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Abstract

The phase diagram of a finite, constrained, and classical system is built from the analysis of
distributions in phase and configurational spaces. According to the calculated critical exp
τ , and γ , three regions can be identified. One (low density limit) in which first order p
transition features can be observed. Another one, corresponding to the high density reg
which fragments in phase space display critical behavior of 3D-Ising universality class typ
intermediate density region, in which power-laws are displayed but cannot be associated
abovementioned universality class, can also be recognized.
 2003 Published by Elsevier Science B.V.
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1. Introduction

The multifragmentation phenomenon that takes place in nuclei with excitation en
above 2 MeV/nucleon has been one of the central issues of the nuclear community
the past two decades. In particular, one feature that triggered the interest on the fie
the important detected production of intermediate mass fragments (IMF’s). Excited
break up in many IMF’s in Fermi energy range reactions. This feature, along with th
that early calculations of caloric curves showed an approximately constant behav
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a given range of excitation energies, was interpreted by many groups as a signatu
phase transition taking place in finite nuclear systems [1–5].

In recent contributions the behavior of the microcanonical heat capacity was u
experimentally characterize the transition as a first order one [6]. Within this pictur
latent heat can be associated with the transformation between a Fermi liquid and
phase, composed by light particles and free nucleons.

The familiar liquid-gas transition framework seems to be appropriate to deal
the nuclear case. However one key point usually disregarded is that by its own
multifragmentation in nuclear reactions should be a priori analyzed as a non-equili
process [7,8]. In spite of this remark a global equilibrium scenario is usually adopt
the experimental nuclear community. In particular, statistical models of the MMMS [
SMM [10] type, that modelize the fragmenting system as an ideal gas of non-inter
clusters in the spirit of Fisher theory, are widespreadly used to analyzed experimenta1

The working hypothesis usually made by such models is that a freeze-out volum
be defined inside of which the existence of an equilibrated ensemble of clusters
assumed. In this approach, the behavior of thermodynamic quantities is closely rel
the way the system ispartitionated into clusters (isolated drops) giving rise to intern
surfaces.

In this contribution we want to explore in detail the fragmentation scenario ass
by these statistical models. To that end, we use molecular dynamics (MD) techniq
sample the microcanonical ensemble associated with confined fragmenting syste
interacts via a two-body Lennard–Jones potential. The analogy between the nuclea
and the van der Waals interaction supports the use of this simplified classical mo
obtain qualitatively meaningful results.

Given the MD microcanonical description, the pressure and temperature c
estimated from the generalized equipartition theorem [11], whereas the specific he
be related to kinetic energy fluctuations [12]. On the other hand, a complementary a
of the microscopic correlations at a particle level of description can also be consider
that end, different fragment-recognition algorithms can be used in order to unveil dif
particle–particle correlation properties. In this way, we are able to obtain caloric c
(CC) which resemble the ones obtained within the statistical approach (that inclu
vapor branch), but in addition we can use the available microscopic information to
understand the observed behavior.

Inhomogeneities and surfaces are to be carefully considered in the study of
systems [13]. We focus our attention on the consequences that the constraining
imposes to the appearance of well defined internal surfaces. While statistical m
assume the existence of an equilibrated ensemble of already formed and well d
fragments in configurational space at fragmentation, this is not the case withi
approach. We use different cluster definitions that consider correlations in different s
to relate the internal surfaces suppression, as density is increased, with the appea
critical signals in phase-space defined cluster distributions.
1 Through the present contribution, all this models in which the corresponding configurations are built from a
Monte Carlo kind of sampling compatible with a given distribution function will be referred asstatistical models.
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Previous studies [15–17] have already dealt with this ‘cluster structure-thermody
description’ mapping. They made used of Hill’s cluster definition [18] , and were m
focused on the system behavior in the supercritical phase (ρ > ρc,T > Tc), where a
percolation-like line of critical points was observed.

In this contribution we consider two alternative fragment definitions that, at vari
with Hill’s clusters (that in the present paper will be called MSTE clusters, as wi
explained in Section 3), are built in well defined and physically meaningful spaces. Th
one, associated with the so-called minimum spanning tree fragment recognition met
based on configurational information (MST clusters). The second one uses complete
space information in order to define a fragment set according to the most bound d
fluctuation in phase space [19] (ECRA clusters).

