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A New Approach to Segmentation of Multispectral
Remote Sensing Images Based on MRF

1
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Abstract—Segmentation of multispectral remote sensing images4
is a key competence for a great variety of applications. Many of the5
applied segmentation algorithms are generative models based on6
Markov random fields. These approaches are generally limited to7
multivariate probability densities such as the normal distribution.8
In addition, it is usually impossible to adjust the contextual param-9
eters separately for each frequency band. In this letter, we present10
a new segmentation algorithm that avoids the aforementioned11
problems and allows the use of any univariate density function12
as emission probability in each band. The approach consists of13
three steps: first, calculate feature vectors for every frequency14
band; second, estimate contextual parameters for every band and15
apply local smoothing; and third, merge the feature vectors of16
the frequency bands to obtain final segmentation. This procedure17
can be iterated; however, experiments show that after the first18
iteration, most of the pixels are already in their final state. We call19
our approach successive band merging (SBM). To evaluate the per-20
formance of SBM, we segment a Landsat 8 and an AVIRIS image.21
In both cases, the κ̂ coefficients show that SBM outperforms the22
benchmark algorithms.23

Index Terms—Image segmentation, Markov random fields24
(MRFs), multispectral imaging, probability density function.25

I. INTRODUCTION26

27 S EGMENTATION of remote sensing images is a key com-28

petence for a broad range of decision makers such as29

agricultural producers or local governments. In the case of30

agricultural producers, one can think of estimating crop param-31

eters [1], whereas governments could be interested in wildfire32

management [2] or air quality measurements [3].33

In the last decade, a huge number of image segmentation34

algorithms based on Markov random fields (MRFs) were pro-35

posed by researchers from different fields [4]–[6]. Most of these36

algorithms use multivariate probability functions such as the37

normal distribution to model multispectral images.38

For many classes of images, the multivariate normal dis-39

tribution might be a good choice, but in the case of remote40

sensing images, the gray values of the different frequency bands41
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are often better described by univariate densities such as the 42

Gamma distribution or Kernel density estimation. Still, many 43

modern remote sensing algorithms are limited to the easy-to- 44

handle normal distribution [7]. 45

Another characteristic of remote sensing images is that the 46

contrast of the gray values greatly varies from one band to 47

another. In other words, it may be easy to distinguish two 48

segments in one band but difficult in another. Therefore, a seg- 49

mentation algorithm should be adoptable to the characteristics 50

of each band when using contextual information. Nevertheless, 51

most of the contextual segmentation algorithms require the 52

same Markovian neighborhood in all bands [8], [9]. 53

To overcome these two drawbacks of universal image seg- 54

mentation methods, we propose a new approach for remote 55

sensing images, which is similar to techniques such as Decision 56

Templates or the Dempster–Shafer method [10]. The algorithm 57

denominated successive band merging (SBM) has three parts: 58

first, estimate the maximizer of the posterior marginals (MPM), 59

then include contextual information in a nonparametric way, 60

and finally assign a state to each pixel using a new method 61

proposed in this work. If this procedure is iterated, it generally 62

converges within few iterations to a final state map. Neverthe- 63

less, experiments show that after the first iteration, only few 64

pixels are still switching states. 65

Note that SBM intentionally ignores the probabilistic relation 66

between frequency bands in the first two steps. This enables 67

us to extract hidden features of each band separately with an 68

adequate univariate probability distribution. Only then are the 69

feature vectors of all bands merged in the third step to obtain a 70

segmented image. This contrasts segmentation algorithms that 71

use multivariate distributions. 72

In addition, the described approach makes no assumptions 73

about the used probability functions in each band. Suppose our 74

image has K bands, and we want to distinguish L hidden states. 75

Then, state one could be modeled by a Gamma distribution in 76

band one and a Weibull distribution in band two and so forth. 77

Moreover, our approach allows to set contextual parameters for 78

each band according to their gray value characteristics. Hence, 79

it is possible to work with neighborhoods of different sizes 80

in different bands. Despite these useful features, the computa- 81

tional complexity of our approach is comparable to benchmark 82

algorithms, particularly if the algorithm is not iterated. 83

This work is organized as follows. In Section II, we present 84

the details of our segmentation algorithm and propose estima- 85

tors for the parameters of SBM. Thereafter, we evaluate our 86

method for two remote sensing images and compare the results 87

to two benchmark algorithms in Section III. Finally, we outline 88

the conclusions in Section IV. 89
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II. METHODS90

Here, the three parts of SBM are explained in detail. Suppose91

we have a multispectral remote sensing image I of size M ×N92

with K frequency bands. We denote I(k) as the gray values of93

band k ∈ 1, 2, . . . ,K.94

Our goal is to use the spectral information to find the most95

probable underlying state of every pixel of I . In other words,96

we are searching for the optimal state map s∗, which is given97

by the maximum a posteriori probability, i.e.,98

s∗ = argmax
s

P (s|I, θ). (1)

