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Abstract. We perform a detailed study of the consistency between different sets of polarized deep inelastic
scattering data and theory, from the standpoint of a next to leading order QCD global analysis, and
following the criteria proposed by Collins and Pumplin. In face of recent suggestions that challenge the usual
assumption about parent parton spin independence of unpolarized fragmentation functions, we specially
focus on polarized semi-inclusive data.

1 Introduction

Ever since the renewed burst of interest in the spin struc-
ture of the nucleon, triggered fifteen years ago by the mea-
surement of the proton spin dependent deep inelastic scat-
tering structure function gp

1 by the EMC experiment [1],
polarized deep inelastic scattering has evolved into a very
prolific field for combined theoretical and experimental ef-
forts [2]. As a result of this activity, an increasingly precise
QCD improved partonic description of polarized nucleons
has emerged, phrased in terms of more refined and ex-
haustive extractions of polarized parton distributions.

Indeed, the number of QCD analyses of polarized in-
clusive deep inelastic scattering (DIS) data at next to lead-
ing order (NLO) accuracy has rapidly grown in the last
few years [3]. In some cases these studies also take into
account polarized semi-inclusive deep inelastic scattering
(SIDIS) data [4–6]. The usual outcome from these analyses
are different sets of parton distributions which reproduce
fairly well most data sets within the quoted errors, with
overall χ2 values pretty close to the number N of degrees
of freedom (d.o.f.) as required by the familiar “hypothesis
testing criterion”.

Although they are the apparent fulfillment of this re-
quirement, the resulting parton distributions not only suf-
fer from large uncertainties, but in some cases small sub-
sets of inclusive data are badly fitted. These facts point
to the need of a more stringent criterion for assessing the
goodness of a particular fit, and also the compatibility
between the data sets.

In the case of polarized semi-inclusive data, the moti-
vation for a more careful analysis is twofold. On the one
side, inclusive data do not provide enough information for
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a complete separation of the quark and antiquark distribu-
tions of different flavors, so the analyses must rely either
on SIDIS data or on some external assumption.

On the other side, the standard procedure used to ana-
lyze semi-inclusive data, in terms of polarized parton den-
sities and unpolarized fragmentation functions, has been
criticized, questioning, in the first place, the accuracy of
the present generation of fragmentation functions [7], sug-
gesting that the usual assumptions about the spin inde-
pendence of a fragmentation process may not hold [8], and
also addressing the issue of target fragmentation contribu-
tions [9].

Regarding the first issue, recently there has been an
increasing amount of activity around the issue of the po-
larization of sea quarks in the proton [10]. This interest
has been driven in part by the confirmation of the isospin
symmetry breaking at sea quark level in unpolarized DIS
[11], by the level of refinement attained in a QCD global
analysis of the spin dependent data [3], and by the ex-
pected precision of forthcoming polarized semi-inclusive
measurements, polarized Drell–Yan dilepton production,
and prompt photon production [12].

Moreover, in spite of the encouraging achievements
in polarized semi-inclusive measurements in the few last
years [13,14], which have shown to be in good agreement
with the inclusive data [4], the available data fail to con-
strain unambiguously the polarization of sea quarks in the
proton when included in global QCD fits performed fol-
lowing just the hypothesis testing criterion [5].

In face of this situation, it is worthwhile assessing the
goodness of global fits to the polarized data, involving
both inclusive and semi-inclusive measurements, with
more stringent criteria, in line of what has been proposed
in [15], and applied to LO unpolarized sets of data in [16].
The main point of this approach is to apply the parame-



322 G.A. Navarro, R. Sassot: Consistency in NLO analyses

ter fitting criterion to subsets of data in the global fit. In
this way we assess features as the degree of compatibil-
ity between subsets of data, the impact of specific data in
certain parameters of the fit and the overall consistency
of the global fit. The occurrence of such an inconsistency
may hint at the non-validity of assumptions or other in-
puts of the theoretical calculation, besides an unexpected
error source in the experiment.

In the following, after defining our conventions and
sketching the computation of the relevant observables,
we present a global fit of polarized inclusive and semi-
inclusive data exploring the dependence of the overall χ2

tot
of the fit on the respective χ2

i for each particular exper-
iment by means of the Lagrange multiplier method [19].
The analysis is performed in two stages. In the first one
we restrict the analysis to inclusive data, and to those par-
ton densities which can be extracted there. In the second
stage we add semi-inclusive observables and discriminate
between valence and sea quark densities of different fla-
vors, but at variance with [5], where semi-inclusive data
were only allowed to fix the sea quark polarization, here
we leave all the distributions free.

