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Abstract

The phase diagram of a finite, constrained, and classical system is built from the analysis of cluster
distributions in phase and configurational spaces. According to the calculated critical exponents
7, and y, three regions can be identified. One (low density limit) in which first order phase
transition features can be observed. Another one, corresponding to the high density regime, in
which fragments in phase space display critical behavior of 3D-Ising universality class type. An
intermediate density region, in which power-laws are displayed but cannot be associated to the
abovementioned universality class, can also be recognized.
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1. Introduction

The multifragmentation phenomenon that takes place in nuclei with excitation energies
above 2 MeV/nucleon has been one of the central issues of the nuclear community during
the past two decades. In particular, one feature that triggered the interest on the field was
the important detected production of intermediate mass fragments (IMF’s). Excited nuclei
break up in many IMF’s in Fermi energy range reactions. This feature, along with the fact
that early calculations of caloric curves showed an approximately constant behavior for
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a given range of excitation energies, was interpreted by many groups as a signature of a
phase transition taking place in finite nuclear systems [1-5].

In recent contributions the behavior of the microcanonical heat capacity was used to
experimentally characterize the transition as a first order one [6]. Within this picture, the
latent heat can be associated with the transformation between a Fermi liquid and a gas
phase, composed by light particles and free nucleons.

The familiar liquid-gas transition framework seems to be appropriate to deal with
the nuclear case. However one key point usually disregarded is that by its own nature
multifragmentation in nuclear reactions should be a priori analyzed as a non-equilibrium
process [7,8]. In spite of this remark a global equilibrium scenario is usually adopted by
the experimental nuclear community. In particular, statistical models of the MMMS [9] or
SMM [10] type, that modelize the fragmenting system as an ideal gas of non-interacting
clusters in the spirit of Fisher theory, are widespreadly used to analyzed experimental data.

The working hypothesis usually made by such models is that a freeze-out volume can
be defined inside of which the existence of an equilibrated ensemble of clusters can be
assumed. In this approach, the behavior of thermodynamic quantities is closely related to
the way the system ipartitionated into clusters (isolated drops) giving rise to internal
surfaces.

In this contribution we want to explore in detail the fragmentation scenario assumed
by these statistical models. To that end, we use molecular dynamics (MD) techniques to
sample the microcanonical ensemble associated with confined fragmenting systems that
interacts via a two-body Lennard—Jones potential. The analogy between the nuclear force
and the van der Waals interaction supports the use of this simplified classical model to
obtain qualitatively meaningful results.

Given the MD microcanonical description, the pressure and temperature can be
estimated from the generalized equipartition theorem [11], whereas the specific heat can
be related to kinetic energy fluctuations [12]. On the other hand, a complementary analysis
of the microscopic correlations at a particle level of description can also be considered. To
that end, different fragment-recognition algorithms can be used in order to unveil different
particle—particle correlation properties. In this way, we are able to obtain caloric curves
(CC) which resemble the ones obtained within the statistical approach (that includes a
vapor branch), but in addition we can use the available microscopic information to better
understand the observed behavior.

Inhomogeneities and surfaces are to be carefully considered in the study of finite
systems [13]. We focus our attention on the consequences that the constraining volume
imposes to the appearance of well defined internal surfaces. While statistical models
assume the existence of an equilibrated ensemble of already formed and well defined
fragments in configurational space at fragmentation, this is not the case within our
approach. We use different cluster definitions that consider correlations in different spaces
to relate the internal surfaces suppression, as density is increased, with the appearance of
critical signals in phase-space defined cluster distributions.

1 Through the present contribution, all this models in which the corresponding configurations are built from a
Monte Carlo kind of sampling compatible with a given distribution function will be referrestitistical models.
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Previous studies [15—-17] have already dealt with this ‘cluster structure-thermodynamic
description’ mapping. They made used of Hill’s cluster definition [18] , and were mainly
focused on the system behavior in the supercritical phase p., T > T.), where a
percolation-like line of critical points was observed.

In this contribution we consider two alternative fragment definitions that, at variance
with Hill's clusters (that in the present paper will be called MSTE clusters, as will be
explained in Section 3), are built in well defined and physically meaningful spaces. The first
one, associated with the so-called minimum spanning tree fragment recognition method, is
based on configurational information (MST clusters). The second one uses complete phase
space information in order to define a fragment set according to the most bound density
fluctuation in phase space [19] (ECRA clusters).