In (1), θ’s are the model parameters such as density functions99

and neighborhood parameters, and s is any admissible state100

map. Note that for L states, there are LMN possible state101

maps. Even for small images, this huge number of state maps is102

prohibitive for the exact calculation of s∗. Therefore, we try to103

approximate the optimal state map with the approach described104

in this section.105

To start the SBM algorithm, we need an initial segmentation106

and the parameters of the probability functions. There are two107

ways to obtain the necessary data. The first option is to provide108

an initial guess of the density parameters. The initial segmen-109

tation can then be calculated by using maximum-likelihood110

classification. The second option is to run an unsupervised111

segmentation algorithm such as the expectation maximization112

(EM) algorithm [11] or k-means [12]. The resulting state map113

can then be used to estimate parameters of the density func-114

tions. In this letter, we use EM to initialize SBM as well as the115

benchmark algorithms.116

A. MPM Criterion117

The first step of the SBM algorithm consists in computing the118

marginal posterior probabilities for every pixel in every band.119

Therefore, let si,j be the underlying state of pixel (i, j) with120

i ∈ 1, 2, . . . ,M and j ∈ 1, 2, . . . , N . Furthermore, we assume121

that the gray values of pixel (i, j) in the different bands depend122

only on si,j , which means P (Ii,j |s) = P (Ii,j |si,j).123

Hence, we can calculate the probability of pixel (i, j) being124

in state l ∈ 1, 2, . . . , L for the gray values of band k by using125

Bayes theorem, i.e.,126

P
(
si,j = l|I(k)i,j

)
∝ P

(
I
(k)
i,j |si,j = l

)
P (si,j = l). (2)

In this letter, we use noninformative priors, which means that127

P (si,j = l) = 1/L. Before we can go on with the next band,128

we have to normalize the posterior probabilities of all pixels129

such that130

L∑
l=1

P
(
si,j = l|I(k)i,j

)
= 1

∀ k ∈ 1, 2, . . . ,K; i ∈ 1, 2, . . . ,M ; j ∈ 1, 2, . . . , N.

Once we have calculated the marginal posteriors of all bands,131

we are done with the first step of SBM. This part of the132

algorithm is computationally extremely simple. Even for huge133

images, the computation and normalization of the marginal134

posteriors can be done by any average personal computer in 135

less than a minute. 136

We like to point out that, so far, we have made no assump- 137

tions about the probability density functions of the different 138

states. All we need are the posterior probabilities of pixel (i, j), 139

but this property can be calculated for any univariate probability 140

function. Thus, we are free to use any combination of L density 141

functions for frequency band k. 142

Note that, originally, every pixel was represented by a 143

K-dimensional data vector containing information from the 144

different bands. Now, we have projected the input data in 145

KL-dimensional feature space. In the following sections, we 146

show how to take advantage of this hyperspace to segment the 147

pixels of I . 148

B. MPM Averaging 149

To incorporate contextual information in the segmentation 150

process, we apply a nonparametric filter, namely, the bilateral 151

filter (BF) [13]. However, instead of smoothing the gray values of 152

the image, we propose to run the BF directly on the marginal pos- 153

terior probabilities in the feature space to avoid blurring of the 154

gray values over several iterations. Thereby, we make use of two 155

fundamental characteristics of the BF: spatial averaging without 156

smoothing edges [14], or in our notation: averaging of marginal 157

posterior probabilities of similar pixels without blurring. 158

First of all, we denote q
(k)
i,j as the posterior probabilities of 159

pixel (i, j) for band k as described in (2), i.e., 160

q
(k)
i,j (l) = P

(
si,j = l|I(k)i,j

)
l = 1, 2, . . . , L.

According to the BF framework, we can now calculate the 161

smoothed feature vectors q(k)∗
i,j by using 162

q
(k)∗
i,j =

∑
i′,j′∈C

K
(k)
i,j,i′,j′ q

(k)
i′,j′ . (3)

In (3), C represents the user-defined neighborhood or clique for 163

band k, and Ki,j,i′,j′ is the kernel of pixels (i, j) and (i′, j ′). 164

The neighborhood C consists typically of all pixels within a 165

certain radius. In this letter, we choose a radius of three pixels 166

for all experiments. For more information on neighborhoods 167

in MRF, please refer to [4]. As a kernel function, we use the 168

classical Gaussian kernel, which is defined by 169

K
(k)
i,j,i′,j′ = exp

⎛⎜⎝−‖(i, j)− (i′, j ′)‖2

h2
x

−

∥∥∥I(k)i,j − I
(k)
i′,j′

∥∥∥2
h2
y

⎞⎟⎠ .

(4)

Note in (4) that the kernel Ki,j,i′,j′ depends on the Euclidean 170

distance of pixels (i, j) and (i′, j ′) as well as the gray values 171

of the two pixels. Both components—the Euclidean distance 172

and the gray value difference—are weighted by the kernel 173

parameters hx and hy , respectively. If hx is small, only pixels 174

very close to (i, j) are taken into account, whereas for hx → 175

∞, all pixels in neighborhood C are equally weighted. The 176

same is valid for the gray values. The smaller hy , the more 177

discriminative the kernel with respect to the gray values. Before 178
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we go on, keep in mind that Ki,j,i′,j′ has to be normalized179

before applying it to the posterior probabilities in (3).180

For a given neighborhood C, we propose methods to estimate181

hx and hy . Let us start with hx. The idea is to put emphasis182

on pixels (i′, j ′) close to the actual pixel (i, j), but on the183

other hand, we do not want the kernel weights for pixels on184

the boarder of C to be too small. Therefore, we calculate the185

maximum Euclidean distance dc in neighborhood C and set186

hx =

√
2

3
dc. (5)