In order to circumvent the extremely time-consuming
convolutions integrals characteristic of the semi-inclusive
observables at NLO, we apply the double Mellin trans-
form approach, developed recently in [6]. This new ap-
proach has produced results in complete agreement with
those obtained with the convolution method, but obtained
considerably faster.

As a result of our analysis, we find that the parameter
fitting criterion shows a reasonably good level of internal
consistency between the inclusive measurements. The ad-
dition of SIDIS data sets leads to global fits with χ2/d.o.f.
values fairly close to unity; however the increase of the sta-
tistical weight of these data in the fits show rather different
consequences when either positively (σh+) or negatively
(σh−) charged final state hadron data are considered. For
σh− data, the increase in weight does not significantly
modify those parton distributions coming from inclusive
sets, suggesting consistency between the different data sets
and also between the data and the theoretical framework.
However, the analysis of the σh+ data shows a sizable de-
gree of conflict with the rest of the fit.

2 Framework

Throughout the present analysis, we follow the same con-
ventions and definitions for the polarized inclusive asym-
metries and parton densities as in [5]. In the totally inclu-
sive case, the spin dependent asymmetries are given by [2]

AN
1 (x, Q2) =

gN
1 (x, Q2)

FN
1 (x, Q2)

=
gN
1 (x, Q2)

FN
2 (x, Q2)/2x[1 + RN (x, Q2)]

, (1)

where the inclusive spin dependent nucleon structure func-
tion gN

1 (x, Q2) can be written at NLO as a convolution

between polarized parton densities for quarks and glu-
ons, ∆qi(x, Q2) and ∆g(x, Q2), respectively, and coeffi-
cient functions ∆Ci(x) [17]

gN
1 (x, Q2) =

1
2

∑
q,q̄

e2
q

[
∆q(x, Q2)

+
αs(Q2)

2π

∫ 1
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{
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(x

z
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)
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z
, Q2

)}]
. (2)

A more detailed discussion of these coefficient func-
tions and their factorization scheme dependence can be
found in [18]. FN

1 (x, Q2) is the unpolarized nucleon struc-
ture function that can be written in terms of FN

2 (x, Q2)
and R, the ratio of the longitudinal to transverse cross
section [2].

Analogously, for the semi-inclusive asymmetries we
have

ANh
1 (x, Q2) |Z �

∫
Z

dz gNh
1 (x, z, Q2)∫

Z
dz FNh

1 (x, z, Q2)
, (3)

where the superscript h denotes the hadron detected in
the final state, and the variable z is given by the ratio
between the hadron energy and that of the spectators in
the target. The region Z, over which z is integrated, is
determined by kinematical cuts applied when measuring
the asymmetries.

For the spin dependent structure function gN
1 (x, Q2)

we use the NLO expression [20]
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,

and in order to avoid the convolution integrals in x̂ and ẑ
we switch to moment space in both variables as suggested
in [6]. In moment space, the convolution integrals reduce
products of the Mellin moments of the parton densities

∆fn
i (Q2) ≡

∫ 1

0
dx xn−1∆fi(x, Q2) , (5)

the fragmentation functions

∆Dh m
i (Q2) ≡

∫ 1

0
dx xm−1∆Dh

i (z, Q2) , (6)

and the double Mellin transform of the coefficient func-
tions ∆C

(1)
ij (x, z, Q2), defined by
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∆C
(1),nm
ij (Q2) ≡

∫ 1

0
dx xn−1

×
∫ 1

0
dz zm−1∆C

(1)
ij (x, z, Q2). (7)

These coefficients can be written as [21]

∆C(1),nm
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×
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1
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− 1
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1
n

− S1(m) − S1(n)
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where we have set the factorization and renormalization
scales to Q2. As usual, CF = 4/3, TR = 1/2, and

Si(n) ≡
n∑

j=1

1
ji

. (11)

For u and d quark plus antiquark densities at the initial
scale Q2

0 = 0.5 GeV2 we propose

x(∆q + ∆q)

= Nq
xαq (1 − x)βq (1 + γq xδq )

B(αq + 1, βq + 1) + γq B(αq + δq + 1, βq + 1)
,

where B(α, β) is the standard beta function, while for
strange quarks plus antiquarks we use

x(∆s + ∆s) = 2Ns
xαs(1 − x)βs

B(αs + 1, βs + 1)
, (12)

with a similar parametric form for gluons

x∆g = Ng
xαg (1 − x)βg

B(αg + 1, βg + 1)
. (13)