Using this fragment characterization as a fundamental piece of information, consistent
phase diagrams are built taking into account exact microscopic information in both, energy-
density, and temperature-density planes. In addition, we can identify a noticeable property
of scale-free mass distributions for ECRA clusters: a balance between intra-cluster and
inter-cluster potential interaction can be observed whenever power-law distributions are
obtained (see Fig. 8).

This paper is organized as follows. In Section 2 we will describe the model used in
our simulations. Section 3 is devoted to a characterization of the used cluster definitions.
A description of expected signals associated with phase transitions in finite systems is given
in Section 4. In Section 5 the study of the phase diagram is presented. Finally, conclusions
are drawn in Section 6.

2. Themode

The system under study is composed by excited drops made up of 147 particles
interacting via a 6—12 Lennard Jones potential, which reads:

Vi) = {46[(%)12— (2)° = (2)2+ (&) ) <o, @

Or > re.

We took the cut-off radius as = 30. Energies are measured in units of the potential
well (¢), ando is taken as the distance unit. The unit of time useebis: /o 2m /48¢.

In order to constrain the dynamics we used a spherical confining ‘wall’. The considered
external potential behaves liK&yy ~ (r — rwall) " 12 with a cut off distancecy = 1o ,
where it smoothly became zero along with its first derivative. The set of classical equations
of motion were integrated using the well-known velocity Verlet algorithm [20]. Initial
conditions were constructed from a ground state configuration by assigning velocities from
a Maxwell-Boltzmann distribution in order to attain the desired total energy value. Once
the transient behavior was over, a microcanonical sampling of particle configurations every
5tp up to a final time of 140009 was performed.
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3. Fragment definitions

The simplest and more intuitive cluster definition is based on correlations in configu-
ration space: a particlebelongs to a clustef if there is another particlg that belongs
to C and|rj —rj| < r¢l, whererg is a parameter called the clusterization radius. We set
ra=r.=30.

The algorithm that recognizes these clusters is known as “minimum spanning tree”
(MST). In this method only correlations ig-space are used, neglecting completely the
effect of momentum. As was shown in Ref. [21], in the context of expanding finite systems,
MST clusters give incorrect information about the meaningful fragment structure for dense
configurations. However, an interesting point to be notice is that it can still provide useful
information about the limit imposed by the constraining finite volume to the formation of
well defined fragments in configurational space.ys= r., no inter-cluster interaction
exists for MST aggregates, so cluster surfaces can be univocally defined.

An extension of the MST is the “minimum spanning tree in energy space” (MSTE)
algorithm [18]. In this case, a given set of particleg, .. ., k, belongs to the same cluster
C; if:

Vie C;, 3jeCife;j <0 (2)

wheree;; =V (ri;) + (pi — pj)2/4/.L, andu is the reduced mass of the péirj}.

The MSTE algorithm searches for configurational correlations between particles
considering the relative momenta of particle pairs, and typically recognizes fragments
earlier than MST in highly excited unconstrained systems [21,22]. Moreover, in Ref. [23]
it has been shown that this cluster definition is equivalent to the clusterization prescription
adopted by Coniglio and Klein to define physically meaningful clusters in lattice-gas
systems [24].

Finally, a more robust cluster definition is based on the system “most bound density
fluctuation” (MBDF) in phase space [19]. The MBDF is composed by the set of clusters
{C;} for which the sumEc;, of the fragment internal energies attains its minimum value:

Ecy=Y Efi with Efi=Y" K™+ 3 v, 3)

i JjeC; jkeC;
j<k

K®Mis the kinetic energy of particlg measured in the center of mass frame of the cluster

W|’]1iCh contains particlg, andV;; stands for the inter-particle potential.

The algorithm that finds the MBDF is known as the “early cluster recognition
algorithm” (ECRA). It searches for simultaneously well correlated structures in bpth,
andp space, via the minimization of the potential and the kinetic terms of Eq. (3).

The ECRA algorithm has been used extensively in many studies of free expanding
fragmenting systems [7,25] and has helped to discover that excited drops break very
early in the evolution. In addition, in a recent contribution [8] it was shown that ECRA
clusters are also suitable to describe the fragmentation transition that takes place in volume
constrained systems.
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4. Characterizingthetransition

As mentioned in the introduction, several observables can be studied in order to analyze
phase transitions phenomena occurring in finite systems. They usually involve the behavior
of caloric curves [1,4,26-29], specific heats [6,30], kinetic energy fluctuations [5,14],
fragment mass distributions [31], and critical exponents [32].

