈ N}, (2.1)

and therefore

|E(C kn /N)| ≤ |V (C
k
n /N)|. (2.2)

Also, equality holds in (2.1) if and only if equality holds in (2.2).

Theorem 2.5. Suppose Assumption 2.3 holds. Then, the following are equivalent:

(i) There exists k′ such that 1 ≤ k′ ≤ min {n′ − 1, k} and C kn /N ∼ C k
′

n′ .
(ii) C kn /N is not trivial and |E(C

k
n /N)| = |V (C

k
n /N)|.

(iii) There exists k′ such that 1 ≤ k′ ≤ min {n′ − 1, k} and |C i+1| = k′ for all i ∈ N.

Proof. (i)⇒ (ii): If C kn /N ∼ C k
′

n′ , M = M
k
n and M = M(C

k
n /N) are square matrices, and m columns have been removed

from M to obtain M , which implies n′ = n − m. Also, exactly m rows have been deleted from M , and since |A| = k′ for
A ∈ E(C kn /N), it follows that |E(C

k
n /N)| = n−m = |V (C

k
n /N)|.

(ii)⇒ (iii): By Lemma 2.4, E(C kn /N) = {C i+1 : i ∈ N}. Given i ∈ N , let i
′
∈ N be such that all the points in the Zn-cyclic

interval (i, i′)n are in N . Since C i+1 ∈ E(C kn /N) and C kn /N is not trivial, then C i+1 6= ∅ and i
′
∈ C i+1. Also, since between i

and i′ there are only elements in N , C i+1 − {i′} ⊂ C i′+1. Moreover, C i+1 does not dominate C i′+1 ∈ E(C kn /N) (Lemma 2.4),
which implies that there exists i′′ such that i′′ ∈ C i′+1 − C i+1, and therefore |C i+1| ≤ |C i′+1|. As this happens (cyclically) for
all i, i′ ∈ N , we must have |C i+1| = k′ for all i ∈ N , for some k′, 1 ≤ k′ ≤ k.
(iii)⇒ (i): Suppose i, i′ ∈ N are such that C i+1 ⊂ C i′+1. Since they have the same positive cardinality, C i+1 = C i′+1, and

there exists i′′ ∈ N which is in both sets. Assuming, without loss of generality, that i′− i > 0, then 0 < i′− i < i′′− i ≤ k, and
therefore i′ ∈ C i′+1 = C i+1, which is a contradiction since k < n. Since there are no dominations between sets of the form
C i+1 for i ∈ N , and there are n′ = n−m of these, |E(C kn /N)| ≥ n

′
≥ |V (C kn /N)|, and by Lemma 2.4, E(C

k
n /N) = {C i+1 : i ∈ N}.

Now, the characteristic vectors of the sets Ci, i ∈ Zn, consist of a group of ones followed by a group of zeros (when looked
at cyclically in Zn), and the same must hold for C i = Ci ∩ N . Hence, C kn /N ∼ C k

′

n′ . �

Although not explicitly stated, the last condition in Theorem 2.5 is part of the proof by Cornuéjols and Novick of
Lemma 1.4, and is similar to one in the following result by Trotter [15, Theorem 3.1]:

Theorem 2.6. Under the assumptions of Theorem 1.2, W k
′
−1
n′ is a (node) induced subgraph of W

k−1
n if and only if there exists

V ′ ⊂ Zn such that

|[i, i+ (k− 1)]n ∩ V ′| = k′ for all i ∈ V ′.

Remark 2.7. As was the case of Theorem 1.2, by taking complements we see that the result is also true forW k−1n .

Let us see the equivalence between the conditions in Theorem 2.5(iii) and that in Theorem 2.6 (without the restrictions
2k ≤ n and 2k′ ≤ n′ needed for webs and antiwebs):

Lemma 2.8. Suppose 1 ≤ k < n, N ⊂ Zn, n′ = |N|, and 1 ≤ k′ ≤ n′. Then, the following are equivalent:

(i) |[i, i+ (k− 1)]n ∩ N| = k′ for all i ∈ N.
(ii) |[i− (k− 1), i]n ∩ N| = k′ for all i ∈ N.
(iii) |[i+ 1, i+ (n− k)]n ∩ N| = n′ − k′ for all i ∈ N.

Proof. To show that (i)⇒ (ii), letψ : N → N be defined by [i, ψ(i)]n∩N = [i, i+(k−1)]n∩N . Since |[i, i+(k−1)]n∩N| = k′,
ψ is injective and hence bijective. Therefore, [ψ−1(i), i]n ⊂ [i− (k− 1), i]n and [ψ−1(i), i]n ∩ N = [i− (k− 1), i]n ∩ N .
The implication (ii)⇒ (i) follows similarly. (ii)⇔ (iii) is readily seen by taking complements. �

Our next goal is to prove an arithmetic characterization for contractions of C kn , analogous to that of Theorem 1.2.
The following result is a variant of [15, Corollary 3.2]:

Corollary 2.9. Under Assumption 2.3, suppose C kn /N ∼ C k
′

n′ . Then

k′ ≤ |C i+1| and |(i, i+ (k+ 1)]n ∩ N| ≤ k′ + 1 for all i ∈ Zn.

Please cite this article in press as: N.E. Aguilera, On packing and covering polyhedra of consecutive ones circulant clutters, Discrete AppliedMathematics
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Proof. If i 6∈ N , by Theorem 2.5 we know that |C i+1| = k′, and the other inequality follows by noticing that (i, i+ (k+1)]n∩
N ⊂ C i+1 ∪ {i+ (k+ 1)}.
If i ∈ N , consider i′, i′′ 6∈ N such that i ∈ (i′, i′′)n ⊂ N , and notice that C i′+1 ⊂ C i+1 and (i, i + (k + 1)]n ∩ N ⊂ {i′′}

∪ C i′′+1. �

The following result and its proof follow ideas by Trotter [15, Theorem 3.3].