The first moments of the quark densities δq (Nq) are
often related to the hyperon beta decay constants F and
D through the SU(3) symmetry relations

δu + δu − δd − δd ≡ Nu − Nd

= F + D = 1.2573, (14)

δu + δu + δd + δd − 2(δs + δs) ≡ Nu + Nd − 4Ns

= 3F − D = 0.579. (15)

Under such an assumption, the previous equations would
strongly constrain the normalization of the quark densi-
ties. However, as we are not interested in forcing flavor
symmetry, we leave aside that strong assumption and re-
lax the symmetry relations introducing the two parame-
ters εBj and εSU(3) respectively. These parameters account
quantitatively for eventual departures from flavor symme-
try considerations, including also some uncertainties on
the low-x behavior, and higher order corrections,

Nu − Nd = (F + D)(1 + εBj), (16)

Nu + Nd − 4Ns = (3F − D)(1 + εSU(3)), (17)

and we take these as a measure of the degree of fulfilment
of the Bjorken sum rule [22] and the SU(3) symmetry.

Equations (16) and (17) allow one to write the nor-
malization of the three quark flavors in terms of Ns, εBj,
and εSU(3). Notice that no constraints have been imposed
on the breaking parameters since we expect them to be
fixed by data. The remaining parameters are constrained
in such a way that positivity with respect to GRV98 par-
ton distributions is fulfilled. These last parameterizations
are used in order to compute the denominators of (1) and
(3). This is particularly relevant at large x, and since no
polarized data are available in that kinematical region, we
directly fix the parameters βu = 3.2, βd = 4.05 and βg = 6
for the NLO sets in agreement with GRV98. Consistently
with the choice for the unpolarized parton distributions,
we use the values of ΛQCD given in [23] to compute αs at
NLO.

As antiquark densities we take

x∆q = Nq
xαq (1 − x)βq

B(αq + 1, βq + 1)
, (18)

for the u and d quarks, and we assume s = s since the
possibility of discrimination in the s sector is beyond the
precision of the data (as in the unpolarized case).

Fragmentation functions are taken from [24] and we
also use the flavor separation criterion proposed there,
which have shown to be in agreement with the most recent
analysis [25].

The data sets analyzed include only the points with
Q2 > 1 GeV2 listed in Table 1, and totaling 137, 118,
and 34 points, from proton, deuteron, and helium targets
respectively, in the inclusive stage, plus 42, 24, and 18,
from proton, deuteron, and helium targets respectively, in
the second stage.

Regarding the fitting procedure, this is done minimiz-
ing the function f(λ1, λ2, ..., λn) defined by

f(λ1, λ2, ..., λn) =
∑

i

λi χ2
i , (19)
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Table 1. Inclusive and semi-inclusive data used in the fit

Collaboration Target Final state # points Refs.

EMC proton inclusive 10 [1]
SMC proton, deuteron inclusive 12, 12 [27]
E-143 proton, deuteron inclusive 82, 82 [28]
E-155 proton, deuteron inclusive 24, 24 [29]

Hermes proton,helium inclusive 9, 9 [14]
E-142 helium inclusive 8 [30]
E-154 helium inclusive 17 [28]
SMC proton,deuteron h+, h− 24, 24 [13]

Hermes proton, helium h+, h− 18, 18 [14]

where the sum runs over the data sets or experiments i
included in the fit. The parameters λi are the Lagrange
multipliers defined for each data set and which can be
varied in order to produce different fits where the relative
weight of a given set of data has been modified. χ2

i is the
contribution to the overall χ2 coming from the data set i.

As is well known, there are various alternatives for
calculating these last contributions [32]. The simplest one,
and the one most commonly used in fits to polarized data,
adds the reported statistical and systematic errors in
quadrature. This ignores the correlations between data
points from the same measurements, but in many cases
the full correlation matrices are not available.

As inclusive and semi-inclusive data are strongly corre-
lated, and the correlation matrices are available, we have
taken into account them, analyzing only the inclusive data
for SMC and Hermes corresponding to “averaged” bins,
for which the correlation matrices are defined. In the semi-
inclusive case we only consider in the fit the most pre-
cise data concerning the production of charged ± hadrons
(without identifying pions, kaons, or other particles indi-
vidually).

Regarding the normalization uncertainties, in [5] it was
found that the Hermes data were systematically below the
best global fits, but allowing for a floating normalization
factor to it in order to account for the relative normal-
ization uncertainties, the χ2 values were considerably im-
proved. In the following we allow this factor to be fixed by
the global fit, finding the best fits for a 12% correction.