4.1. Thermodynamical description

One of the most relevant quantities in the study of fragmenting systems, either
constrained or free to expand, is the caloric curve (CC). The CC is defined as the functional
relationship between the system energy and its temperature, given by:

2
3(N-1)

being N the number of particles, and&) g the mean kinetic energy averaged over a fixed
total energy MD simulatioR.

In Fig. 1(a) CC's are shown for the following densities” = 0.550 3, p¢ =
0.350 3, p" = 0.070 2, andp! = 0.010 3.

Different behaviors can be recognized. For the more diluted gésgull triangles),
the corresponding CC displays a loop which ends in a linearly increasing temperature
line which we refer asapor branch. Taking into account that within the microcanonical
ensemble the specific heat is defined as:
1 9T , 928

T(E) = (K)E 4)

c=3E" | g2 ®)

it is clear that for this case negative values®@fbetween two poles will be found in

the range Olep < E < 0.6¢p. A negative value of the derivative of the temperature as

a function of the energy reflects an ‘anomalous’ behavior of the system entropy for the
respective energy range. donvex intruder in S(E), prohibited in the thermodynamical

limit, arises as a consequence of the finiteness of the system and the corresponding lack
of extensivity of thermodynamical quantities lilse This signal is expected in first order
phase transitions, and is associated to a negative branch of the heat capacity between two
poles [8,13]. In addition, as kinetic energy fluctuations and the system specific heat are
related by [33]:

1, ., 3 3
FI0K)p =527 (1— z) ©)

negative values of the specific heat appear whenedé&r)? gets larger than the
corresponding canonical expectation val%:. This behavior has already been verified in

Ref. [8].

2 It should be noticed that, when dealing with unconstrained expanding systems, the quantities appearing in
Eq. (4) should be calculated at the time of fragment formation (see [7]).
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Fig. 1. The caloric curve is shown in panel (a). In panels (b) and (c) the potential enérgyd its root mean
squared deviation as a function of the system total energy are displayed in panels (b) and (c), respectively. The
following density valuesyp = 0.01, 0.07, 0.35, and 0550 3, displayed with full triangles, diamonds, squares,

and circles, respectively, were considered.

As the density is increased the loop is washed away and it is replaced by an inflection
point (o™, full diamonds in Fig. 1(a)). This corresponds to the merging of the specific
heat poles into a single local maximum. Finally, for higher densi@iésand p” (filled
diamonds, and circles), no major changes in the CC’s second derivative can be observed.

In Fig. 1(b) the mean potential energy per partidfe,as a function of the total system
energy is displayed. For the lowest densities (triangles and diamonds) two different regimes
can be recognized. Fa@t < 0.5¢p V increases steeply. This can be related to an increase of
the mean inter-particle distance, the appearance of internal surfaces, and the corresponding
increase of the number of well defined fragments, as the number of attractive bonds
decreases. For higher energiés> 0.5¢p, a saturating behavior can be observed. For
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Fig. 2. Normalized inter-particle distance distribution calculatedfos= 0.010=3 and p = 0.803 systems
are shown in panels (a) and (b), respectively. The following three total energy value$,0, 0.5, 1.0¢q, were
considered in panel (a), whereas= —0.50, 0.5, 1.0¢g for panel (b). They are shown with, solid, dotted, and
dashed lines, respectively. Note the different scales used|;far both panels.

denser systems, no such feature can be observed. A smooth behavior is displaed by
instead.

Another interesting feature can be noticed looking at the root mean square deviation of
partial energies (kinetic or potentiay x, shown in Fig. 1(c). For the lowest densities
(filled triangles and diamonds) an abrupt decrease is obserngd-ad.5¢g, whereas for
the highest considered density/, = 0.80 —3(filled circles), no trace of such behavior can
be reported. For future reference, it is worth noting that the transition in the monotonic
character of the curve takes place at a density valtteo® = 0.35¢(filled squares).

To attain a better understanding of the behavior of the magnitudes displayed in Fig. 1(b)
and (c), we have followed two strategies: (i) to study particle—particle spatial correlations,
(ii) to analyze fragment mass distributions according to the already presented fragment
definitions. In what follows we present results obtained within the first approach, and
postpone to the next subsection the analysis of fragment distribution properties.