Theorem 2.10. Under Assumption 2.3, there exists N such that C kn /N ∼ C k
′

n′ if and only if

k′

k
≤
n′

n
≤
k′ + 1
k+ 1

. (2.3)

Proof. Suppose N ⊂ Zn is such that C kn /N ∼ C k
′

n′ , and let x ∈ Rn denote the incidence vector of N , so that∑
i∈Zn

xi = n′. (2.4)

By Corollary 2.9 we have

k′ ≤
k∑
j=1

xi+j and
k+1∑
j=1

xi+j ≤ k′ + 1 for all i.

Summing these inequalities over all i, and using (2.4), we obtain k′n ≤ kn′ and (k+ 1)n′ ≤ (k′ + 1)n.
For the converse implication, for j = 0, . . . , n′ − 1 let us define ij =

⌈
jn/n′

⌉
. Since 2 ≤ n′ < n, we have (n′ − 1)n/n′ <

n− 1, and therefore 0 ≤ ij < n. Thus, N = {i0, . . . , in′−1} satisfies |N| = n′.
For fixed j, 0 ≤ j < n′, let r be defined by r = ijn′ − jn, so that 0 ≤ r < n′, and let h = |C ij+1|, so that if h > 0,

C ij+1 = {ij+n′ 1, . . . , ij+n′ h}. Thus, h is the maximum integer such that, with operations in R,

(j+ h)n
n′

≤ ij + k =
jn
n′
+
r
n′
+ k,

i.e., h =
⌊
r/n+ kn′/n

⌋
. The inequalities (2.3) and 0 ≤ r < n′ imply

k′ ≤
kn′

n
≤
r
n
+
kn′

n
<
(k+ 1)n′

n
≤ k′ + 1,

and hence, h = k′.
Therefore, |C i+1| = k′ for all i ∈ N , and we may apply Theorem 2.5. �

3. Cycles in Gk
n

One of the fundamental ideas by Cornuéjols and Novick in their 1994 paper [7] is that we can relate contractions and
cycles in Gkn, and in this section we pursue these ideas. To do so, it is convenient to assume that N is written in canonical
form,

N = {i0, i1, . . . , im−1} with i0 < i1 < · · · < im−1, (3.1)

with the usual order in Z.
In this case, the function π : N → Zm, defined by

π(ij) = j for j = 0, . . . ,m− 1, (3.2)

is bijective and increasing.
For n1 ∈ Z, 0 ≤ n1 ≤ m− 1, let us define s : N → N by

s(ij) = ij+m n1 for j = 0, . . . ,m− 1, (3.3)

and δ : N → Zn by

δ(i) = s(i)− i for i ∈ N , (3.4)

so that |(i, s(i)]n ∩ N| = |(i, i+ δ(i)]n ∩ N| = n1 if i ∈ N .

Theorem 3.1. Under the assumptions of Theorem 2.5, let n1 = k− k′. Then C kn /N ∼ C k
′

n′ if and only if δ(i) ∈ {k, k+ 1} for all
i ∈ N, or, in other words, if and only if (i, s(i)) ∈ Gkn for all i ∈ N.
Moreover, if either condition holds, then |C i+1| ∈ {k′, k′ + 1} for all i ∈ N, with |C i+1| = k′ + 1 if and only if δ(i) = k+ 1.
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Proof. If C kn /N ∼ C k
′

n′ , by Corollary 2.9 for all i ∈ Zn we have

|(i, i+ k]n ∩ N| ≤ k− k′ = n1 = (k+ 1)− (k′ + 1) ≤ |(i, i+ (k+ 1)]n ∩ N|,

which in particular implies δ(i) ∈ {k, k+ 1} for i ∈ N .
For the other implication, suppose i ∈ N . By the definition of s and δ, we have |(i, i+δ(i)]n∩N| = |(i, i+ s(i)]n∩N| = n1.

If δ(i) = k, then |Ci+1 ∩ N| = n1; and if δ(i) = k+ 1, then Ci+1 ∩ N = [i+ 1, s(i))n ∩ N , and therefore |Ci+1 ∩ N| = n1 − 1.
In all, for i ∈ N we have |C i+1| ∈ {k′, k′ + 1}, with |C i+1| = k′ if and only if δ(i) = k.
Consider now i ∈ N . We observe that |C i+1| ≥ k′, since otherwise there would exist c ∈ Ci+1 ∩N with δ(c) < k. Suppose

a = i − 1 ∈ N . If δ(a) = k, then i + k ∈ N , and therefore k′ = |Ca+1| = |C i+1|. Else, if δ(a) = k + 1, then i + k = s(a)
and k′ + 1 = |Ca+1| = |C i+1| + 1. Finally, if i ∈ N , let t be the largest positive integer such that [i − t, i]n ∩ N = ∅. Then
k′ ≤ |C i+1| ≤ |C i| ≤ . . . ≤ |C i−t | = k′. �

The last part of the previous proof also shows:

Lemma 3.2. Under the assumptions of Theorem 2.5, suppose n1 is such that 1 ≤ n1 < min {k,m} and δ(a) ∈ {k, k+ 1} for all
a ∈ N, and i, i′ ∈ N are such that i′ − i ∈ {k, k+ 1}. Then, |(i, i′)n ∩ N| = n1.

Proof. In fact, since i′ ∈ N , the statement is equivalent to |Ci+1 ∩ N| = n1, which in turn is equivalent to |C i+1| = k′. �

Once we have δ(i) ∈ {k, k+ 1}, it is natural to think of cycles in Gkn.

Lemma 3.3. Suppose 1 ≤ k ≤ n− 1, 1 ≤ m ≤ n− 2, 1 ≤ n1 < m, and δ(i) ∈ {k, k+ 1} for all i ∈ N.
Then, there exist D1, . . . ,Dd disjoint simple directed cycles in Gkn, having a common length, such that N = ∪r V (Dr).
Furthermore, d = gcd(m, n1) and the decomposition is unique (up to the order).