The estimation of hx by (5) has a geometrical interpretation,187

which is related to the spatial part of the kernel, i.e.,188

Kspatial
i,j,i′,j′ = exp

(
−‖(i, j)− (i′, j ′)‖2

h2
x

)
. (6)

Note in (6) that the reflection point of the spatial kernel as a189

function of the spatial distance lies at exactly one third of dc190

if we calculate hx according to (5). Basic mathematics show191

that the kernel weights for the pixels on the boarder of C are192

more than 1% of the maximum kernel weight. This seems to be193

a reasonable value, particularly for huge neighborhoods.194

The second parameter of the Gaussian kernel is hy . This195

parameter weighs the photometric distance between two pixels.196

The goal is to set hy such that the intensities of two pixels from197

the same class have a high kernel, while two pixels from differ-198

ent classes are discriminated by the BF. Thus, it is convenient to199

estimate hy on the basis of the actual state map s, which can200

be obtained from the marginal posterior probabilities of the pre-201

vious section. Thereby, one has to keep in mind that each band of202

a remote sensing image can have gray values in different ranges.203

Hence, it is necessary to calculate h
(k)
y for every band k.204

At this point, the optimal way to estimate h
(k)
y would be to205

look at every pixel of the image and analyze its neighborhood.206

With this information, one could calculate the optimal h(k)
y by207

maximizing the expected kernel of two neighboring pixels in208

the same state. Clearly, this procedure is very costly and un-209

practical. Therefore, we try to approximate a parameter h(k)
y (l)210

for every state l ∈ 1, 2, . . . , L and then average the parameters211

h
(k)
y (l) to obtain h

(k)
y .212

All we have to do to simplify the estimation of h(k)
y (l) is to213

maximize the expected kernel of two arbitrary pixels from the214

same state instead of taking into account the neighborhood of215

every single pixel. This is equal to calculating the maximum216

likelihood of h(k)
y (l) for each state l. The formula for state l in217

band k is given by218

h(k)
y (l) =

√√√√√2
∑

si,j=l

(
I
(k)
i,j − μ(l)

)2

∑
si,j=l 1

. (7)

Then, we calculateh(k)
y as the weighted average of all states, i.e.,219

h(k)
y =

∑L
l=1 h

(k)
y (l)

L
.

Note that using a BF to incorporate contextual information 220

is similar to running the iterated conditional modes (ICM) 221

algorithm [15]. There are only two notable differences between 222

BF and ICM in this context. First of all, BF assigns spatial 223

weights to pixels, whereas ICM uses hx → ∞ in (4). Second, 224

ICM updates the state of pixel (i, j) according to the states of 225

its neighbors, whereas SBM takes into account the marginal 226

posterior probabilities of the neighboring pixels. 227

In Section III, we study the differences of SBM and ICM in 228

detail, but before that, we present a new method of merging 229

multispectral data in the following section. Therefore, it is 230

convenient to gather the posterior probabilities from (3) in a 231

feature vector x∗
i,j ∈ RKL, i.e., 232

x∗
i,j =

[
q
(1)∗
i,j ,q

(2)∗
i,j , . . . ,q

(K)∗
i,j

]
. (8)

C. Segmentation Step 233

The final step of SBM is to assign one of L states to the feature 234

vectors x∗
i,j from (8). In other words, our goal is to find L basis 235

vectors b1, b2, . . . , bL ∈ RKL, to segment the feature vectors 236

according to their Euclidean distance to these basis vectors. 237

Keep in mind that the feature vector x∗
i,j is composed of the 238

marginal posterior probabilities from K bands. Therefore, we 239

can process each band successively, starting with the first band. 240

Given an initial segmentation s, we can set the basis vectors 241

of the first band to the mean posterior probability, i.e., 242

b
(1)
l =

∑
si,j=1 x

(1)∗
i,j∑

si,j=l 1
∀ l ∈ 1, . . . , L. (9)

In (9), b(1)l stands for the basis vector of state l in band 1. The next 243

step is to calculate the Euclidean distances of the feature vectors 244

to the basis vectors from (9). Then, we resegment each pixel ac- 245

cording to its distance to the basis vectors of the first band, i.e., 246

s =

[
arg min
l∈1,2,...,L

(
x
(1)∗
i,j − b

(1)
l

)]
i,j

. (10)

Once we have finished the first step, we can sequentially add 247

the remaining bands 2, . . . ,K to the segmentation process. We 248

call b(1:k)l the basis vector of state l for bands 1 to k and x
(1:k)∗
i,j 249

the feature vector for bands 1 to k. With this notation, we can 250

extend (9) and (10) to 251

b
(1:k)
l =

∑
si,j=1 x

(1:k)∗
i,j∑

si,j=l 1
∀ l ∈ 1, . . . , L (11)

s =

[
arg min
l∈1,2,...,L

(
x
(1:k)∗
i,j − b

(1:k)
l

)]
i,j

. (12)