Using this fragment characterization as a fundamental piece of information, cons
phase diagrams are built taking into account exact microscopic information in both, e
density, and temperature-density planes. In addition, we can identify a noticeable pr
of scale-free mass distributions for ECRA clusters: a balance between intra-clust
inter-cluster potential interaction can be observed whenever power-law distributio
obtained (see Fig. 8).

This paper is organized as follows. In Section 2 we will describe the model us
our simulations. Section 3 is devoted to a characterization of the used cluster defin
A description of expected signals associated with phase transitions in finite systems i
in Section 4. In Section 5 the study of the phase diagram is presented. Finally, conc
are drawn in Section 6.

2. The model

The system under study is composed by excited drops made up of 147 pa
interacting via a 6–12 Lennard Jones potential, which reads:

V (r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6 − (
σ
rc

)12 + (
σ
rc

)6]
r � rc,

0r > rc.
(1)

We took the cut-off radius asrc = 3σ . Energies are measured in units of the poten
well (ε), andσ is taken as the distance unit. The unit of time used is:t0 = √

σ 2m/48ε.
In order to constrain the dynamics we used a spherical confining ‘wall’. The consi

external potential behaves likeVwall ∼ (r − rwall)
−12 with a cut off distancercut = 1σ ,

where it smoothly became zero along with its first derivative. The set of classical equ
of motion were integrated using the well-known velocity Verlet algorithm [20]. In
conditions were constructed from a ground state configuration by assigning velocitie
a Maxwell–Boltzmann distribution in order to attain the desired total energy value.

the transient behavior was over, a microcanonical sampling of particle configurations every
5t0 up to a final time of 140000t0 was performed.
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3. Fragment definitions

The simplest and more intuitive cluster definition is based on correlations in con
ration space: a particlei belongs to a clusterC if there is another particlej that belongs
to C and |ri − rj| � rcl, wherercl is a parameter called the clusterization radius. We
rcl = rc = 3σ .

The algorithm that recognizes these clusters is known as “minimum spanning
(MST). In this method only correlations inq-space are used, neglecting completely
effect of momentum. As was shown in Ref. [21], in the context of expanding finite sys
MST clusters give incorrect information about the meaningful fragment structure for d
configurations. However, an interesting point to be notice is that it can still provide u
information about the limit imposed by the constraining finite volume to the formatio
well defined fragments in configurational space. Asrcl = rc , no inter-cluster interactio
exists for MST aggregates, so cluster surfaces can be univocally defined.

An extension of the MST is the “minimum spanning tree in energy space” (MS
algorithm [18]. In this case, a given set of particlesi, j, . . . , k, belongs to the same clust
Ci if:

∀iε Ci, ∃jεCi/eij � 0 (2)

whereeij = V (rij ) + (pi − pj )
2/4µ, andµ is the reduced mass of the pair{i, j }.

The MSTE algorithm searches for configurational correlations between par
considering the relative momenta of particle pairs, and typically recognizes frag
earlier than MST in highly excited unconstrained systems [21,22]. Moreover, in Ref
it has been shown that this cluster definition is equivalent to the clusterization presc
adopted by Coniglio and Klein to define physically meaningful clusters in lattice
systems [24].

Finally, a more robust cluster definition is based on the system “most bound d
fluctuation” (MBDF) in phase space [19]. The MBDF is composed by the set of clu
{Ci} for which the sum,E{Ci }, of the fragment internal energies attains its minimum va

E{Ci} =
∑
i

E
Ci

int with E
Ci

int =
∑
j∈Ci

Kcm
j +

∑
j,k∈Ci
j�k

Vj,k. (3)

Kcm
j is the kinetic energy of particlej measured in the center of mass frame of the clu

which contains particlej , andVij stands for the inter-particle potential.
The algorithm that finds the MBDF is known as the “early cluster recogn

algorithm” (ECRA). It searches for simultaneously well correlated structures in boq,
andp space, via the minimization of the potential and the kinetic terms of Eq. (3).

The ECRA algorithm has been used extensively in many studies of free expa
fragmenting systems [7,25] and has helped to discover that excited drops brea
early in the evolution. In addition, in a recent contribution [8] it was shown that EC

clusters are also suitable to describe the fragmentation transition that takes place in volume
constrained systems.
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4. Characterizing the transition

As mentioned in the introduction, several observables can be studied in order to a
phase transitions phenomena occurring in finite systems. They usually involve the be
of caloric curves [1,4,26–29], specific heats [6,30], kinetic energy fluctuations [5
fragment mass distributions [31], and critical exponents [32].