Proof. Since the function s, defined in (3.3), is bijective (and N is finite), it induces a decomposition of Gkn consisting of
simple directed cycles of the form (i, s(i), s2(i), . . . , so(i)), where o(i) is the order of i ∈ N with respect to s; that is,
o(i) = min {j > 0 : sj(i) = i}.
Using the function π : N → Zm, defined in (3.2), which is an order preserving bijection, we see that the dicycles induced

by s are mapped to dicycles of the directed graph G̃ with vertex set Zm and arcs (z, z+m n1) for all z ∈ Zm. Thus, for i ∈ N ,
the order o(i) is the least positive integer that multiplied by n1 is a multiple ofm. In other words, if d = gcd(m, n1),

o(i) = m/d for all i ∈ N ,

and all the dicycles in G̃ or Gkn have the same length, namely,m/d. �

Let us study the case of just one cycle. Given a simple directed cycle D in Gkn, let us set N = V (D) and define n2 to be
the number of arcs of length k in D, and n3 to be the number of arcs of length k+ 1. Since D is a simple directed cycle, then
n2k+ n3(k+ 1) is a multiple of n, and therefore there exists a unique n1 such that

n1n = n2k+ n3 (k+ 1). (3.5)

For fixed n1, the general solution for the unknowns n2 and n3 of the diophantine Eq. (3.5) is given by

n2 = −n1n+ z(k+ 1) and n3 = n1n− zk for any z ∈ Z,

and adding these equations we obtain n2 + n3 = z. On the other hand, ifm = |N|, since D is simple, we have

m = n2 + n3, (3.6)

and therefore,

n2 = −n1n+m(k+ 1), n3 = n1n−mk. (3.7)

Thus, given n2 and n3 we may obtainm and n1 by means of Eqs. (3.6) and (3.5), and, conversely, givenm and n1 we may
obtain n2 and n3 by means of Eq. (3.7). If these hold, then the relations

km
n
≤ n1 ≤

(k+ 1)m
n

(3.8)

also hold, and conversely:

Lemma 3.4. Let n, k,m be given, with 1 ≤ k ≤ n− 1 and 0 ≤ m ≤ n− 1. Then there exist n1, n2, n3 ≥ 0 satisfying Eqs. (3.5)
and (3.6) if and only if⌈

km
n

⌉
=

⌊
(k+ 1)m
n

⌋
. (3.9)

Moreover,
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(i) n1 is uniquely determined by

n1 =
⌈
km
n

⌉
, (3.10)

and therefore n2 and n3 are uniquely determined by Eqs. (3.7),
(ii) if 0 < m and k < n− 1, then 0 < n1 ≤ min {m− 1, k},
(iii) gcd(n1, n2, n3) = gcd(n1,m).

Proof. We just observe that for 1 ≤ k ≤ n− 1 and 0 ≤ m ≤ n− 1 we have

km
n
≤
(k+ 1)m
n

<
km
n
+ 1,

and therefore, in general, dkm/ne ≥ b(k+ 1)m/nc. �

Lemma 3.5. Suppose the following conditions are satisfied:

(1) 1 ≤ k ≤ n− 1,
(2) D is a simple directed cycle in Gkn, having n2 arcs of length k and n3 arcs of length k+ 1,
(3) n1 is defined by Eq. (3.5),
(4) N = V (D) is written in the canonical form (3.1) (m = |N|),
(5) s̃ : N → N is defined by

s̃(i) = i′ if (i, i′) is an arc of D. (3.11)

Then, |(i, s̃(i)]n ∩ N| = n1, i.e., s̃ = s, where s is defined in Eq. (3.3).

Proof. We first observe that s̃ is well defined and is a bijection since D is simple.
If D has an arc of length n, then it is actually a loop, and therefore N = {i0},m = n1 = 1, s̃(i0) = i0, and the result follows.
Otherwise, it is enough to show the result for the case j = 0 and i0 = 0, by considering the directed cycle D − ij. For

i ∈ N , let δ̃(i) = s̃(i)− i, and consider the auxiliary integer sequence defined by

a0 = 0 (= i0), aj = aj−1 + δ̃(ij−1) for j = 1, . . . ,m− 1,

so that aj = ij (mod n).
For each t = 0, . . . , n1 − 1, there is exactly one value r(t) = j such that tn ≤ aj < tn + s̃(i0), since there are no arcs of

length less than k or more than k+ 1. On the other hand, since D is simple, the function r is injective. Thus there are exactly
n1 points in the cyclic interval [i0, s̃(i0))n. �

Applying Lemma 3.3 to N = V (D), since the decomposition is unique, yields an alternative proof of Lemma 1.4(ii) (see
also [1] for yet another proof):

Lemma 3.6. If the assumptions of Lemma 3.5 hold, then gcd(m, n1) = 1.

Suppose now D1,D2, . . . ,Dd are d disjoint simple directed cycles of Gkn, having a common length m (<n), and let
N = ∪r Dr . Using Lemma 3.4 for the values n, k and m, we see that the corresponding parameters of the cycles, say n1,
n2, and n3, coincide. Therefore, all the cycles have the same number of arcs of length k, and the same number of arcs of
length k + 1. Thus, in the graph ∪r Dr there are n2 = dn2 arcs of length k, n3 = dn3 arcs of length k + 1, and if n1 is
defined by Eq. (3.5), then n1 = dn1. Also, the total number of vertices is m = dm. Moreover, by Lemma 3.6, we must have
gcd(m, n1) = 1, so that gcd(m, n1) = d.
The following is a generalization of Lemmas 3.5 and 3.6, and gives a converse to Lemma 3.3:

Lemma 3.7. Suppose the following conditions are satisfied:

(1) 1 ≤ k ≤ n− 1, 1 ≤ m ≤ n− 2,
(2) D1, . . . ,Dd are disjoint simple directed cycles in Gkn, all having length m/d,
(3) N = ∪r V (Dr) is written in the canonical form (3.1) (so |N| = m).

Then,

(i) Eq. (3.9) holds,
(ii) if n1 is the common value in (3.9), then gcd(m, n1) = d,
(iii) if s : N → N is defined by s(i) = i′ if (i, i′) is an arc of Dr for some r = 1, . . . , d, then Eq. (3.3) holds, i.e., s(ij) = ij +m n1

for j = 0, . . . ,m− 1.