The idea behind this step of SBM is to update the hidden state 252

map s according to (11) and (12) for k = 2, then for k = 3, and 253

so on, until we reach k = K. After processing the last band K, 254

we check for convergence of the state map s. If the algorithm 255

has not converged yet, we start again with band one. However, 256

this time—as we have already completed one iteration—we use 257

the state map obtained from the last iteration. 258

As a result, we obtain a hidden state map of a multispectral re- 259

mote sensing image without using multidimensional probability 260
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density functions such as the multidimensional normal dis-261

tribution. Note that once the algorithm converges, we found262

basis vectors b1, b2, . . . , bL ∈ RKL that are valid for all bands.263

Hence, we achieved our main goal to incorporate the informa-264

tion of all bands.265

In general, the presented algorithm converges within few266

iterations and leads to very promising results, as we will show267

in Section III. For a schematic description of the whole segmen-268

tation algorithm, please refer to Algorithm 1.269

Algorithm 1: SBM Algorithm

1) Initialize parameters of probability distributions with a270

training set, k-means or GMM.271

2) Calculate MPM of every pixel in every band using (2).272

3) Apply BF as described by (3).273

4) Segment image according to (11) and (12)274

5) If no convergence of state map, go to step 2)275

III. EXPERIMENTAL RESULTS276

Here, we use handmade ground truth and Cohen’s κ̂ coeffi-277

cient [16] to compare the performance of SBM with two bench-278

mark algorithms, namely, Potts iterated conditional modes279

(ICM) and path constrained Viterbi training (PCVT). ICM280

goes back to a work of Geman and Geman [17], where they281

consolidated the use of Gibbs laws as prior evidence in the282

processing and analysis of images, whereas PCVT is based on283

2-D hidden Markov models [18]. To estimate the β coefficient284

of ICM, we use the method proposed in [19].285

All algorithms started from the same initial segmentation286

obtained from a GMM. Note that this might be a disadvantage287

for the distribution-independent SBM algorithm. Still, we chose288

this initialization method based on the normal distribution,289

because it is a widely accepted and applied algorithm.290

The computational cost of SBM is approximately 10%–25%291

higher than PCVT and 50%–75% higher than ICM. Particularly292

for hyperspectral images, SBM demands more resources than293

the benchmark algorithms. On the other hand, the computa-294

tional cost of SBM can be reduced by not iterating (9)–(12)295

until convergence.296

A. AVIRIS Data297

For the first experiment, we use Airborne Visible/Infrared298

Imaging Spectrometer (AVIRIS) data with 224 frequency299

bands. Because some bands contain negative values, we cannot300

use nonnegative probability functions such as the Gamma or the301

Weibull distribution.302

The AVIRIS image with the identification number303

f 140528t01p00r10 shows the Alameda Runway at304

N 37◦47′10′′, W122◦19′19′′ with a pixel size of 16.40 m. In this305

image, we try to distinguish shallow water, deep water, sand,306

and the runways, as shown in Fig. 1. In the same figure, we use307

the bands 29, 20, and 12 to display the data as an RGB image.308

Moreover, we show some segmentation results. In Table I, the309

κ̂ coefficients of all algorithms are listed.310

Fig. 1. Segmentation of the AVIRIS image. κ̂ values are shown in brackets.

TABLE I
COMPARISON OF κ̂ COEFFICIENTS OF THE AVIRIS IMAGE

B. Different Landscapes in a Landsat 8 Image 311

The second experiment is a multispectral Landsat 8 TM 312

image of a mountainous region in the Humid Pampas of 313

Argentina. It shows the San Roque lake with coordinates 314

S 31◦24′30′′, W 64◦29′45′′, the city of Carlos Paz, agricultural 315

fields of different sizes and orientations, and two areas that were 316

burned by wildfires. The goal is to distinguish the following 317

four ground-truth labels: wildfire, corn, fallow land, and water. 318

Some of the segmentation results for different emission pro- 319

babilities are shown in Fig. 2. In Fig. 3, we compare the κ̂ co- 320

efficients of the benchmark functions and the SBM algorithm. 321

IV. CONCLUSION 322

In this letter, a new segmentation algorithm has been pro- 323

posed and compared with two benchmark algorithms. For two 324

test images, SBM showed good results and achieved higher 325

κ̂ coefficients than the benchmark algorithms for most of the 326

experiments. In the case of AVIRIS data with 224 frequency 327
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Fig. 2. Segmentations of a Landsat 8 image with seven hidden states. The four ground-truth labels are: wildfire, corn, fallow land, and water.

Fig. 3. Landsat 8 image: Comparison of κ̂ coefficients for different numbers
of hidden states. For five to seven states, SBM clearly outperforms the bench-
mark algorithms for almost all probability functions. For more than seven states,
SBM has the highest κ̂ values only when using the Weibull distribution.

bands, SBM was the only algorithm that distinguished shallow328

and deep water in a satisfactory way. In this experiment, the329

choice of the probability function had very little influence on330

the results. In the case of the Landsat 8 image, we found that the331

Weibull distribution is the best choice for SBM and that SBM332

tends to be relatively sensitive to the number of hidden states.333

The fact that the probability function can have great influence334

on the segmentation results encourages us to keep investigating335

algorithms that do not depend on a certain probability function.336
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A New Approach to Segmentation of Multispectral
Remote Sensing Images Based on MRF