4.1. Thermodynamical description

One of the most relevant quantities in the study of fragmenting systems,
constrained or free to expand, is the caloric curve (CC). The CC is defined as the fun
relationship between the system energy and its temperature, given by:

T (E) = 2

3(N − 1)
〈K〉E (4)

beingN the number of particles, and〈K〉E the mean kinetic energy averaged over a fix
total energy MD simulation.2

In Fig. 1(a) CC’s are shown for the following densities:ρh = 0.55σ−3, ρc =
0.35σ−3, ρm = 0.07σ−3, andρl = 0.01σ−3.

Different behaviors can be recognized. For the more diluted case,ρl (full triangles),
the corresponding CC displays a loop which ends in a linearly increasing tempe
line which we refer asvapor branch. Taking into account that within the microcanonic
ensemble the specific heat is defined as:

1

C
= ∂T

∂E
= −T 2 ∂2S

∂E2 (5)

it is clear that for this case negative values ofC between two poles will be found i
the range 0.1ε0 < E < 0.6ε0. A negative value of the derivative of the temperature
a function of the energy reflects an ‘anomalous’ behavior of the system entropy f
respective energy range. Aconvex intruder in S(E), prohibited in the thermodynamic
limit, arises as a consequence of the finiteness of the system and the correspond
of extensivity of thermodynamical quantities likeS. This signal is expected in first ord
phase transitions, and is associated to a negative branch of the heat capacity betw
poles [8,13]. In addition, as kinetic energy fluctuations and the system specific he
related by [33]:

1

N

〈
(δK)2〉

E
= 3

2β2

(
1− 3

2C

)
(6)

negative values of the specific heat appear whenever(δK)2 gets larger than th
corresponding canonical expectation value:3N

2β2 . This behavior has already been verified
Ref. [8].
2 It should be noticed that, when dealing with unconstrained expanding systems, the quantities appearing in
Eq. (4) should be calculated at the time of fragment formation (see [7]).
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Fig. 1. The caloric curve is shown in panel (a). In panels (b) and (c) the potential energy (V ) and its root mean
squared deviation as a function of the system total energy are displayed in panels (b) and (c), respectiv
following density values:ρ = 0.01,0.07,0.35, and 0.55σ−3, displayed with full triangles, diamonds, squar
and circles, respectively, were considered.

As the density is increased the loop is washed away and it is replaced by an infl
point (ρm, full diamonds in Fig. 1(a)). This corresponds to the merging of the spe
heat poles into a single local maximum. Finally, for higher densities,ρc andρh (filled
diamonds, and circles), no major changes in the CC’s second derivative can be obs

In Fig. 1(b) the mean potential energy per particle,V , as a function of the total syste
energy is displayed. For the lowest densities (triangles and diamonds) two different re
can be recognized. ForE < 0.5ε0 V increases steeply. This can be related to an increa
the mean inter-particle distance, the appearance of internal surfaces, and the corres

increase of the number of well defined fragments, as the number of attractive bonds
decreases. For higher energies,E > 0.5ε0, a saturating behavior can be observed. For
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Fig. 2. Normalized inter-particle distance distribution calculated forρl = 0.01σ−3 andρh = 0.8σ−3 systems
are shown in panels (a) and (b), respectively. The following three total energy values,E = 0.0,0.5,1.0ε0, were
considered in panel (a), whereasE = −0.50,0.5,1.0ε0 for panel (b). They are shown with, solid, dotted, a
dashed lines, respectively. Note the different scales used forrij in both panels.

denser systems, no such feature can be observed. A smooth behavior is displayeV ,
instead.

Another interesting feature can be noticed looking at the root mean square devia
partial energies (kinetic or potential),σV,K , shown in Fig. 1(c). For the lowest densiti
(filled triangles and diamonds) an abrupt decrease is observed atE ∼ 0.5ε0, whereas for
the highest considered density,ρh = 0.8σ−3(filled circles), no trace of such behavior c
be reported. For future reference, it is worth noting that the transition in the mono
character of the curve takes place at a density valueρ ∼ ρc = 0.35ε0(filled squares).

To attain a better understanding of the behavior of the magnitudes displayed in Fi
and (c), we have followed two strategies: (i) to study particle–particle spatial correla
(ii) to analyze fragment mass distributions according to the already presented fra
definitions. In what follows we present results obtained within the first approach
postpone to the next subsection the analysis of fragment distribution properties.