Proof. We observe that, if (i, i′) is an arc of Dr , in the cyclic interval (i, i′]n there are n1 elements of Dr (by Lemma 3.5), and
also n1 elements of each Dt , t 6= r (by Lemmas 3.2 and 3.5). In all, there are dn1 = n1 elements of N in (i, i′]n. �
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Using the function π : N → Zm defined in (3.2), which is an order preserving bijection, the dicycles D1, . . . ,Dd are
mapped to dicycles D̃1, . . . , D̃d of the directed graph G̃ with vertex set Zm and arcs (z, z+m n1) for all z ∈ Zm. Since all
simple directed cycles in G̃ are translations (modulo m) of the cycle starting at 0 ∈ Zm, and ∪r D̃r = Zm, in each cyclic
interval of the form [z, z+m d)n there is exactly one point of each cycle D̃r , and this structure is carried back to N through
π−1. Thus, we have the following interlacing property of the cycles:

Corollary 3.8. Suppose the assumptions of Lemma 3.7 hold. Then, in each cyclic interval of N of length d there is exactly one
point of each cycle.

Hence, if N = ∪r V (Dr) is written in the canonical form (3.1), after an eventual renaming of the cycles we have

V (Dr) = {ir−1, i(r−1)+d, . . . , i(r−1)+(m−1)d}.

Wemay visualize this by splitting the elements of N to form a d× mmatrix A, where the rth row is V (Dr). In other words,
if ar,j are the entries of A, then

ar,j = ir+jd, for r = 0, . . . , d− 1, j = 0, . . . ,m− 1,

so that all the cycles have the same structure, following the columns of A.

Example 3.9. By ‘‘the same structure’’ we do not mean to imply that corresponding arcs have the same length. For example,
if n = 34, k = 7,m = 18, n1 = 4, we could take

N = {0, 2, 4, 6, 8, 9, 12, 13, 16, 17, 19, 20, 23, 24, 26, 28, 31, 32},

which decomposes into the cycles

D1 = (0, 8, 16, 23, 31, 4, 12, 19, 26, 0), D2 = (2, 9, 17, 24, 32, 6, 13, 20, 28, 2).

However, the first arc in D1 has length k+ 1 = 8, and the first arc of D2 has length k = 7. Moreover, the lengths cannot be
made to coincide by a cyclic rotation, since in D1 there are three consecutive arcs of length k+ 1, namely (26, 0), (0, 8) and
(8, 16), but this does not hold for D2.

Using Theorem 3.1, and Lemmas 3.3 and 3.7, we can state (see also Theorem 2.5):

Theorem 3.10. Suppose Assumption 2.3 holds, and 0 ≤ n1 < min {k,m}. Then, the following are equivalent:

(i) C kn /N ∼ C
k−n1
n−m .

(ii) There exist d = gcd(m, n1) disjoint simple dicycles in Gkn, D1, . . . ,Dd, each having length m/d, such that N = ∪r V (Dr).

4. Vertices of related polyhedra

Given a clutter C and a subset N ′ ⊂ V (C ), we may interpret Pc(C/N ′) geometrically as the projection of the intersection
of Pc(C ) with the subspace {x ∈ Rn : xi = 0 for all i ∈ N ′}. Thus, if for x ∈ Rn we define N(x) = {i ∈ Zn : xi = 0},
we may identify Pc(C kn /N

′) and {x ∈ Pc(C kn ) : N
′
⊂ N(x)}. Since the conditions xi ≥ 0, for all i ∈ N ′, are some of the

inequalities defining Pc(C/N ′), no new vertices are created, i.e., all the vertices of Pc(C/N ′)—when regarded as a subset of
Rn—are already vertices of Pc(C ). The intersection could be empty, so there are no vertices at all, and this happens if C/N ′
is trivial. On the other hand, if Pc(C ) has a vertex x with N(x) 6= ∅ and m = |N(x)|, then Pc(C/N(x))—regarded now as a
subset of Rn−m—has, essentially, the image of x as a vertex with no zero coordinates.
When we apply these ideas to the case C = C kn , we know that for some N ’s we get back another circulant clutter, C

k′
n′ .

Thus, if x is a vertex of Pc(C kn ) such that C kn /N(x) ∼ C k
′

n′ (for appropriate n
′ and k′), then the vertex x′ ∈ Pc(C k

′

n′ ) ⊂ Rn
′

,
corresponding to x, has all its coordinates positive.
Argiroffo and Bianchi [3] showed the remarkable fact that the converse is true: for all fractional vertices x ∈ Pc(C kn ), N(x)

is such that C kn /N(x) is a circulant clutter. Although their result is for fractional vertices, it also holds for all vertices (with
minor changes in the proof, which we omit):

Theorem 4.1. Suppose 1 ≤ k ≤ n − 1. Then, the point x is a vertex of Pc(C kn ) if and only if there exist n
′ and k′ such that

(i) 1 ≤ k′ < n′, (ii) C kn /N(x) ∼ C k
′

n′ , and (iii) gcd(n
′, k′) = 1.

In this case |N(x)| ≤ n− 2, and xi = 1/k′ for all i 6∈ N(x).

Remark 4.2. More formally, Theorem 4.1 states that the vertices of Pc(C kn ) have the Lehman property, although it does not
depend on Lehman’s results.
According to Shepherd [14], a square 0–1 matrix A is said to be Lehman if, for any aij = 0, the number of ones in column

j is the same as the number of ones in row i, and a vertex x of Pc(A) has the Lehman property if there is a square nonsingular
Lehman submatrix Ax of A such that Ax x = 1 and x is zero for any column not appearing in the matrix Ax.

Please cite this article in press as: N.E. Aguilera, On packing and covering polyhedra of consecutive ones circulant clutters, Discrete AppliedMathematics
(2009), doi:10.1016/j.dam.2009.05.003



ARTICLE  IN  PRESS
N.E. Aguilera / Discrete Applied Mathematics ( ) – 9

Table 1
Parameters of the vertices of Pc(C7

34).

m n1 d m/d n′ k′ Quantity

0 0 0 — 34 7 1
13 3 1 13 21 4 204
17 4 1 17 17 3 2
18 4 2 9 16 3 30634
23 5 1 23 11 2 50864
26 6 2 13 8 1 2210
27 6 3 9 7 1 26558
28 6 2 14 6 1 6137
29 6 1 29 5 1 34

Coupling Theorem 4.1 with Theorem 2.10 we have:

Theorem 4.3. Suppose 1 ≤ k ≤ n − 1. Then, Pc(C kn ) has a vertex with exactly m zero coordinates and n
′
= n − m positive

coordinates, if and only if

(i) m ≤ n− 2,
(ii) ⌈

kn′

n
−
m
n

⌉
=

⌊
kn′

n

⌋
, (4.1)

(iii) gcd(n′, k′) = 1, where k′ is the common value in (4.1).