1

2

Josef Baumgartner, Javier Gimenez, Marcelo Scavuzzo, and Julián Pucheta3

Abstract—Segmentation of multispectral remote sensing images4
is a key competence for a great variety of applications. Many of the5
applied segmentation algorithms are generative models based on6
Markov random fields. These approaches are generally limited to7
multivariate probability densities such as the normal distribution.8
In addition, it is usually impossible to adjust the contextual param-9
eters separately for each frequency band. In this letter, we present10
a new segmentation algorithm that avoids the aforementioned11
problems and allows the use of any univariate density function12
as emission probability in each band. The approach consists of13
three steps: first, calculate feature vectors for every frequency14
band; second, estimate contextual parameters for every band and15
apply local smoothing; and third, merge the feature vectors of16
the frequency bands to obtain final segmentation. This procedure17
can be iterated; however, experiments show that after the first18
iteration, most of the pixels are already in their final state. We call19
our approach successive band merging (SBM). To evaluate the per-20
formance of SBM, we segment a Landsat 8 and an AVIRIS image.21
In both cases, the κ̂ coefficients show that SBM outperforms the22
benchmark algorithms.23

Index Terms—Image segmentation, Markov random fields24
(MRFs), multispectral imaging, probability density function.25

I. INTRODUCTION26

27 S EGMENTATION of remote sensing images is a key com-28

petence for a broad range of decision makers such as29

agricultural producers or local governments. In the case of30

agricultural producers, one can think of estimating crop param-31

eters [1], whereas governments could be interested in wildfire32

management [2] or air quality measurements [3].33

In the last decade, a huge number of image segmentation34

algorithms based on Markov random fields (MRFs) were pro-35

posed by researchers from different fields [4]–[6]. Most of these36

algorithms use multivariate probability functions such as the37

normal distribution to model multispectral images.38

For many classes of images, the multivariate normal dis-39

tribution might be a good choice, but in the case of remote40

sensing images, the gray values of the different frequency bands41
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are often better described by univariate densities such as the 42

Gamma distribution or Kernel density estimation. Still, many 43

modern remote sensing algorithms are limited to the easy-to- 44

handle normal distribution [7]. 45

Another characteristic of remote sensing images is that the 46

contrast of the gray values greatly varies from one band to 47

another. In other words, it may be easy to distinguish two 48

segments in one band but difficult in another. Therefore, a seg- 49

mentation algorithm should be adoptable to the characteristics 50

of each band when using contextual information. Nevertheless, 51

most of the contextual segmentation algorithms require the 52

same Markovian neighborhood in all bands [8], [9]. 53

To overcome these two drawbacks of universal image seg- 54

mentation methods, we propose a new approach for remote 55

sensing images, which is similar to techniques such as Decision 56

Templates or the Dempster–Shafer method [10]. The algorithm 57

denominated successive band merging (SBM) has three parts: 58

first, estimate the maximizer of the posterior marginals (MPM), 59

then include contextual information in a nonparametric way, 60

and finally assign a state to each pixel using a new method 61

proposed in this work. If this procedure is iterated, it generally 62

converges within few iterations to a final state map. Neverthe- 63

less, experiments show that after the first iteration, only few 64

pixels are still switching states. 65

Note that SBM intentionally ignores the probabilistic relation 66

between frequency bands in the first two steps. This enables 67

us to extract hidden features of each band separately with an 68

adequate univariate probability distribution. Only then are the 69

feature vectors of all bands merged in the third step to obtain a 70

segmented image. This contrasts segmentation algorithms that 71

use multivariate distributions. 72

In addition, the described approach makes no assumptions 73

about the used probability functions in each band. Suppose our 74

image has K bands, and we want to distinguish L hidden states. 75

Then, state one could be modeled by a Gamma distribution in 76

band one and a Weibull distribution in band two and so forth. 77

Moreover, our approach allows to set contextual parameters for 78

each band according to their gray value characteristics. Hence, 79

it is possible to work with neighborhoods of different sizes 80

in different bands. Despite these useful features, the computa- 81

tional complexity of our approach is comparable to benchmark 82

algorithms, particularly if the algorithm is not iterated. 83

This work is organized as follows. In Section II, we present 84

the details of our segmentation algorithm and propose estima- 85

tors for the parameters of SBM. Thereafter, we evaluate our 86

method for two remote sensing images and compare the results 87

to two benchmark algorithms in Section III. Finally, we outline 88

the conclusions in Section IV. 89

1545-598X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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II. METHODS90

Here, the three parts of SBM are explained in detail. Suppose91

we have a multispectral remote sensing image I of size M ×N92

with K frequency bands. We denote I(k) as the gray values of93

band k ∈ 1, 2, . . . ,K.94

Our goal is to use the spectral information to find the most95

probable underlying state of every pixel of I . In other words,96

we are searching for the optimal state map s∗, which is given97

by the maximum a posteriori probability, i.e.,98

s∗ = argmax
s

P (s|I, θ). (1)