In Fig. 2 the distribution of inter-particle distances;, is shown. Two density values
already considered in Fig. 1, namely’ and p”, are shown in panels (a) and (b),
respectively.

For each density, three total energy values [lower than (solid line), equal to (dotted line),
and larger than (dashed ling)= 0.5¢p] were considered (see caption). In both panels, a
vertical line was included indicating the interaction cut-off radius.

In panel (a) (very diluted case) a well defined structure of interacting particle pairs
can be seen at low energies (continuous line). The displayed peaks signal the presence of
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a rather large self-sustained drop with a first, second and even third nearest neighbors
structure (a bell-shaped distribution, associated with the ‘trivial’ non-interacting pair
counting can also be noticed). As energy increases, this structure fades away, and an
important reduction of the number of interacting particles can be recognized. This occurs
as a consequence of the spacious volume available, that is big enough to accommodate
small non-interacting aggregates. In this transition, well defipsgace clusters appear,
surfaces are produced aidtends towards a residual value (see bellow).

A completely different behavior is observed for the denser galseshown in Fig. 2(b).

In this case, no changes in the statistical distributiom; pis observed as the energy is
increased. (Note that in this case the bell-shaped distribution is superimposed over the
peak structure as a consequence of the reduced available volume. However, the presence
of a first, second, and even a third nearest neighbors can still be traced). The container
imposes a severe volume restriction on the system, and even for high total energy values,
each particle is confined in the attractive range of partners potential, between the repulsive
core of nearest neighbors.

This last observation completes the general picture within which the behavior of the
mean potential energy;, for high density cases can be understood. As more energy is
added to the system no structural transition is allowed by the constraining volume. Particles
cannot escape from neighbors most attractive potential range and a smooth increased in
V, related to the average time spent in the most negative potential regions, can be seen
(Fig. 1(b)).

The decreasing behavior aefy, observed for low densities (filled triangles, and
diamonds in Fig. 1(c)), can be associated with the loss of ‘attractive bonds’ between
particle pairs that takes place when a non-interacting light cluster regime dominates. As
an increasing number of particles stop interacting with one another, the system dynamics
gets ‘less chaotic’ (see [34] for a dynamical characterization of this system), and a strong
decrease ofy is induced.

This is not the case for higher densities. Each particle is ale@ysected to every other
system particle through a path of strongly interacting neighbors. Therefore, an increase of
the fluctuations in potential energy between successive configurations as total energy is
added can be expected (see the behavior displayest lny Fig. 1(c)).

It is worth noting that the presented picture can also be used to interpret recent results
regarding the behavior of the maximum Lyapunov exponent, MLE, in constrained systems.
Moreover, a striking similitude between the behaviosp{ E, p) andM LE(E, p) can be
noticed, comparing Fig. 1(c), and Fig. 5 of Ref. [34].

4.2. Fragmentsinside the volume

In Section 3, three fragment recognition algorithms were described. Each one makes
use of different correlation information in order to gather particles into clusters, and then
give different physical information about the morphological characteristics of the system
under study.

In Fig. 3 the results of the MST algorithm analysis are shown. MST spectra were
calculated for different energie€ (= 0.0, 0.5, and 10¢, displayed as full, dotted and
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Fig. 3. MST cluster mass distributions calculated for densities: 0.01, 0.03, and 01053 are displayed
in panels (a), (b), and (c), respectively. Three total energy values were considered for each density,
Etot = 0.0¢q, 0.5¢g, and 10eq. They are displayed as full, dotted and dashed lines, respectively.

dashed lines respectively) for three system densities:0.01, 0.03, and 0100 3. They
are shown in panels (a), (b), and (c), of Fig. 3, respectively.

At low densities, panel 3(a), the system evolves from heavy cluster dominated partitions
at low energies, towards a light cluster dominated behavior, at high energies. This reflects
the fact that the constraining volume is large enough to allow the system to fragment into
well defined drops as energy is increased. It is interesting to notice that results displayed
in Fig. 3(a) correspond to full triangle symbols in Fig. 1(a), i.e., the one for which the CC
displays a loop. It was argued that big fluctuations in kinetic energy should be expected.
This is indeed the case and it is related to the fact that well defined surfaces appear in the
system (see [8]).