In Fig. 2 the distribution of inter-particle distances,rij , is shown. Two density value
already considered in Fig. 1, namely,ρl and ρh, are shown in panels (a) and (b
respectively.

For each density, three total energy values [lower than (solid line), equal to (dotted
and larger than (dashed line)E = 0.5ε0] were considered (see caption). In both panel
vertical line was included indicating the interaction cut-off radius.
In panel (a) (very diluted case) a well defined structure of interacting particle pairs
can be seen at low energies (continuous line). The displayed peaks signal the presence of
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a rather large self-sustained drop with a first, second and even third nearest ne
structure (a bell-shaped distribution, associated with the ‘trivial’ non-interacting
counting can also be noticed). As energy increases, this structure fades away,
important reduction of the number of interacting particles can be recognized. This o
as a consequence of the spacious volume available, that is big enough to accom
small non-interacting aggregates. In this transition, well definedq-space clusters appea
surfaces are produced andV tends towards a residual value (see bellow).

A completely different behavior is observed for the denser case,ρh, shown in Fig. 2(b).
In this case, no changes in the statistical distribution ofrij is observed as the energy
increased. (Note that in this case the bell-shaped distribution is superimposed o
peak structure as a consequence of the reduced available volume. However, the p
of a first, second, and even a third nearest neighbors can still be traced). The co
imposes a severe volume restriction on the system, and even for high total energy
each particle is confined in the attractive range of partners potential, between the re
core of nearest neighbors.

This last observation completes the general picture within which the behavior o
mean potential energy,V , for high density cases can be understood. As more ener
added to the system no structural transition is allowed by the constraining volume. Pa
cannot escape from neighbors most attractive potential range and a smooth incre
V , related to the average time spent in the most negative potential regions, can b
(Fig. 1(b)).

The decreasing behavior ofσV , observed for low densities (filled triangles, a
diamonds in Fig. 1(c)), can be associated with the loss of ‘attractive bonds’ be
particle pairs that takes place when a non-interacting light cluster regime dominat
an increasing number of particles stop interacting with one another, the system dyn
gets ‘less chaotic’ (see [34] for a dynamical characterization of this system), and a
decrease ofσV is induced.

This is not the case for higher densities. Each particle is alwaysconnected to every other
system particle through a path of strongly interacting neighbors. Therefore, an incre
the fluctuations in potential energy between successive configurations as total en
added can be expected (see the behavior displayed byσV in Fig. 1(c)).

It is worth noting that the presented picture can also be used to interpret recent
regarding the behavior of the maximum Lyapunov exponent, MLE, in constrained sys
Moreover, a striking similitude between the behavior ofσV (E,ρ) andMLE(E,ρ) can be
noticed, comparing Fig. 1(c), and Fig. 5 of Ref. [34].

4.2. Fragments inside the volume

In Section 3, three fragment recognition algorithms were described. Each one
use of different correlation information in order to gather particles into clusters, and
give different physical information about the morphological characteristics of the sy
under study.
In Fig. 3 the results of the MST algorithm analysis are shown. MST spectra were
calculated for different energies (E = 0.0,0.5, and 1.0ε0, displayed as full, dotted and
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Fig. 3. MST cluster mass distributions calculated for densities:ρ = 0.01,0.03, and 0.10σ−3 are displayed
in panels (a), (b), and (c), respectively. Three total energy values were considered for each
Etot = 0.0ε0,0.5ε0, and 1.0ε0. They are displayed as full, dotted and dashed lines, respectively.

dashed lines respectively) for three system densities:ρ = 0.01,0.03, and 0.10σ−3. They
are shown in panels (a), (b), and (c), of Fig. 3, respectively.

At low densities, panel 3(a), the system evolves from heavy cluster dominated par
at low energies, towards a light cluster dominated behavior, at high energies. This r
the fact that the constraining volume is large enough to allow the system to fragme
well defined drops as energy is increased. It is interesting to notice that results dis
in Fig. 3(a) correspond to full triangle symbols in Fig. 1(a), i.e., the one for which the
displays a loop. It was argued that big fluctuations in kinetic energy should be exp
This is indeed the case and it is related to the fact that well defined surfaces appea
system (see [8]).
On the other hand, for denser systems [panels (b), and (c)], it can be noticed that MST
size spectra become insensitive to the system energy value once a given volume-dependent
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Fig. 4. Fragment mass distribution, and cluster internal energy values as a function of the cluster mass, a
in the first and second columns, respectively. Three system total energies are considered:Etot = −0.6ε0, [panels
(a), (b)], 0.0ε0, [panels (c), (d)], and 0.5ε0, [panels (e), (f)]. Empty circles, filled squares, and empty triang
correspond to ECRA, MSTE, and MST data, respectively.

energy value is achieved. In particular, forρ = 0.1σ−3, the mass distributions converg
to a u-shaped one no matter the system energy value. Almost no spatially well sep
structures (i.e., MST clusters) can be identified in this case, aside from the trivial
cluster that comprises almost all the system particles.