In (1), θ’s are the model parameters such as density functions99

and neighborhood parameters, and s is any admissible state100

map. Note that for L states, there are LMN possible state101

maps. Even for small images, this huge number of state maps is102

prohibitive for the exact calculation of s∗. Therefore, we try to103

approximate the optimal state map with the approach described104

in this section.105

To start the SBM algorithm, we need an initial segmentation106

and the parameters of the probability functions. There are two107

ways to obtain the necessary data. The first option is to provide108

an initial guess of the density parameters. The initial segmen-109

tation can then be calculated by using maximum-likelihood110

classification. The second option is to run an unsupervised111

segmentation algorithm such as the expectation maximization112

(EM) algorithm [11] or k-means [12]. The resulting state map113

can then be used to estimate parameters of the density func-114

tions. In this letter, we use EM to initialize SBM as well as the115

benchmark algorithms.116

A. MPM Criterion117

The first step of the SBM algorithm consists in computing the118

marginal posterior probabilities for every pixel in every band.119

Therefore, let si,j be the underlying state of pixel (i, j) with120

i ∈ 1, 2, . . . ,M and j ∈ 1, 2, . . . , N . Furthermore, we assume121

that the gray values of pixel (i, j) in the different bands depend122

only on si,j , which means P (Ii,j |s) = P (Ii,j |si,j).123

Hence, we can calculate the probability of pixel (i, j) being124

in state l ∈ 1, 2, . . . , L for the gray values of band k by using125

Bayes theorem, i.e.,126

P
(
si,j = l|I(k)i,j

)
∝ P

(
I
(k)
i,j |si,j = l

)
P (si,j = l). (2)

In this letter, we use noninformative priors, which means that127

P (si,j = l) = 1/L. Before we can go on with the next band,128

we have to normalize the posterior probabilities of all pixels129

such that130

L∑
l=1

P
(
si,j = l|I(k)i,j

)
= 1

∀ k ∈ 1, 2, . . . ,K; i ∈ 1, 2, . . . ,M ; j ∈ 1, 2, . . . , N.

Once we have calculated the marginal posteriors of all bands,131

we are done with the first step of SBM. This part of the132

algorithm is computationally extremely simple. Even for huge133

images, the computation and normalization of the marginal134

posteriors can be done by any average personal computer in 135

less than a minute. 136

We like to point out that, so far, we have made no assump- 137

tions about the probability density functions of the different 138

states. All we need are the posterior probabilities of pixel (i, j), 139

but this property can be calculated for any univariate probability 140

function. Thus, we are free to use any combination of L density 141

functions for frequency band k. 142

Note that, originally, every pixel was represented by a 143

K-dimensional data vector containing information from the 144

different bands. Now, we have projected the input data in 145

KL-dimensional feature space. In the following sections, we 146

show how to take advantage of this hyperspace to segment the 147

pixels of I . 148

B. MPM Averaging 149

To incorporate contextual information in the segmentation 150

process, we apply a nonparametric filter, namely, the bilateral 151

filter (BF) [13]. However, instead of smoothing the gray values of 152

the image, we propose to run the BF directly on the marginal pos- 153

terior probabilities in the feature space to avoid blurring of the 154

gray values over several iterations. Thereby, we make use of two 155

fundamental characteristics of the BF: spatial averaging without 156

smoothing edges [14], or in our notation: averaging of marginal 157

posterior probabilities of similar pixels without blurring. 158

First of all, we denote q
(k)
i,j as the posterior probabilities of 159

pixel (i, j) for band k as described in (2), i.e., 160

q
(k)
i,j (l) = P

(
si,j = l|I(k)i,j

)
l = 1, 2, . . . , L.

According to the BF framework, we can now calculate the 161

smoothed feature vectors q(k)∗
i,j by using 162

q
(k)∗
i,j =

∑
i′,j′∈C

K
(k)
i,j,i′,j′ q

(k)
i′,j′ . (3)

In (3), C represents the user-defined neighborhood or clique for 163

band k, and Ki,j,i′,j′ is the kernel of pixels (i, j) and (i′, j ′). 164

The neighborhood C consists typically of all pixels within a 165

certain radius. In this letter, we choose a radius of three pixels 166

for all experiments. For more information on neighborhoods 167

in MRF, please refer to [4]. As a kernel function, we use the 168

classical Gaussian kernel, which is defined by 169

K
(k)
i,j,i′,j′ = exp

⎛⎜⎝−‖(i, j)− (i′, j ′)‖2

h2
x

−

∥∥∥I(k)i,j − I
(k)
i′,j′

∥∥∥2
h2
y

⎞⎟⎠ .

(4)

Note in (4) that the kernel Ki,j,i′,j′ depends on the Euclidean 170

distance of pixels (i, j) and (i′, j ′) as well as the gray values 171

of the two pixels. Both components—the Euclidean distance 172

and the gray value difference—are weighted by the kernel 173

parameters hx and hy , respectively. If hx is small, only pixels 174

very close to (i, j) are taken into account, whereas for hx → 175

∞, all pixels in neighborhood C are equally weighted. The 176

same is valid for the gray values. The smaller hy , the more 177

discriminative the kernel with respect to the gray values. Before 178
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we go on, keep in mind that Ki,j,i′,j′ has to be normalized179

before applying it to the posterior probabilities in (3).180

For a given neighborhood C, we propose methods to estimate181

hx and hy . Let us start with hx. The idea is to put emphasis182

on pixels (i′, j ′) close to the actual pixel (i, j), but on the183

other hand, we do not want the kernel weights for pixels on184

the boarder of C to be too small. Therefore, we calculate the185

maximum Euclidean distance dc in neighborhood C and set186

hx =

√
2

3
dc. (5)