If these conditions hold, then the value of all of the nonzero coordinates of such a vertex is 1/k′.

Remark 4.4. Thus, we may construct a vertex using the algorithm of Theorem 2.5 in O(n) steps, and conversely, we may
check whether x ∈ Rn is a vertex of Pc(C kn ) in O(n) steps.

Example 4.5. Using Theorem 4.3, in Table 1 we have indicated the possible parameters of vertices of Pc(C 734).
In this table, d = gcd(m, n1) is the number of cycles having cardinality m/d into which the set of zero coordinates de-

composes. The last column indicates the quantity of vertices having those parameters, and its values were obtained using
the polyhedral computational code PORTA [5].

Looking at Table 1, we notice that the 0–1 vertices may have between 26 and 29 zeros, i.e., between 5 and 8 nonzero
coordinates. We can also observe that the 0–1 vertices always have fewer nonzero coordinates than fractional vertices. This
is a general property which is a consequence of Theorem 4.3, since the values of

⌊
kn′/n

⌋
, and so of k′, are increasing with n′:

Corollary 4.6. Suppose x is a 0–1 vertex of Pc(C kn ), with |N(x)| = m, and x
′ is another vertex, not necessarily 0–1, with |N(x′)|

= m′. Then,

(i) If x′ is 0–1 and m < m′, then, for any m′′ ∈ N, m < m′′ < m′, there exists a 0–1 vertex, x′′, of Pc(C kn ) with |N(x
′′)| = m′′.

(ii) If x′ is a fractional vertex then |N(x′)| < m.

Let us see now how these characterizations are reflected when working with Pp(C kn ).
Recalling the transformation Φ defined in (1.1) and Shepherd’s Theorem 1.1, if 1 ≤ k ≤ n − 1, then x is a nontrivial

vertex of Pp(C kn ) if and only if Φ(x) is a vertex of Pc(C
n−k
n ). Since, by the definition of Φ , N(x) = N(Φ(x)), these sets share

structural properties. Moreover, all the nonzero coordinates of the nontrivial vertex x of Pp(C k−1n ) take the same value, since
those ofΦ(x) do. If this value is 1/k′, then the nonzero coordinates of the vertexΦ(x) of Pc(C n−kn ) take the value

1
n′/k′ − 1

1
k′
=

1
n′ − k′

,

and we may state:

Corollary 4.7. Suppose 1 ≤ k ≤ n− 1. Then, the point x is a nontrivial vertex of Pp(C kn ) if and only if there exist n
′ and k′ such

that (i) 1 ≤ k′ < n′, (ii) C n−kn /N(x) ∼ C n
′
−k′

n′ , and (iii) gcd(n′, k′) = 1.
In this case |N(x)| ≤ n− 2 and xi = 1/k′ for all i 6∈ N(x).

Replacing k by n− k in the inequalities in Theorem 4.3, (4.1) now reads

n′ −
⌊
kn′ +m
n

⌋
=

⌈
(n− k)n′ +m

n

⌉
=

⌊
(n− k)n′

n

⌋
= n′ −

⌈
kn′

n

⌉
,

so that the arithmetic relations in Theorem 4.3 (and the definition of Shepherd’sΦ) yield:
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Corollary 4.8. If 2 ≤ k ≤ n− 1, then Pp(C kn ) has a nontrivial vertex with exactly m zero coordinates and n
′
= n− m (n′ ≥ 2)

nonzero coordinates if and only if

(i)
⌈
kn′
n

⌉
=

⌊
kn′
n +

m
n

⌋
,

(ii) if k′ is the common value in the previous equality, then gcd(n′, k′) = 1.

If these conditions hold, then the value of all of the nonzero coordinates of such a vertex is 1/k′.

The relations

k′ =
⌈
kn′

n

⌉
=

⌊
kn′

n
+
m
n

⌋
in Corollary 4.8 are equivalent to (1.2), i.e., to both kn′ ≤ k′n and (k′ − 1)n ≤ (k− 1)n′. However, in Trotter’s Theorem 1.2
there is the restriction 2k′ ≤ n′, whereas in Corollary 4.8 we are including the condition gcd(n′, k′) = 1. Noticing that
the latter does appear in Wagler’s Theorem 1.3, it seems appropriate to relate Corollaries 4.7 and 4.8 to packing polyhedra
associated with webs and antiwebs.
We observe first that if 2k > n there are no 0–1 nontrivial vertices of Pp(C kn ) by Corollary 4.8 (kn

′/n ≤ 1 implies n′ = 1
or 0), andW k−1n is not defined.
If 2k ≤ n, C kn is a subset of (maximal) cliques ofW

k−1
n , and therefore

QSTAB(W k−1n ) ⊂ Pp(C kn ). (4.2)

If, furthermore, 3k ≤ n,Mkn is precisely the clique-node matrix ofW
k−1
n , and the inclusion above turns to an equality, so that

Corollaries 4.7 and 4.8 provide characterizations of the vertices of QSTAB(W k−1n ) = Pp(C kn ) whenever the stability number
ofW k−1n , α(W k−1n ) = bn/kc, is 3 or more.
When 2k ≤ n < 3k, there may be other maximal cliques in W k−1n besides those in C kn . Wagler [17], building on work

by W. Cook (1987, unpublished) and Shepherd [13], showed that in this case W k−1n is near-perfect, i.e., STAB(W k−1n ) is
determined by the clique inequalities and the rank inequality x · 1 ≤ 2:

Theorem 4.9 (Theorem 15 in [17]). Aweb is near-perfect if and only if it is perfect, an odd hole,W 211, or if it has stability number 2.