In Fig. 4, the effect of taking into account momentum correlations in the definitio
clusters can be appreciated. A cluster analysis for a system ofN = 147 particles with
ρ = 0.2σ−3 using ECRA, MSTE, and MST prescriptions is presented in that figure.
mass distribution function, and the fragment internal energy as a function of the c
mass,Eint(s) (see, Eq. (3)), are shown in the first and second columns, respectively.
total energy values were considered:Etot = −0.6ε0 (panels (a), (b)), 0.0ε0 (panels (c), (d))
and 0.5ε0 (panels (e), (f)). Empty triangles, solid squares, and empty circles correspo
MST, MSTE, and ECRA results, respectively.
It can be seen that, for this density, the MST prescription finds just a big drop. On the
other hand, both, the MSTE and ECRA algorithms, find non-trivial cluster distributions
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that show the expected transition as the system energy is increased. Even though t
spectra are qualitatively similar, as a general rule ECRA algorithm produces more
clusters than the MSTE one. This is consistent with the claim that the MBDF are fou
the ECRA algorithm. Due to this feature, from now on, only the properties of the sy
according to its ECRA cluster structure will be considered.

4.3. Transition signals

As can be seen in Fig. 4 for aρ = 0.2σ−3 system, the ECRA cluster distribution
undergo a transition from a U-shaped spectrum towards an exponentially decayin
as energy is increased. Moreover, the mass-distribution corresponding to the interm
energy value 4(b), displays a power law like behavior. In fact, forany other studied density
the same behavior can be reported, and a total energy value can be determined for
power-law like mass distribution can be found for ECRA fragments.

This result is interesting because it implies that some kind of transition betwee
regimes, one with, and other without large ECRA drops (i.e., with or without the pres
of liquid-like structures in phase space) is taking place even in high density sys
This transition cannot be detected simply using spatial correlations information.
considering the appropriate cluster prescription power-law-like mass distributions c
used to trace the transition line associated to morphological changes taking place in
space.

At this point it is worth noting the following remark. It has already been sho
that for this kind of system scaling arguments can be applied to ECRA-fragment
distributions [35,36]. Consequently the following scaling hypothesis can be adopted

n(A) = q0(τ )A
−τf (z), with z = εAσ (7)

n(A) is the number of fragments with mass numberA, q0 is a normalization constan
f (z) is the so-called scaling function.z is the scaling variable, whereasε = Ec − E is the
distance to the critical pointEc. The scaling function has the following properties: it h
only one maximum, forz < 0, andf (0) = 1. Finally,τ , andσ are two critical exponent
introduced by the scaling assumption.

According to Eq. (7), at the critical point (i.e., forρ ∼ ρc , andE ∼ Ec) the fragment
mass distribution can be described by:

n(A) = q0(τ )A
−τ . (8)

Although Eq. (8) is expected to be valid only in the proximity of the critical poin
has been reported [29,37,38] that several critical signatures also appear when firs
phase transition are analyzed in finite systems. In particular, as stated in Ref. [38], in
systems the largest cluster gets a size comparable to the vapor fraction before dissa
when the system crosses the coexistence line. Therefore, there is an energy for w
pseudo-invariance of scale and a resemblance with critical behavior can be expec

small systems undergoing phase transitions that, in the thermodynamical limit, would be
univocally classified as first order ones.
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Fig. 5. Transition signatures calculated for aρ = 0.10σ−3 system. Theχ2 fitting coefficient, the second mome
of the mass distribution,M2, and the normalized mean variance of the largest fragment, NVM, are display
panels (a), (b), and (c), respectively.