On the other hand, for denser systems [panels (b), and (c)], it can be noticed that MST
size spectra become insensitive to the system energy value once a given volume-dependent
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Fig. 4. Fragment mass distribution, and cluster internal energy values as a function of the cluster mass, are shown
in the first and second columns, respectively. Three system total energies are con#iggred:0.6¢g, [panels

(a), (b)], Q0eq, [panels (c), (d)], and B¢, [panels (e), (f)]. Empty circles, filled squares, and empty triangles,
correspond to ECRA, MSTE, and MST data, respectively.

energy value is achieved. In particular, foe= 0.10 3, the mass distributions converge
to a u-shaped one no matter the system energy value. Almost no spatially well separated
structures (i.e., MST clusters) can be identified in this case, aside from the trivial huge
cluster that comprises almost all the system patrticles.

In Fig. 4, the effect of taking into account momentum correlations in the definition of
clusters can be appreciated. A cluster analysis for a system 147 particles with
p = 0.20 3 using ECRA, MSTE, and MST prescriptions is presented in that figure. The
mass distribution function, and the fragment internal energy as a function of the cluster
mass,Eint(s) (see, Eqg. (3)), are shown in the first and second columns, respectively. Three
total energy values were consideréls; = —0.6¢q (panels (a), (b)), Oep (panels (c), (d)),
and Q5¢p (panels (e), (f)). Empty triangles, solid squares, and empty circles correspond to
MST, MSTE, and ECRA results, respectively.

It can be seen that, for this density, the MST prescription finds just a big drop. On the
other hand, both, the MSTE and ECRA algorithms, find non-trivial cluster distributions
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that show the expected transition as the system energy is increased. Even though the mass
spectra are qualitatively similar, as a general rule ECRA algorithm produces more bound
clusters than the MSTE one. This is consistent with the claim that the MBDF are found by
the ECRA algorithm. Due to this feature, from now on, only the properties of the system
according to its ECRA cluster structure will be considered.

4.3. Transition signals

As can be seen in Fig. 4 for a= 0.20—2 system, the ECRA cluster distributions
undergo a transition from a U-shaped spectrum towards an exponentially decaying one,
as energy is increased. Moreover, the mass-distribution corresponding to the intermediate
energy value 4(b), displays a power law like behavior. In factafgrother studied density,
the same behavior can be reported, and a total energy value can be determined for which a
power-law like mass distribution can be found for ECRA fragments.

This result is interesting because it implies that some kind of transition between two
regimes, one with, and other without large ECRA drops (i.e., with or without the presence
of liquid-like structures in phase space) is taking place even in high density systems.
This transition cannot be detected simply using spatial correlations information. Only
considering the appropriate cluster prescription power-law-like mass distributions can be
used to trace the transition line associated to morphological changes taking place in phase
space.

At this point it is worth noting the following remark. It has already been shown
that for this kind of system scaling arguments can be applied to ECRA-fragment mass
distributions [35,36]. Consequently the following scaling hypothesis can be adopted:

n(A) =qo(t)A7" f(z), withz=¢€A° @)

n(A) is the number of fragments with mass numbergg is a normalization constant,
f(2) is the so-called scaling functionis the scaling variable, whereas= E. — E is the
distance to the critical point.. The scaling function has the following properties: it has
only one maximum, for < 0, andf (0) = 1. Finally, z, ando are two critical exponents
introduced by the scaling assumption.

According to Eq. (7), at the critical point (i.e., far~ p., and E ~ E.) the fragment
mass distribution can be described by:

n(A) =qo(r)A™". 8

Although Eq. (8) is expected to be valid only in the proximity of the critical point, it
has been reported [29,37,38] that several critical signatures also appear when first order
phase transition are analyzed in finite systems. In particular, as stated in Ref. [38], in small
systems the largest cluster gets a size comparable to the vapor fraction before dissapearing
when the system crosses the coexistence line. Therefore, there is an energy for which a
pseudo-invariance of scale and a resemblance with critical behavior can be expected for
small systems undergoing phase transitions that, in the thermodynamical limit, would be
univocally classified as first order ones.
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Fig. 5. Transition signatures calculated fop & 0.100 —3 system. The 2 fitting coefficient, the second moment
of the mass distributionM>, and the normalized mean variance of the largest fragment, NVM, are displayed in
panels (a), (b), and (c), respectively.

Keeping this in mind, given a confining volume, we search for a power-law distribution
of ECRA-fragments using the following single parameter function to fit the mass spectra
(the contribution of the largest fragment was disregarded) [39]:

n(A)=qo(r)A™", with go(r) = 9

1
YA
n(A) is the number of fragments with mass numbeandqg is a normalization constant.

The quality of the fitting procedure was quantified using the stang&rdoefficient
(see [36] for details), and an energy vallig, was associated to the best fitted spectra. In
Fig. 5(a) a typical result fog 2 calculation is shown for ECRA clusters inpa= 0.100 3
system. From the figure, a value Bf = 0.10+ 0.05¢g, can be reported.