This leads us to study the inequality x · 1 ≥ 2 in Pp(C kn ).

Lemma 4.10. Suppose 2k ≤ n and x′ is a nontrivial vertex of Pp(C kn ), written in the form

x′ =
1
k′
χN , (4.3)

where χN is the incidence vector of N, n′ = |N| ≥ 2, k′ ≥ 1, C n−kn /N(x) ∼ C n
′
−k′

n′ , gcd(n′, k′) = 1, and (1.2) holds.
We have:

(i) If 3k ≤ n then x′ · 1 ≥ 2, with strict inequality if x′ is not 0–1 (i.e., if k′ > 1).
(ii) If x′ · 1 ≥ 2, then x′ is a nontrivial vertex of QSTAB(W k−1n ).

Proof. Notice first that, by (4.3), the inequality x′ · 1 ≥ 2 is equivalent to n′ ≥ 2k′.
(i) Suppose n ≥ 3k and n′ < 2k′. Then n′ + 1 ≤ 2k, and from (k′ − 1)n ≤ (k− 1)n′,

3k (k′ − 1) ≤ n(k′ − 1) ≤ (k− 1)n′ ≤ (k− 1)(2k′ − 1),

which implies k(k′ − 2) ≤ 1− 2k′ < 0, and therefore we cannot have k′ ≥ 2.
Thus, either k′ = 1 or n′ ≥ 2k′. If k′ = 1, x is a 0–1 vertex, and since it is nontrivial, we must have n′ ≥ 2. If k′ > 1,

the condition gcd(n′, k′) = 1 implies that we cannot have n′ = 2k′, and hence n′ > 2k′.
(ii) If n′ ≥ 2k′, we may use Trotter’s Theorem 2.6 (actually Remark 2.7) to see that the subgraph ofW k−1n induced by N is
isomorphic toW k

′
−1

n′ . Hence, if Q is a clique ofW
k−1
n (not necessarily maximal) with Q ⊂ N , then |Q | ≤ k′. Thus, for any

maximal clique Q ′ ofW k−1n we have χQ
′

· x′ = |Q ′ ∩ N|/k′ ≤ 1, which implies that x′ is a vertex of QSTAB(W k−1n ). �

Partitioning the vertices of Pp(C kn ) into T , the set of 0–1 trivial vertices (i.e., those for which x ·1 ≤ 1), S
−, the set of fractional

vertices with x · 1 < 2, S2, the set of 0–1 vertices with x · 1 = 2, and S+, the set of vertices with x · 1 > 2, we have

Pp(C kn ) = conv(T ∪ S2 ∪ S
+
∪ S−).

Corollary 4.11. If k ≤ n/2, QSTAB(W k−1n ) = conv(T ∪ S2 ∪ S+).
In other words, x′ is a nontrivial vertex of QSTAB(W k−1n ) if and only if it is a nontrivial vertex of Pp(C kn ) and 1 · x

′
≥ 2 (the

latter being redundant if n ≥ 3k).
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Proof. Let us consider the different possibilities for the stability number ofW k−1n .
If n ≥ 3k, we have QSTAB(W k−1n ) = Pp(C kn ) and S

−
= ∅ (by Lemma 4.10(i)), so the result follows.

By Lemma 4.10(ii) we know that S2 ∪ S+ is a subset of the vertices of QSTAB(W k−1n ), and therefore conv(T ∪ S2 ∪ S+) ⊂
QSTAB(W k−1n ).
If 2k ≤ n < 3k, by Wagler’s Theorem 4.9 we have

STAB(W k−1n ) = conv(T ∪ S2) = QSTAB(W k−1n ) ∩ {x : x · 1 ≤ 2},

which implies S− ∩ QSTAB(W k−1n ) = ∅, and by (4.2), QSTAB(W k−1n ) ⊂ conv(T ∪ S2 ∪ S+). �

In the proof of Lemma 4.10(ii) we saw that, when n′ ≥ 2k′, Trotter’s Theorem 2.6 could be used to show that N , as a
subset of nodes of W k−1n , induces W k

′
−1

n′ . But by the same argument we may say that N , looked at now in W
k−1
n , induces

W
k′−1
n′ . Since by Corollary 4.11 any nontrivial vertex x

′ of QSTAB(W k−1n ) satisfies the inequality n′ ≥ 2k′, we may write:

Corollary 4.12. x′ is a nontrivial vertex of QSTAB(W k−1n ) if and only if x′ = 1
k′ χ

N , where N induces the prime antiweb W
k′−1
n′

in W
k−1
n (or, equivalently, the ‘‘prime’’ web W k

′
−1

n′ in W k−1n ).

Thus, nontrivial vertices of QSTAB(W k−1n ) are in 1–1 correspondence with rank inequalities
∑
i∈N xi ≤ k′ valid for

STAB(W
k−1
n ), where N induces the prime antiwebW

k′−1
n′ (a clique if k′ = 1).

By Fulkerson’s antiblocking duality, we know that the undominated vertices of QSTAB(W k−1n ) are in 1–1 correspondence
with the nontrivial facets of STAB(W

k−1
n ) (those of the form x · a ≤ 1), and since nonzero trivial vertices of QSTAB(W k−1n )

define facets of STAB(W
k−1
n ) only if k = 1,we see howour results are equivalent to Theorem1.3 as long as only undominated

vertices and inequalities are considered. When all vertices are considered, we may use the following characterization by
Koster and Wagler [10] of the extreme points of QSTAB(G) for general graphs:

Theorem 4.13. Given a graph G = (V , E) and a ∈ R|V |, a ≥ 0, let Ga be the graph induced by {v ∈ V : av > 0}, and supp(a)
be the vector a restricted to the nonzero components only.
Then a 6= 0 is an extreme point of QSTAB(G) if and only if the inequality supp(a) · x ≤ 1 defines a facet of STAB(Ga).

5. Applications

In this section we use the algebraic characterization of vertices of Pc(C kn ) to study some families of circulant clutters.