The estimation of hx by (5) has a geometrical interpretation,187

which is related to the spatial part of the kernel, i.e.,188

Kspatial
i,j,i′,j′ = exp

(
−‖(i, j)− (i′, j ′)‖2

h2
x

)
. (6)

Note in (6) that the reflection point of the spatial kernel as a189

function of the spatial distance lies at exactly one third of dc190

if we calculate hx according to (5). Basic mathematics show191

that the kernel weights for the pixels on the boarder of C are192

more than 1% of the maximum kernel weight. This seems to be193

a reasonable value, particularly for huge neighborhoods.194

The second parameter of the Gaussian kernel is hy . This195

parameter weighs the photometric distance between two pixels.196

The goal is to set hy such that the intensities of two pixels from197

the same class have a high kernel, while two pixels from differ-198

ent classes are discriminated by the BF. Thus, it is convenient to199

estimate hy on the basis of the actual state map s, which can200

be obtained from the marginal posterior probabilities of the pre-201

vious section. Thereby, one has to keep in mind that each band of202

a remote sensing image can have gray values in different ranges.203

Hence, it is necessary to calculate h
(k)
y for every band k.204

At this point, the optimal way to estimate h
(k)
y would be to205

look at every pixel of the image and analyze its neighborhood.206

With this information, one could calculate the optimal h(k)
y by207

maximizing the expected kernel of two neighboring pixels in208

the same state. Clearly, this procedure is very costly and un-209

practical. Therefore, we try to approximate a parameter h(k)
y (l)210

for every state l ∈ 1, 2, . . . , L and then average the parameters211

h
(k)
y (l) to obtain h

(k)
y .212

All we have to do to simplify the estimation of h(k)
y (l) is to213

maximize the expected kernel of two arbitrary pixels from the214

same state instead of taking into account the neighborhood of215

every single pixel. This is equal to calculating the maximum216

likelihood of h(k)
y (l) for each state l. The formula for state l in217

band k is given by218

h(k)
y (l) =

√√√√√2
∑

si,j=l

(
I
(k)
i,j − μ(l)

)2

∑
si,j=l 1

. (7)

Then, we calculateh(k)
y as the weighted average of all states, i.e.,219

h(k)
y =

∑L
l=1 h

(k)
y (l)

L
.

Note that using a BF to incorporate contextual information 220

is similar to running the iterated conditional modes (ICM) 221

algorithm [15]. There are only two notable differences between 222

BF and ICM in this context. First of all, BF assigns spatial 223

weights to pixels, whereas ICM uses hx → ∞ in (4). Second, 224

ICM updates the state of pixel (i, j) according to the states of 225

its neighbors, whereas SBM takes into account the marginal 226

posterior probabilities of the neighboring pixels. 227

In Section III, we study the differences of SBM and ICM in 228

detail, but before that, we present a new method of merging 229

multispectral data in the following section. Therefore, it is 230

convenient to gather the posterior probabilities from (3) in a 231

feature vector x∗
i,j ∈ RKL, i.e., 232

x∗
i,j =

[
q
(1)∗
i,j ,q

(2)∗
i,j , . . . ,q

(K)∗
i,j

]
. (8)

C. Segmentation Step 233

The final step of SBM is to assign one of L states to the feature 234

vectors x∗
i,j from (8). In other words, our goal is to find L basis 235

vectors b1, b2, . . . , bL ∈ RKL, to segment the feature vectors 236

according to their Euclidean distance to these basis vectors. 237

Keep in mind that the feature vector x∗
i,j is composed of the 238

marginal posterior probabilities from K bands. Therefore, we 239

can process each band successively, starting with the first band. 240

Given an initial segmentation s, we can set the basis vectors 241

of the first band to the mean posterior probability, i.e., 242

b
(1)
l =

∑
si,j=1 x

(1)∗
i,j∑

si,j=l 1
∀ l ∈ 1, . . . , L. (9)

In (9), b(1)l stands for the basis vector of state l in band 1. The next 243

step is to calculate the Euclidean distances of the feature vectors 244

to the basis vectors from (9). Then, we resegment each pixel ac- 245

cording to its distance to the basis vectors of the first band, i.e., 246

s =

[
arg min
l∈1,2,...,L

(
x
(1)∗
i,j − b

(1)
l

)]
i,j

. (10)

Once we have finished the first step, we can sequentially add 247

the remaining bands 2, . . . ,K to the segmentation process. We 248

call b(1:k)l the basis vector of state l for bands 1 to k and x
(1:k)∗
i,j 249

the feature vector for bands 1 to k. With this notation, we can 250

extend (9) and (10) to 251

b
(1:k)
l =

∑
si,j=1 x

(1:k)∗
i,j∑

si,j=l 1
∀ l ∈ 1, . . . , L (11)

s =

[
arg min
l∈1,2,...,L

(
x
(1:k)∗
i,j − b

(1:k)
l

)]
i,j

. (12)