Keeping this in mind, given a confining volume, we search for a power-law distrib
of ECRA-fragments using the following single parameter function to fit the mass sp
(the contribution of the largest fragment was disregarded) [39]:

n(A) = q0(τ )A
−τ , with q0(τ ) = 1∑

AA1−τ
(9)

n(A) is the number of fragments with mass numberA, andq0 is a normalization constan
The quality of the fitting procedure was quantified using the standardχ2 coefficient

(see [36] for details), and an energy value,E∗, was associated to the best fitted spectra
Fig. 5(a) a typical result forχ2 calculation is shown for ECRA clusters in aρ = 0.10σ−3

system. From the figure, a value ofE∗ = 0.10± 0.05ε0, can be reported.
Another useful observable to search for scale-free distribution functions is the s

moment of the cluster distributionM2 = ∑′
A A2n(A). As in the determination ofτ , the

largest cluster is excluded from the primed sum.M2 presents a power-law singularity at

second order transition in the thermodynamical limit. For a finite system the divergence is
replaced by a maximum. In panel 5(b) the estimation ofM2(E) is shown for aρ = 0.10σ−3
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Fig. 6. Estimated values from ECRA cluster distributions for the critical exponentsτ andγ are shown in panels
(a), and (b), respectively. The expected values for the 3D-Ising universality class are displayed by a dash

system. It can be noticed that the maximum is located at the energy value for whi
spectra is best fitted by a power-law like dependence.

This kind of agreement is also achieved when the normalized mean variance, NV
the largest fragment mass,Amax, is analyzed. NVM is defined as:

NVM = 〈A2
max〉 − 〈Amax〉2

〈Amax〉 (10)

and it turned out to be a robust tool in the characterization of transition phenomena in
an enhancement of fluctuations occurs [40]. As can be seen from panel 5(c), this
although slightly shifted within the working resolution, also peaks in the same regi
the previous ones.

The signal agreement reported for theρ = 0.10σ−3 case in Fig. 5, is also achieved f
every other density analyzed in this paper. This means that in the whole density
power-law mass distributions for phase space defined ECRA clusters are found wh
large fluctuations take place in the system.

In order to properly characterize the state of the system which displays power-law
distributions, the values attained by theτ exponents must be analyzed as a function of
density. This dependence is shown in Fig. 6(a). For a true critical phenomenon taking

in three-dimensional systems, 2� τ � 3 is expected [41]. This condition is not satisfied
for systems withρ < 0.05σ−3. For these highly diluted systems, the observed free-scale
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distribution is not expected to survive the thermodynamic limit. It is not related to
continuous transition, but arises as a finite-size effect. It is worth noting thatρ ∼ 0.05σ−3

is the maximum density for which the respective caloric curve displays a loop, and
negativecv (see Fig. 1).

On the other hand, forρ > 0.05, the calculatedτ exponents show a rather go
agreement with theτ = 2.21 value (dashed line), expected for liquid-gas transitions.

In a second order phase transition, the behavior ofM2 near a critical point can b
described in terms of the critical exponentγ [32]:

M2(ε) ∝ |ε|−γ , (11)

where,ε = Ec −E, measures the distance to the critical point. This relation is valid fo
infinite system in the limitε → 0. As already mentioned, in a finite systemM2 displays a
maximum instead of the divergence predicted in Eq. (11). Having this in mind, a calcu
procedure introduced in Refs. [39,42] (γ -matching), that takes care of finite size effec
was used to calculate theγ exponent value for our system (see also Ref. [36] for detai

The results of theγ exponent estimation is shown in Fig. 6(b). As density is increa
the obtained values tends towardγliq-gas= 1.23 (dashed line) value that is expected
a liquid-gas transition. It is worth noting that this convergence is achieved for den
ρ � 0.35ε0 (this value equalsρc in Fig. 1). For this density, a change in the behavio
the potential energy fluctuations as a function of the total energy was reported in Fig
This can be associated (see Section 4.1) to the onset of the invariance of the sta
interparticle distance distribution (Fig. 2), that takes place as a consequence of the im
volume restriction.

5. Phase diagram

In the previous section several signatures of a change in the properties of E
fragment mass distributions were analyzed. At any given density, a system energy,E∗(ρ),
can be determined for which large fluctuations appear in the system, and a scale-fr
mass distribution are found.

In Fig. 7, the dependence ofE∗ with the system density is shown. Forρ � 0.35σ−3, a
rather constant value is attained for the transition energy. A similar result was repo
Ref. [43], using the already presented MSTE cluster definition.

Some insight about the properties of the system along the line depicted in Fig. 7,
gained from the analysis of the interplay between the mean internal potential ener
particle stored in ECRA clusters,Vint, and the mean inter-cluster interaction energy,Vic.