Another useful observable to search for scale-free distribution functions is the second
moment of the cluster distributiod> = Z’A A2n(A). As in the determination of, the
largest cluster is excluded from the primed sud. presents a power-law singularity at a
second order transition in the thermodynamical limit. For a finite system the divergence is
replaced by a maximum. In panel 5(b) the estimatiomfet £) is shown for gp = 0.100 3
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Fig. 6. Estimated values from ECRA cluster distributions for the critical exponeatsly are shown in panels
(a), and (b), respectively. The expected values for the 3D-Ising universality class are displayed by a dashed line.

system. It can be noticed that the maximum is located at the energy value for which the
spectra is best fitted by a power-law like dependence.

This kind of agreement is also achieved when the normalized mean variance, NVM, of
the largest fragment masémax, is analyzed. NVM is defined as:

(Afiad — (Amax®
(Amax)

and it turned out to be a robust tool in the characterization of transition phenomenain which

an enhancement of fluctuations occurs [40]. As can be seen from panel 5(c), this signal,

although slightly shifted within the working resolution, also peaks in the same region of

the previous ones.

The signal agreement reported for the- 0.100 2 case in Fig. 5, is also achieved for
every other density analyzed in this paper. This means that in the whole density range
power-law mass distributions for phase space defined ECRA clusters are found whenever
large fluctuations take place in the system.

In order to properly characterize the state of the system which displays power-law mass
distributions, the values attained by thexponents must be analyzed as a function of the
density. This dependence is shown in Fig. 6(a). For a true critical phenomenon taking place
in three-dimensional systems, 2t < 3 is expected [41]. This condition is not satisfied
for systems withp < 0.050 —3. For these highly diluted systems, the observed free-scale

NVM =

(10)
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distribution is not expected to survive the thermodynamic limit. It is not related to any
continuous transition, but arises as a finite-size effect. It is worth notingthad.050 3
is the maximum density for which the respective caloric curve displays a loop, and then,
negativer, (see Fig. 1).

On the other hand, fop > 0.05, the calculated exponents show a rather good
agreement with the = 2.21 value (dashed line), expected for liquid-gas transitions.

In a second order phase transition, the behavioMefnear a critical point can be
described in terms of the critical exponenf32]:

Ma(e) o |e] ™, (11)

where,e = Ec — E, measures the distance to the critical point. This relation is valid for an

infinite system in the limit — 0. As already mentioned, in a finite systés displays a

maximum instead of the divergence predicted in Eq. (11). Having this in mind, a calculation

procedure introduced in Refs. [39,43}-Matching), that takes care of finite size effects,

was used to calculate theexponent value for our system (see also Ref. [36] for details).
The results of they exponent estimation is shown in Fig. 6(b). As density is increased,

the obtained values tends towapgh-gas= 1.23 (dashed line) value that is expected for

a liquid-gas transition. It is worth noting that this convergence is achieved for densities

p = 0.35¢ (this value equal®® in Fig. 1). For this density, a change in the behavior of

the potential energy fluctuations as a function of the total energy was reported in Fig. 1(c).

This can be associated (see Section 4.1) to the onset of the invariance of the statistical

interparticle distance distribution (Fig. 2), that takes place as a consequence of the imposed

volume restriction.

5. Phasediagram

In the previous section several signatures of a change in the properties of ECRA
fragment mass distributions were analyzed. At any given density, a system efgig);,
can be determined for which large fluctuations appear in the system, and a scale-free like
mass distribution are found.

In Fig. 7, the dependence @&f, with the system density is shown. For> 0.350 2, a
rather constant value is attained for the transition energy. A similar result was reported in
Ref. [43], using the already presented MSTE cluster definition.

Some insight about the properties of the system along the line depicted in Fig. 7, can be
gained from the analysis of the interplay between the mean internal potential energy per
particle stored in ECRA cluster¥jn;, and the mean inter-cluster interaction eneiigy,

Vie= > Vi (12)
i<j
i,jeCk

Vie= Y Vi (13)
ieCy,jeC;

k£l
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Fig. 7. Density dependence of the system enefgy,at which transition signals are detected. The dashed line is
included to guide the eye.