The idea behind this step of SBM is to update the hidden state 252

map s according to (11) and (12) for k = 2, then for k = 3, and 253

so on, until we reach k = K. After processing the last band K, 254

we check for convergence of the state map s. If the algorithm 255

has not converged yet, we start again with band one. However, 256

this time—as we have already completed one iteration—we use 257

the state map obtained from the last iteration. 258

As a result, we obtain a hidden state map of a multispectral re- 259

mote sensing image without using multidimensional probability 260
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density functions such as the multidimensional normal dis-261

tribution. Note that once the algorithm converges, we found262

basis vectors b1, b2, . . . , bL ∈ RKL that are valid for all bands.263

Hence, we achieved our main goal to incorporate the informa-264

tion of all bands.265

In general, the presented algorithm converges within few266

iterations and leads to very promising results, as we will show267

in Section III. For a schematic description of the whole segmen-268

tation algorithm, please refer to Algorithm 1.269

Algorithm 1: SBM Algorithm

1) Initialize parameters of probability distributions with a270

training set, k-means or GMM.271

2) Calculate MPM of every pixel in every band using (2).272

3) Apply BF as described by (3).273

4) Segment image according to (11) and (12)274

5) If no convergence of state map, go to step 2)275

III. EXPERIMENTAL RESULTS276

Here, we use handmade ground truth and Cohen’s κ̂ coeffi-277

cient [16] to compare the performance of SBM with two bench-278

mark algorithms, namely, Potts iterated conditional modes279

(ICM) and path constrained Viterbi training (PCVT). ICM280

goes back to a work of Geman and Geman [17], where they281

consolidated the use of Gibbs laws as prior evidence in the282

processing and analysis of images, whereas PCVT is based on283

2-D hidden Markov models [18]. To estimate the β coefficient284

of ICM, we use the method proposed in [19].285

All algorithms started from the same initial segmentation286

obtained from a GMM. Note that this might be a disadvantage287

for the distribution-independent SBM algorithm. Still, we chose288

this initialization method based on the normal distribution,289

because it is a widely accepted and applied algorithm.290

The computational cost of SBM is approximately 10%–25%291

higher than PCVT and 50%–75% higher than ICM. Particularly292

for hyperspectral images, SBM demands more resources than293

the benchmark algorithms. On the other hand, the computa-294

tional cost of SBM can be reduced by not iterating (9)–(12)295

until convergence.296

A. AVIRIS Data297

For the first experiment, we use Airborne Visible/Infrared298

Imaging Spectrometer (AVIRIS) data with 224 frequency299

bands. Because some bands contain negative values, we cannot300

use nonnegative probability functions such as the Gamma or the301

Weibull distribution.302

The AVIRIS image with the identification number303

f 140528t01p00r10 shows the Alameda Runway at304

N 37◦47′10′′, W122◦19′19′′ with a pixel size of 16.40 m. In this305

image, we try to distinguish shallow water, deep water, sand,306

and the runways, as shown in Fig. 1. In the same figure, we use307

the bands 29, 20, and 12 to display the data as an RGB image.308

Moreover, we show some segmentation results. In Table I, the309

κ̂ coefficients of all algorithms are listed.310

Fig. 1. Segmentation of the AVIRIS image. κ̂ values are shown in brackets.

TABLE I
COMPARISON OF κ̂ COEFFICIENTS OF THE AVIRIS IMAGE

B. Different Landscapes in a Landsat 8 Image 311

The second experiment is a multispectral Landsat 8 TM 312

image of a mountainous region in the Humid Pampas of 313

Argentina. It shows the San Roque lake with coordinates 314

S 31◦24′30′′, W 64◦29′45′′, the city of Carlos Paz, agricultural 315

fields of different sizes and orientations, and two areas that were 316

burned by wildfires. The goal is to distinguish the following 317

four ground-truth labels: wildfire, corn, fallow land, and water. 318

Some of the segmentation results for different emission pro- 319

babilities are shown in Fig. 2. In Fig. 3, we compare the κ̂ co- 320

efficients of the benchmark functions and the SBM algorithm. 321

IV. CONCLUSION 322

In this letter, a new segmentation algorithm has been pro- 323

posed and compared with two benchmark algorithms. For two 324

test images, SBM showed good results and achieved higher 325

κ̂ coefficients than the benchmark algorithms for most of the 326

experiments. In the case of AVIRIS data with 224 frequency 327
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Fig. 2. Segmentations of a Landsat 8 image with seven hidden states. The four ground-truth labels are: wildfire, corn, fallow land, and water.

Fig. 3. Landsat 8 image: Comparison of κ̂ coefficients for different numbers
of hidden states. For five to seven states, SBM clearly outperforms the bench-
mark algorithms for almost all probability functions. For more than seven states,
SBM has the highest κ̂ values only when using the Weibull distribution.

bands, SBM was the only algorithm that distinguished shallow328

and deep water in a satisfactory way. In this experiment, the329

choice of the probability function had very little influence on330

the results. In the case of the Landsat 8 image, we found that the331

Weibull distribution is the best choice for SBM and that SBM332

tends to be relatively sensitive to the number of hidden states.333

The fact that the probability function can have great influence334

on the segmentation results encourages us to keep investigating335

algorithms that do not depend on a certain probability function.336
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