Vint =
∑
i<j

i,j∈Ck

Vi,j , (12)

Vic =
∑

Vi,j (13)

i∈Ck,j∈Cl

k �=l
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Fig. 7. Density dependence of the system energy,E∗, at which transition signals are detected. The dashed lin
included to guide the eye.

Vint stands for the mean potential felt by a particle in a cluster due to its interaction wi
other members of the same cluster. On the other hand,Vic represents the mean interacti
potential felt by a particle due to its interactions with particles belonging to the o
clusters. This magnitudes are displayed in Fig. 8 for densitiesρ = 0.01,0.20,0.50, and
0.80σ−3 in panels (a) to (d) respectively.

The general trend displayed byVint andVic is easy to understand. At any given dens
for low energies, a big ECRA cluster can be found having a large binding energ
addition, as no many other clusters beside the biggest one exist,Vic ∼ 0. At high energies
the ECRA partitions turns out to present a rather high multiplicity of light clus
ConsequentlyVint → 0 in this limit andVic absolute value increases.

After a close inspection of Fig. 8, one can realize that for any given density
energy at whichVint = Vic, happens to beE∗(ρ), i.e., the energy at which power-la
like mass distributions appear. This means that scale-free ECRA mass distribution
the following property: a balance is established between the mean potential energy
particle, which belongs to a given cluster, feels due to its interaction with other memb
the same cluster and the one associated with its interaction with the rest of the part
the system. This potential energy balance, that does not allow to distinguish contrib
from inside or outside of a cluster, is reminiscent of the vanishment of the che
potential and surface tension terms that takes place at the critical point.

Given that in this work we have considered a microcanonical description, each sa
event has well defined values ofE,V andN . That is why the ‘natural’ phase diagra
to consider should be the one shown in Fig. 7. However, gathering all the inform
obtained so far, the most usualT − ρ phase diagram can also be built for our 147-part
Lennard–Jones drop (see Fig. 9). The empty circles are(T∗, ρ) points obtained from the
aforementioned cluster analysis. The full line is an estimation of the coexistence li

obtained from the analysis of the system specific heat,cv (see Eq. (6)). In this case, for
densities for which the respective CC displays a loop,T (E∗) has been taken as the average
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Fig. 8.Vint (empty circles) andVic (empty squares) as a function of the system total energy are shown. Den
ρ = 0.01,0.20,0.50, and 0.80σ−3 are displayed in panels (a), (b), (c), and (d), respectively.

temperature between the two values corresponding to the location of thecv singularities.
For denser cases, the location of the maximum of thecv has been taken. No reliab
estimation of the energy that maximizescv could be achieved forρ > 0.1σ−3 (neither
from the CC, nor from the kinetic energy fluctuation behavior).

It should be emphasized that, as in the considered ensemble of events the system
was not allow to fluctuate, we could not probe the fullthermodynamical coexistence line
However, it is interesting to notice that from astrictly morphological point of view, in
phase space, the curve shown in Fig. 9 acts as an effective ‘transition line’. For

density value, below this line, a big ECRA structure can be identified, whereas a vapor
behavior can be observed above it.
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Fig. 9. Phase diagram for a 147 particle Lennard Jones drop. Cluster-based andcv -based determination of th
phase-space transition line is marked with empty circles, and full line, respectively. The dashed line is in
to guide the eye.

Moreover, according to the obtained critical exponent values, three density regio
be defined. The region labelledA (ρ � 0.05σ−3) presents the signals expected for a fi
order phase transition occurring in a finite system: the corresponding caloric curve
a loop that can be associated to a negative specific heat, and a structural transition
recognized (Fig. 2(a)). This region is the only one in which the available volume is
enough for the system to fragment into a set of non-overlapping drops.

On the other hand, in regionC (ρ > 0.35σ−3), where the system is rather compress
and MST algorithm recognizes just one big fragment, a second order transition se
occur in phase space, whenever the line of critical points is crossed. No anomaly
respective caloric curve is observed, no qualitative changes in the configuration sta
properties is reported (Fig. 2(b)), and the calculated critical exponents,τ , andγ , are in good
agreement with 3D-Ising (liquid-gas) universality class. In addition, it should be no
that the observed line ofmorphological critical points converges to thethermodynamical
critical point, approximately located atρc ∼ 0.35σ−3, Tc ∼ 1.1ε [43,44].