Vint Stands for the mean potential felt by a particle in a cluster due to its interaction with the
other members of the same cluster. On the other h&pdepresents the mean interaction
potential felt by a particle due to its interactions with particles belonging to the other
clusters. This magnitudes are displayed in Fig. 8 for densities0.01, 0.20, 0.50, and
0.800 3 in panels (a) to (d) respectively.

The general trend displayed B and Vic is easy to understand. At any given density,
for low energies, a big ECRA cluster can be found having a large binding energy. In
addition, as no many other clusters beside the biggest one Bxist,0. At high energies,
the ECRA partitions turns out to present a rather high multiplicity of light clusters.
Consequentlyiys — 0 in this limit andVjc absolute value increases.

After a close inspection of Fig. 8, one can realize that for any given density the
energy at whichViyy = Vic, happens to b& . (p), i.e., the energy at which power-law
like mass distributions appear. This means that scale-free ECRA mass distributions have
the following property: a balance is established between the mean potential energy that a
particle, which belongs to a given cluster, feels due to its interaction with other members of
the same cluster and the one associated with its interaction with the rest of the particles in
the system. This potential energy balance, that does not allow to distinguish contributions
from inside or outside of a cluster, is reminiscent of the vanishment of the chemical
potential and surface tension terms that takes place at the critical point.

Given that in this work we have considered a microcanonical description, each sampled
event has well defined values &f, V and N. That is why the ‘natural’ phase diagram
to consider should be the one shown in Fig. 7. However, gathering all the information
obtained so far, the most usuBl- p phase diagram can also be built for our 147-particle
Lennard—Jones drop (see Fig. 9). The empty circlegBreo) points obtained from the
aforementioned cluster analysis. The full line is an estimation of the coexistence line, as
obtained from the analysis of the system specific hga{see Eq. (6)). In this case, for
densities for which the respective CC displays a Ido(F ) has been taken as the average



244 A. Chernomoretz et al. / Nuclear Physics A 723 (2003) 229-248

D

-~ c—o Vinl
S 0.5+ 0—a vV —
>

interClus

V (g)

V (g,

energy (€,)

Fig. 8. Vint (empty circles) and/jc (empty squares) as a function of the system total energy are shown. Densities:
p =0.01,0.20,0.50, and 080s —3 are displayed in panels (a), (b), (c), and (d), respectively.

temperature between the two values corresponding to the location of siegularities.
For denser cases, the location of the maximum of dhdnas been taken. No reliable
estimation of the energy that maximizes could be achieved fop > 0.16 2 (neither
from the CC, nor from the kinetic energy fluctuation behavior).

It should be emphasized that, as in the considered ensemble of events the system volume
was not allow to fluctuate, we could not probe the fhérmodynamical coexistence line.
However, it is interesting to notice that fromstictly morphological point of view, in
phase space, the curve shown in Fig. 9 acts as an effective ‘transition line’. For every
density value, below this line, a big ECRA structure can be identified, whereas a vapor
behavior can be observed above it.
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Fig. 9. Phase diagram for a 147 particle Lennard Jones drop. Cluster-baseg-la@skd determination of the
phase-space transition line is marked with empty circles, and full line, respectively. The dashed line is included
to guide the eye.

Moreover, according to the obtained critical exponent values, three density regions can
be defined. The region labellet] (p < 0.050 —3) presents the signals expected for a first
order phase transition occurring in a finite system: the corresponding caloric curve shows
a loop that can be associated to a negative specific heat, and a structural transition can be
recognized (Fig. 2(a)). This region is the only one in which the available volume is large
enough for the system to fragment into a set of non-overlapping drops.

On the other hand, in regiafi (p > 0.350 ~%), where the system is rather compressed,
and MST algorithm recognizes just one big fragment, a second order transition seems to
occur in phase space, whenever the line of critical points is crossed. No anomaly in the
respective caloric curve is observed, no qualitative changes in the configuration statistical
propertiesis reported (Fig. 2(b)), and the calculated critical exponerasdy , are in good
agreement with 3D-Ising (liquid-gas) universality class. In addition, it should be noticed
that the observed line @horphological critical points converges to thteermodynamical
critical point, approximately located at ~ 0.350 3, T ~ 1.1¢ [43,44].

In between these two regions, regidn(0.050 3 < p < 0.350—3) can be identified.