3 Inclusive data

In this section we present results from the first stage of
our analysis, which only deals with inclusive data. It is
customary in NLO fits to inclusive data to present sev-
eral sets of parton distributions with different alternatives
for the features that are poorly constrained by the data,
such as the gluon or strange sea quark polarization. As
we are mainly concerned in assessing the goodness of the
fit between theory and data and the degree of internal
consistency of the data, rather than covering the different
scenarios for parton densities, we just explore the more

Table 2. χ2
i (λ) and χ2

Inc(λ) for different data sets

λ = 1 λ = 20 λ = 100
χ2

i χ2
Inc χ2

i χ2
Inc χ2

i χ2
Inc

EMC-p 4.49 4.17 227.85 3.46 262.71
SMC-p 3.84 3.32 225.21 3.20 226.71
SMC-d 14.44 12.81 245.92 12.10 264.77
E-143-p 60.70 60.22 224.83 60.21 224.95
E-143-d 83.38 80.84 235.32 80.17 248.08
E-142-n 4.68 224.59 2.40 233.52 1.51 251.98
E-155-p 17.15 16.24 227.03 16.23 233.55
E-155-d 17.10 16.89 225.65 14.98 277.42
E-154-n 6.91 4.19 229.16 3.97 232.02

Hermes-p 5.15 4.30 225.60 2.83 234.42
Hermes-He 6.76 6.39 228.31 5.67 248.09

favored scenario of [5], which was labeled as “set i” and
has moderate gluon polarization.

In Fig. 1 we show the outcome of different global fits
to all the available inclusive data. The plot gives the vari-
ation of the χ2

i value of each experiment against the total
χ2 value of the fit (χ2

Inc). The first point to the left of
each curve (λi = 1) corresponds to standard fits where
no extra weight was given to any of the data sets. The
parameters for this fit are presented in Table A1 in the
appendix. Along the curves, the subsequent points come
from fits where, following the Lagrange multiplier method
explained in the previous section, increasing values of λi

have been given to a specific set of data, while keeping the
other parameters λj equal to 1.

The normal expectation in a good fit to data sets that
individually only determine a small fraction of the param-
eters is a monotonic decrease of a few units in the χ2

i of the
subset which has been subject to the increase in weight
while χ2

Inc varies in the range N ± √
2N . One would also

expect χ2
i to approach a saturation point within an in-

crease of χ2
Inc smaller than

√
2N .

As can be seen in Fig. 1, in all the cases, the curves
show the features expected for consistent subsets of data,
each one able to fix a limited number of parameters. The
χ2

i (λ) values of each experiment i are shown in Table 2.
Notice that the initial fall in the χ2

i (λ) values with a
very mild variation in χ2

Inc illustrates the situation where
a subset of the data would be able to effectively fix some
parameters in the fit, in general agreement with the re-
maining data, if its statistical significance were increased.
This is clearly the situation of the neutron and deuteron
target data.

The standard λi = 1 fit (solid line) can be seen in Fig. 2
together with the Hermes-p driven fit for λHermes = 100
(dashes) and that for E155 with λE155 = 100 (dots) for
comparison. As can be noticed, the changes in the asym-
metries due to the extra weight in these subsets of data
are almost negligible, as can be expected from the moder-
ate variations they produce in χ2

Inc(λ). For these reasons
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we conclude that inclusive data are internally consistent
and in excellent agreement with theory.

4 Semi-inclusive data

In this section we focus on the consequences of includ-
ing SIDIS data in the global fits. These data allow one in
principle to discriminate between light sea quark flavors,
so the corresponding parton distributions are now param-
eterized and fitted. As we have anticipated, the inclusion
of SIDIS data leads to acceptable fits according to the hy-
pothesis testing criterion [5]; however the small statistical
impact of SIDIS data relative to DIS data hinders definite
conclusions on sea quark distributions.

A closer examination allowing for example increased
weights in the different SIDIS data subsets, as we did for
inclusive sets, reveals some interesting features, as shown
in Fig. 3. Again, we have applied a 12% normalization fac-
tor to the Hermes data, and in order to simplify the anal-
ysis, we consider the SMC and Hermes proton target data
together. Identical results are obtained if the data are dis-
criminated for each experiment.