5.1. Ideal and mni circulant clutters

Using Theorem 4.3, we may state a characterization of ideal and mni circulant clutters in algebraic terms:

Proposition 5.1. If n ≥ 3 and 1 ≤ k ≤ n − 1, then C kn is ideal or mni if and only if, for every m, 1 ≤ m ≤ n − 2, and n1 such
that

km
n
≤ n1 ≤

(k+ 1)m
n

and gcd(n−m, k− n1) = 1,

there holds n1 = k− 1.
In this case, C kn is mni if gcd(n, k) = 1, and otherwise is ideal.

Cornuéjols and Novick [7] described many ideal and mni clutters, studying in particular the circulant clutters C kn which
are ideal or mni, obtaining that, for k ≥ 2, the only ideal circulant clutters are

C 36 , C 39 , C 48 , and C 2n for even n, (5.1)

and the only mni circulant clutters are

C 35 , C 38 , C 311, C 314, C 317, C 47 , C 411, C 59 , C 611, C 713, and C 2n for odd n. (5.2)

The first application is to show that their result may be obtained without using Lehman’s results [11,12], using instead
Proposition 5.1 and properties of the Farey series.
Let us recall that, for n ∈ N, the Farey series of order n, Fn, is the set of ordered irreducible fractions of the form a/b, with

1 ≤ b ≤ n and 0 ≤ a ≤ b, with the conventions 0 = 0/1 and 1 = 1/1. For instance, F4 = (0, 1/4, 1/3, 1/2, 2/3, 3/4, 1).
The following results may be found in the book by Hardy andWright [9, Chapter III, Theorem 28,29, and 31], the first two

being equivalent, in the sense that one may be derived from the other:
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Theorem 5.2. If h/k and h′/k′ are two successive terms of Fn, then kh′ − hk′ = 1.

Theorem 5.3. If h/k, h′′/k′′, and h′/k′ are three successive terms of Fn, then

h′′

k′′
=
h+ h′

k+ k′
.

Theorem 5.4. If n > 1, then no two successive term of Fn have the same denominator.

Proof of Proposition 5.1. In order to show the validity of (5.1) and (5.2), we consider different possibilities, eliminating
from the start the case k = 1, for which we already know 1 is the only vertex of Pc(C 1n ) (and hence C 1n is ideal).
Case 1. k = 2.
Suppose we have a vertex withm zeros. Then, the only possibilities are n1 = 0 or n1 = 1. If n1 = 0, thenm = 0, and 1k 1

is a vertex of Pc(C 2n ) if and only if gcd(n, 2) = 1, i.e., if n is odd. If n1 = 1, we may take any m with n/3 ≤ m ≤ n/2, but all
the corresponding vertices are 0–1 since k− n1 = 1.
Case 2. 3 ≤ k < n ≤ 20.
It is easy to verify (for example, with a simple computer program), that the only pairs (n, k) satisfying both conditions of

Proposition 5.1 are in agreement with the results by Cornuéjols and Novick.
We see now that in all the remaining casesC kn is neither ideal normni, by findingm and n1which verify all of the following

conditions:

0 < m < n− 1, 0 < n1 < k, k− n1 > 1,
k
n
≤
n1
m
≤
k+ 1
n

, gcd(n−m, k− n1) = 1.
(5.3)

Case 3. d = gcd(n, k) > 1, n 6= jk.
We take n′ = n/d, k′ = k/d,m = (d− 1)n′, n1 = (d− 1)k′, and notice that k′ > 1, since k does not divide n.

Case 4. k ≥ 3, n = jk > 20.
Defining m = j(k− 2)− 1 and n1 = k− 2, we observe that, since k < n = jk, then j ≥ 2, so that m and n1 are positive

for k ≥ 3. We have gcd(n−m, k− n1) = gcd(2j+ 1, 2) = 1, n1n− km = k, and it remains to be seen that the quantity

(k+ 1)m− n1n = m− (n1n− km) = (j− 1)(k− 2)− 3 (5.4)

is nonnegative. Recalling that j ≥ 2, we see that this is true for k ≥ 5, whereas, using that n = jk ≥ 21, we may check that
for k = 3, 4 the quantity in (5.4) is always positive.
Case 5. gcd(n, k) = 1, n > 20, k ≥ 3.
This is where Cornuéjols and Novick used Lehman’s results, and where we use Farey series.
Since k/n is irreducible, then:

k
n
∈ Fn. (5.5)

By Theorem 5.3,

k
n
=
α + γ

β + δ
, (5.6)

where α/β and γ /δ are the terms surrounding k/n in Fn, i.e.,

k− 1
n
≤
α

β
<
k
n
<
γ

δ
≤
k+ 1
n

, (5.7)

gcd(α, β) = gcd(γ , δ) = 1. (5.8)

Furthermore, by Theorem 5.4, consecutive terms in Fn cannot have the same denominator, and therefore,

0 < β < n, 0 < δ < n, (5.9)

which together with (5.6) and (5.5), imply

β + δ = n, α + γ = k. (5.10)

If α > 1, we set m = δ and n1 = γ , and using Eq. (5.5) through (5.10), we see that k − n1 = k − γ = α > 1, and the
conditions in (5.3) are satisfied.
Let us consider the case α = 1. Theorem 5.2 tells us that 1 = βk − αn = βk − n; that is, n = βk − 1. We copy

the techniques used in Case 4, where we had n = jk, by defining m = β(k − 2) − 2 and n1 = k − 2, and observe that,
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Table 2
Near-idealC k

n for 3 ≤ k < n, 31 ≤ n ≤ 50.

n k Quantity n k Quantity

31 10,13,14,15,18,. . . 17 41 13,17,18,19,20,24,. . . 22
32 10,13,14,15,19,. . . 17 42 18,19,20,25,. . . 20
33 14,15,16,19,. . . 17 43 14,18,19,20,21,25,. . . 23
34 11,14,15,16,20,. . . 18 44 14,18,19,20,21,26,. . . 23
35 11,15,16,17,21,. . . 18 45 19,20,21,22,27,. . . 22
36 15,16,17,21,. . . 18 46 15,19,20,21,22,27,. . . 24
37 12,15,16,17,18,22,. . . 20 47 15,20,21,22,23,28,. . . 24
38 12,16,17,18,22,. . . 20 48 20,21,22,23,28,. . . 24
39 16,17,18,19,23,. . . 20 49 16,21,22,23,24,29,. . . 25
40 13,17,18,19,24,. . . 20 50 16,21,22,23,24,30,. . . 25

since k < n, then β ≥ 2, so that m > 0 for k ≥ 4, and also for k = 3, since 21 ≤ n < βk and so β ≥ 8. We have
n1n− km = n1(βk− 1)− k (βn1 − 2) = k+ 2.
It remains to be seen that