The finite size of the system plays a major role in this density range. Even a sensible
value suggests that physically meaningful scaling properties are present in the system, the
corresponding’ exponent values are too low to classify the transition as a continuous one.

Due to the multivariate nature of the temperature’s energy dependence (i.e., the presence
of a loop in the respective CC’s) that takes place in region A, the following warning should
be raised. For this density range, it is not longer valid that ECRA liquid-like structures
(U-shaped mass spectra) can only be found bellow the transition line shown(f,the
plane. The smooth and ‘monotonic’ character displayed by the mass spectra transition as
a function of the system total energy, is lost whHEris used as a control parameter. In
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this way, for highly diluted finite systems, only in thi&', o), (Fig. 7), and not in(T, p)

plane, the localization of scale-free mass distribution configurations can unambiguously
be associated to a meaningful transition line. This peculiarity disappears for more dense
situations, region B, and C.

6. Conclusions

In this paper we have undertaken the analysis of thermodynamical and morphological
properties of a finite classical system confined in a fixed volume. Apart from the basic
interest on such a problem, it is relevant on the frame of the description of fragmenting
system according to statistical models.

We have been able to find that the equation of state of such a system is quitefsample
a coordinate-space point of view. There is a maximum value of the densigy+ 0.050 —3)
up to which the system fragments into non-interacting drops. In this region the associated
CC displays a loop and the thermal response function attains a negative value. For higher
densities, there is simply no enough room to allow the system to develop well defined
internal surfaces, i.e. only one big drop can be detected. Indeed, with the sharp volume
constraint considered in this contribution, the CC or kinetic energy fluctuations are not
well suited to recognize the coexistence line for densities greatepthad. 1o 3.

When one consider a description in which fragments are defined through correlations
in gp-space, a much richer behavior appears. Now, even for densities biggep than
0.050 3, transitions from u-shaped mass spectra to exponentially decaying ones are
signaled by the appearance of scale-free mass distribution of ECRA clusters. From the
analysis of critical exponents, and y, related to the displayed power-law distribution,

a further classification in density ranges can be obtained. In the abovedefined region A
(Section 5), the obtained values are too big to be related to a true critical behavior. For
densities in the range.@60 2 < p < 0.350 2 (region B), even though the exponent
values are in good agreement with the corresponding 3D-Ising universality class, the value
attained byy critical exponents came out to be too low. Finally, for densities above

p ~ 0.3503 (region C), bothr andy, are quite close to the accepted values for the
3D-Ising universality class.

Gathering the information obtained so far the following picture emerges. In region
A thermodynamical and morphological transitions take place at the same temperature
for a given density. Besides, the phase transition can be characterized as a first order
one according to the schema proposed by Gross and collaborators [13]. In region B
the restriction imposed by the available volume eliminates the abnormal behavior of the
caloric curve and the kinetic energy fluctuations (of course, this also occurs in region C).
On the other hand, even though a morphological transition line can be identified using
phase-space information (ECRA cluster distributions), the corresponding critical exponent
values do not agree with the liquid-gas universality class. As a consequence of this, if only
information from the NVE ensemble is considered in the description, the transition cannot
be cast neither as a first order, nor as a second order one. Finally, in region C, we could
identify a morphological coexistence line of critical points of the liquid-gas universality
class, starting from the expected thermodynamical critical point.
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This is of particular interest for the statistical model approach because by definition, at
freeze out, an ensemble of well defined fragments is to be constructed. Such assumption
implicitly locates the system under study in region A. It is then clear that in the frame of
such approaches regions B and C are excluded from the analysis.

In addition, our microscopic approach allows us to bring some light about the
observation of power laws out of the thermodynamical critical point. The crossing of the
ECRA inter-cluster and intra-cluster mean potential energies (Fig. 8) turns out to be a
very generic feature, related to the existence of large fluctuations and scale-free fragment
distributions. This raises at least some warnings against an automatic association between
power-laws and the localization of thermodynamical critical points.

Finally, it is worth noting that ECRA clusters are more bound structures than MSTE
ones for a given system energy and density (see Fig. 4). This result means that a direct
interpretation of MSTE fragments as primordial aggregates is to be taken with care.
Specially when such clusters are deexcitated with secondary deexcitation routines to make
guantitative comparisons with nuclear experiments.

A natural continuation of this work is to analyze the relation between fragmentation
inside the container volume and the corresponding asymptotic mass spectra when walls
are removed. This work is currently under progress.
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