In between these two regions, regionB (0.05σ−3 < ρ < 0.35σ−3) can be identified
The finite size of the system plays a major role in this density range. Even a sensτ

value suggests that physically meaningful scaling properties are present in the syst
correspondingγ exponent values are too low to classify the transition as a continuous

Due to the multivariate nature of the temperature’s energy dependence (i.e., the pr
of a loop in the respective CC’s) that takes place in region A, the following warning sh
be raised. For this density range, it is not longer valid that ECRA liquid-like struc
(U-shaped mass spectra) can only be found bellow the transition line shown in the(T ,ρ)
plane. The smooth and ‘monotonic’ character displayed by the mass spectra transition as
a function of the system total energy, is lost whenT is used as a control parameter. In
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this way, for highly diluted finite systems, only in the(E,ρ), (Fig. 7), and not in(T ,ρ)

plane, the localization of scale-free mass distribution configurations can unambig
be associated to a meaningful transition line. This peculiarity disappears for more
situations, region B, and C.

6. Conclusions

In this paper we have undertaken the analysis of thermodynamical and morpho
properties of a finite classical system confined in a fixed volume. Apart from the
interest on such a problem, it is relevant on the frame of the description of fragme
system according to statistical models.

We have been able to find that the equation of state of such a system is quite simpfrom
a coordinate-space point of view. There is a maximum value of the density (ρ ∼ 0.05σ−3)
up to which the system fragments into non-interacting drops. In this region the asso
CC displays a loop and the thermal response function attains a negative value. For
densities, there is simply no enough room to allow the system to develop well de
internal surfaces, i.e. only one big drop can be detected. Indeed, with the sharp v
constraint considered in this contribution, the CC or kinetic energy fluctuations ar
well suited to recognize the coexistence line for densities greater thanρ ∼ 0.1σ−3.

When one consider a description in which fragments are defined through corre
in qp-space, a much richer behavior appears. Now, even for densities bigger thaρ ∼
0.05σ−3, transitions from u-shaped mass spectra to exponentially decaying one
signaled by the appearance of scale-free mass distribution of ECRA clusters. Fro
analysis of critical exponents,τ andγ , related to the displayed power-law distributio
a further classification in density ranges can be obtained. In the abovedefined re
(Section 5), the obtainedτ values are too big to be related to a true critical behavior.
densities in the range 0.05σ−3 < ρ < 0.35σ−3 (region B), even though theτ exponent
values are in good agreement with the corresponding 3D-Ising universality class, the
attained byγ critical exponents came out to be too low. Finally, for densities ab
ρ ∼ 0.35σ−3 (region C), both,τ and γ , are quite close to the accepted values for
3D-Ising universality class.

Gathering the information obtained so far the following picture emerges. In re
A thermodynamical and morphological transitions take place at the same tempe
for a given density. Besides, the phase transition can be characterized as a firs
one according to the schema proposed by Gross and collaborators [13]. In reg
the restriction imposed by the available volume eliminates the abnormal behavior
caloric curve and the kinetic energy fluctuations (of course, this also occurs in regi
On the other hand, even though a morphological transition line can be identified
phase-space information (ECRA cluster distributions), the corresponding critical exp
values do not agree with the liquid-gas universality class. As a consequence of this,
information from the NVE ensemble is considered in the description, the transition c
be cast neither as a first order, nor as a second order one. Finally, in region C, we

identify a morphological coexistence line of critical points of the liquid-gas universality
class, starting from the expected thermodynamical critical point.
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This is of particular interest for the statistical model approach because by definiti
freeze out, an ensemble of well defined fragments is to be constructed. Such assu
implicitly locates the system under study in region A. It is then clear that in the fram
such approaches regions B and C are excluded from the analysis.

In addition, our microscopic approach allows us to bring some light abou
observation of power laws out of the thermodynamical critical point. The crossing o
ECRA inter-cluster and intra-cluster mean potential energies (Fig. 8) turns out to
very generic feature, related to the existence of large fluctuations and scale-free fra
distributions. This raises at least some warnings against an automatic association b
power-laws and the localization of thermodynamical critical points.

Finally, it is worth noting that ECRA clusters are more bound structures than M
ones for a given system energy and density (see Fig. 4). This result means that a
interpretation of MSTE fragments as primordial aggregates is to be taken with
Specially when such clusters are deexcitated with secondary deexcitation routines t
quantitative comparisons with nuclear experiments.

A natural continuation of this work is to analyze the relation between fragment
inside the container volume and the corresponding asymptotic mass spectra whe
are removed. This work is currently under progress.
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