(k+ 1)m− n1n = m− (n1n− km) = (β − 1)(k− 2)− 6 (5.11)

is a nonnegative number. Recalling that β ≥ 2, we see that this is true for k ≥ 8, whereas, using that n = βk− 1 ≥ 21, we
see that for k = 3, 4, 5, 6, 7 the quantity in (5.11) is always positive. �

5.2. Near-ideal circulant clutters

Following Argiroffo [2], a circulant clutter C kn is near-ideal if the convex hull of the 0–1 vertices of Pc(C
k
n ) is

Pc(C kn ) ∩ {x ∈ Rn : 1 · x ≥ dn/ke}.

Therefore, the family of near-ideal circulant clutters includes those of ideal and mni circulant clutters.
Turning the definition around, we may say that a circulant clutter is not near-ideal, if there exists a fractional vertex x of

Pc(C kn ) for which

1 · x ≥
⌈n
k

⌉
. (5.12)

In what follows, we restrict our attention to the case k ≥ 3, since for k = 2 we already know that C 2n is either ideal or
mni.
We first observe that, since n > k, we must have dn/ke ≥ 2. Using the notations of Theorem 4.3, we see that if there is

a vertex of Pc(C kn )with exactly n
′ coordinates taking the value 1/k′ < 1, then k′/n′ and 1/ dn/ke cannot coincide (and both

are members of the Farey series Fn). Thus, we may state:

Proposition 5.5. Suppose n and k are given, n > k ≥ 3. Then C kn is not near ideal if and only if there exist n
′ and k′ such that

k > k′ > 1, gcd(k′, n′) = 1,
n′

k′
>
⌈n
k

⌉
,

n
k+ 1

≥
n′

k′ + 1
. (5.13)

It is rather simple to construct—with a computer program—a table such as Table 2, where, for each value of n, 31 ≤ n ≤
50, we have indicated the values of k, 3 ≤ k < n, for which C kn is near-ideal. The ellipses indicate that all subsequent values
of k, up to n− 1, make C kn near-ideal, and the last column is the quantity of near-ideal clutters (k ≥ 3) for a given n. Let us
recall—once more—that C 2n is always near-ideal.
We observe in Table 2 that, for fixed n, higher values of k yield C kn near-ideal, whereas if k ≥ 3 but is small compared to

n, then C kn is not near-ideal. We show these results in Propositions 5.7 and 5.8 later, but let us consider a special case first.
If n is multiple of k, i.e., if dn/ke = n/k = µ, we see that, for n > 20, as we did in Case 4 of the previous subsection, we

may takem = µ(k− 2)− 1, n1 = k− 2, and obtain n′/k′ > dn/ke, provided

(k+ 1)m− n1n = (µ− 1)(k− 2)− 3 (5.14)

is a nonnegative number.
This is certainly true for k ≥ 5 (since n/k = dn/ke ≥ 2). For k = 3 the only values of dn/kemaking the quantity in (5.14)

negative are n/k = 2, 3, but we already know that C 36 and C 39 are ideal. Similarly, for k = 4 the only value of n/kmaking the
quantity in (5.14) negative is n/k = 2, andwe know that C 48 is ideal. Thus, we have the following property, already observed
by Argiroffo and Bianchi [3]:

Proposition 5.6. If k ≥ 3, then for any µ ≥ 2, C kµk is not near-ideal except for C 36 , C
3
9 and C 48 , which are ideal.
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Suppose dn/ke > n/k, andwith the previous notations, suppose k′ = 2. Thenn′ is odd, and sincen′ > dn/ke k′ ≥ 2k′ = 4,
we must have n′ ≥ 5, and therefore

n′

k′ + 1
=
n′

3
≥
5
3
>
3
2
.

On the other hand, if k′ ≥ 3,
n′

k′ + 1
> 2×

k′

k′ + 1
≥ 2×

3
4
=
3
2
,

so that all fractional vertices of Pc(C kn ) are eliminated by the inequality (5.12) if, for instance,
n
k+ 1

≤
3
2
.

Proposition 5.7. If k ≥ 2
3 n− 1, then C kn is near-ideal.

A very similar result, with the bound k ≥ b2n/3c, was obtained byArgiroffo [2], using very different techniques, involving
blockers.
Finally, we show that if k ≥ 3 is small compared to n, then C kn is not near-ideal:

Proposition 5.8. If k ≥ 3 and n ≥ 13k, then C kn is not near-ideal.
Proof. Let us take k′ = 2 and n′ = 2 dn/ke + 1, so that

gcd(n′, k′) = 1,
n′

k′
=
2 dn/ke + 1

2
> dn/ke ,

n
k+ 1

=
n
k
×

k
k+ 1

> (dn/ke − 1)×
3
4
≥
n′

3
=

n′

k′ + 1
,

where in the last line we have used that k/(k + 1) ≥ 3/4 if k ≥ 3 in the first inequality and n ≥ 13k in the last. Thus the
conditions (5.13) are satisfied and C kn is not near-ideal. �

As a final remark on near-ideal circulant clutters, looking at Table 2 we observe a ‘‘chaotic’’ behavior for intermediate
values of k. For example, if C kn is near-ideal, then not necessarily C kn+1 or C

k+1
n are near-ideal, or the number of near-ideal cir-

culant clutters (the third column in the table) is not monotone. Although the algebraic characterizations in Propositions 5.1
and 5.5 are similar, it seems that we cannot hope for a classification of near-ideal circulant clutters, in the spirit of that given
by Cornuéjols and Novick for ideal and mni circulant clutters, or Wagler’s Theorem 4.9 on near-perfect webs.
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