Although for most SIDIS data sets, χ2
i (λ) reach their

respective saturation values within a
√

2N shift in χ2
tot as

required for overall consistency, the data coming from pos-
itively charged hadroproduction on proton targets (σh+

p )
seem to lay in the borderline, with a fall of several units
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Fig. 4. Fit to SIDIS data (λi = 1) together with the σh+
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driven fits
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Table 3. χ2
i (λ) and χ2

tot(λ) for different SIDIS data sets

λ = 1 λ = 10 λ = 20
χ2

i χ2
tot χ2

i χ2
tot χ2

i χ2
tot

σh+
p 25.61 21.30 360.96 20.94 450.20

σh−
p 26.93 25.57 332.89 25.53 340.10

σh+
d 5.18 319.69 3.99 385.29 3.72 504.24

σh−
d 14.71 12.80 328.27 12.73 373.58

σh+
he 5.39 5.36 319.79 5.25 329.17

σh−
he 6.69 6.46 338.18 5.71 409.15

and a saturation value outside the
√

2N range. SIDIS data
are mainly dominated by proton target data, but while
σh−

p driven fits lead to asymmetries in agreement with
other data sets, those driven by σh+

p show an increasing
disagreement with them, as can be seen in Fig. 4.

The inconsistency between these two data sets can also
be seen in the parton distributions they produce, as shown
in Fig. 5a,b, for σh−

p and σh+
p driven fits at Q2 = 5.0 GeV2,

respectively. Notice that the (∆u+∆u) and (∆d+∆d) dis-
tributions, that should be fixed mainly by inclusive data,
have minor, although not negligible, changes in the fits
driven by either data sets, showing the degree of consis-
tency between inclusive and semi-inclusive data. However,
the sea quark distributions depend strongly on which data
set has received additional weight. The discrepancy is par-
ticularly strong for ∆u, which even changes sign.

An interesting feature of SIDIS data is that for all sub-
sets the SIDIS driven fits exceed the

√
2N range for χ2

tot
with values of λ considerably smaller than the ones typical
of inclusive data, as Fig. 3 shows. While inclusive data sets
allow λi values of 100 or more with a few units change in
χ2

tot, the SIDIS data exceed the allowed range for λ > 20

or even less in the case of σh+. In other words, at variance
with what happens to DIS data, fits forced to reproduce
the SIDIS data lead to considerably poor global fits. This
can be interpreted as a weaker level of consistency in the
analysis of SIDIS data than in the inclusive case. In Ta-
ble 3 we present χ2

i values obtained for each data set in
the standard fit (λi = 1) and increasing the weights.

In addition to the issue of the accuracy of the data,
the analysis of SIDIS experiments relies also on our knowl-
edge of the unpolarized fragmentation functions. Although
most of the uncertainties coming from these functions can-
cel when computing asymmetries, the weaker degree of
consistency, and the odd behavior of σh+ regardless of
whether one uses proton or deuterium targets, and in dif-
ferent experiments, may hint at a failure in the extrac-
tion of fragmentation functions, particularly in the more
troublesome discrimination between those for positive and
negative final state hadrons.

5 Conclusions

We have assessed the internal consistency in a NLO anal-
ysis of different sets of polarized DIS and SIDIS data. For
the inclusive data, the agreement shown between theory
and data from the standpoint of the hypothesis testing cri-
terion is confirmed when a detailed analysis using a variant
of the parameter fitting criterion is performed. For SIDIS
data the level of consistency is considerably weaker, partic-
ularly in the case of positively charged final state hadron
data. Even though this kind of analysis cannot establish
whether either data or some particular ingredients in the
theoretical approach are responsible for the discrepancy,
the unexpected features found in the analysis of the σh+

data, for different targets and coming from different exper-
iments, hint at an inaccuracy in the separation between
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Table A1. Parameters for the λ = 1 fit

Parameter DIS fit SIDIS fit
εBj −0.002 −0.004

εSU(3) 0.085 0.088
αu 0.858 0.858
βu 3.200 3.200
γu 14.929 14.969
δu 1.004 1.005
αd 0.434 0.433
βd 4.050 4.050
γd 13.888 13.939
δd 1.651 1.651
Ns −0.074 −0.075
αs 2.500 2.491
βs 10.000 10.000
Ng 0.239 0.238
αg 1.499 1.499
βg 6.000 6.000
Nū – −0.014
αū – 2.311
βū – 7.646
Nd̄ – 0.014
αd̄ – 2.315
βd̄ – 7.646

positively and negatively charged hadron fragmentation
functions.
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Appendix: Parameters of the fit

We present here the parameters of the fit with λ = 1, for
the first stage, where we only deal with the inclusive data
(DIS fit), and the second stage, where the semi-inclusive
data were included (SIDIS fit).
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